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Abstract 

Background:  Sharing individual phenotype and genotype data between countries is complex and fraught with 
potential errors, while sharing summary statistics of genome-wide association studies (GWAS) is relatively straightfor‑
ward, and thus would be especially useful for traits that are expensive or difficult-to-measure, such as feed efficiency. 
Here we examined: (1) the sharing of individual cow data from international partners; and (2) the use of sequence 
variants selected from GWAS of international cow data to evaluate the accuracy of genomic estimated breeding 
values (GEBV) for residual feed intake (RFI) in Australian cows.

Results:  GEBV for RFI were estimated using genomic best linear unbiased prediction (GBLUP) with 50k or high-
density single nucleotide polymorphisms (SNPs), from a training population of 3797 individuals in univariate to 
trivariate analyses where the three traits were RFI phenotypes calculated using 584 Australian lactating cows (AUSc), 
824 growing heifers (AUSh), and 2526 international lactating cows (OVE). Accuracies of GEBV in AUSc were evaluated 
by either cohort-by-birth-year or fourfold random cross-validations. GEBV of AUSc were also predicted using only the 
AUS training population with a weighted genomic relationship matrix constructed with SNPs from the 50k array and 
sequence variants selected from a meta-GWAS that included only international datasets. The genomic heritabilities 
estimated using the AUSc, OVE and AUSh datasets were moderate, ranging from 0.20 to 0.36. The genetic correlations 
(rg) of traits between heifers and cows ranged from 0.30 to 0.95 but were associated with large standard errors. The 
mean accuracies of GEBV in Australian cows were up to 0.32 and almost doubled when either overseas cows, or both 
overseas cows and AUS heifers were included in the training population. They also increased when selected sequence 
variants were combined with 50k SNPs, but with a smaller relative increase.

Conclusions:  The accuracy of RFI GEBV increased when international data were used or when selected sequence 
variants were combined with 50k SNP array data. This suggests that if direct sharing of data is not feasible, a meta-
analysis of summary GWAS statistics could provide selected SNPs for custom panels to use in genomic selection 
programs. However, since this finding is based on a small cross-validation study, confirmation through a larger study is 
recommended.
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Background
The dairy industry has seen tremendous gains by select-
ing for milk production yield, while maintenance 
requirements have increased more slowly, leading to 
improvements in gross efficiency (defined as production 
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per unit of intake) [1]. However, feed costs still make up a 
large proportion of the variable and total costs on a dairy 
farm, and improving production efficiency is therefore a 
key breeding objective [2]. Feed efficiency, as a measure 
of converting feed into additional volumes of milk sol-
ids, is an important topic in the era where food demand 
is increasing with the growing human population. In 
order to increase the overall gross production efficiency 
of livestock, it is important to develop accurate genomic 
breeding tools that improve or maintain feed efficiency in 
parallel with progress in production, health, and fertility.

Over the last 20 years, the Australian dairy industry has 
had a penalty on maintenance in national selection indi-
ces, initially through the inclusion of body weight, and 
more recently through “Feed Saved”. The Feed Saved trait 
accounts for maintenance requirements through body 
weight in addition to metabolic efficiency through resid-
ual feed intake (RFI). RFI is defined as the difference in 
an animal’s actual and expected dry matter intake (DMI), 
after adjusting for its body size, growth, and productiv-
ity. Variation in RFI is likely due to differences between 
animals in the metabolic processes related to feed intake 
level, digestion of feed, absorption of nutrients, basal 
metabolism, health status, rumen microbial metabolism, 
and physical activity [3–5].

Genomic selection has been widely adopted by the 
dairy industry and is especially useful for traits such as 
RFI that are very expensive and difficult-to-measure. The 
accuracy of genomic estimated breeding values (GEBV) 
depends on the size of the training population and the 
extent of linkage disequilibrium between single nucleo-
tide polymorphisms (SNPs) and causal variants [6]. Due 
to the high costs of measuring RFI, most countries have 
insufficient amounts of data to achieve high accuracy of 
GEBV. For example, the accuracies of genomic predic-
tions for RFI and DMI have been reported to be around 
0.2 to 0.4 in beef and dairy cattle studies [5, 7–14] using 
reference populations that vary in size between 527 and 
7k individuals. Studies on beef cattle have the additional 
challenge of multi-breed reference populations: for 
example Bolormaa et al. [8] estimated a genomic predic-
tion accuracy of 0.36 for RFI using 4k animals from nine 
breeds of Bos taurus and Bos indicus cattle.

Combining data from international partners on feed 
intake may be one way to increase the quantity of data 
available to improve the accuracy of GEBV. Furthermore, 
the data could be used to increase the power and preci-
sion of mapping the causal variants for feed efficiency 
from imputed sequence data. However, collating a large 
enough training population for accurate GEBV predic-
tion is a major challenge for feed efficiency traits due to 
different management systems, which can lead to the 
occurrence of genotype-by-environment interactions 

between countries and continents. Furthermore, genetic 
differences may exist between traits and measurements 
that are taken at different stages of the lactation period. 
Nonetheless, the study by Berry et  al. [15] successfully 
collated DMI records for about 9k dairy animals from 
nine countries to estimate genetic parameters. These col-
laborative initiatives continue, such as with the Efficient 
Dairy Genome Project (EDGP), that was established 
with the goal of allowing free access among partners to a 
large training population of Holstein dairy cows for feed 
intake, body weight, and milk production.

Genomic selection refers to selection decisions that 
are based on breeding values predicted using genome 
wide marker data such as SNPs [16]. Genomic best lin-
ear unbiased prediction (GBLUP) method, where SNP 
information is incorporated in the BLUP method, is cur-
rently used for routine genomic evaluation in Australia. 
GBLUP assumes that all SNP effects are drawn from the 
same normal distribution and, therefore, all SNPs have 
small effects. A multi-trait GBLUP model is expected to 
improve the accuracy of GEBV with the help of informa-
tion from genetically correlated traits. Therefore, testing 
the accuracy of genomic prediction using Australian cow 
RFI data as either an individual trait, or a correlated trait 
with the RFI data of international cows and Australian 
heifers would be of interest.

Until recently, the Australian dairy industry relied 
mainly on the genotypes obtained with the Illumina 
Bovine 50k SNP panel for genomic prediction of breed-
ing values. However, standard SNP arrays (e.g., 50k 
SNPs) are unlikely to include causal variants because 
they are composed of random markers that are prese-
lected only to be (highly) polymorphic across breeds. 
This can result in less common causal variants not 
being in strong linkage disequilibrium (LD) with the 
SNPs on the array; thus, their effects may not be cap-
tured in genomic predictions. Indeed, there is now 
evidence in both cattle and sheep that the accuracy 
of genomic prediction can be increased by combining 
several thousands of highly predictive sequence vari-
ants using a standard SNP array [17–21]. In contrast to 
standard SNP arrays, whole-genome sequence (WGS) 
data should include many of the less common causal 
variants. In addition, the use of these selected sequence 
variants that are causal or very close to the causal vari-
ant are particularly beneficial for prediction of animals 
that have a low relationship to the reference animals. 
Thus, it is of considerable interest to undertake a meta-
analysis of GWAS with imputed sequence variants (e.g., 
sharing the signed-t values of sequence variant effects) 
as an alternative to sharing the raw data and genotypes 
among countries. The resulting GWAS could be used 
to fine-map putative causal variants and genes that 
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underlie feed intake and efficiency. Furthermore, addi-
tion of variants with large effects for single traits or 
with multiple pleiotropic effects to custom SNP pan-
els is of particular interest to improve the accuracy of 
genomic prediction for feed efficiency.

The main objectives of our study were: (1) to improve 
the accuracy of genomic prediction for RFI of Aus-
tralian cows by treating their RFI records as either a 
correlated trait with international cow and/or Austral-
ian heifers’ RFI records or a same trait as a combined 
dataset; and (2) to increase the accuracy of genomic 
prediction for feed efficiency in Australian cows by aug-
menting the standard 50k SNP panel with a subset of 
sequence variants selected from GWAS using interna-
tional cow data.

Methods
Phenotypes
In this study, we used feed intake, body weight, and 
milk production data of the overseas cows from 
research groups in seven countries (Australia (AUS), 
United States of America (USA), Canada (CAN), Den-
mark (DNK), United Kingdom (GBR), Switzerland 
(CHE), and the Netherlands (NLD)) (Table  1). The 
combination of the USA and CAN datasets is referred 
to as the North American (NA) dataset, the combina-
tion of the remaining international countries as the 

European (EU) dataset, and the combination of the NA 
and EU datasets as the overseas dataset (OVE).

Australian heifer (AUSh)
The AUSh dataset comprised a total of 824 Holstein heif-
ers, which were measured for residual feed intake (RFI, 
kg/days), dry matter intake (DMI, kg/d), mean body 
weight (BW, kg), and change in body weight (∆BW, kg), 
and the phenotypes were adjusted for systematic envi-
ronment effects (experiment), age at measurement, and 
its squared value. Trait deviations for RFI in AUS heif-
ers were previously calculated as mean values of the dif-
ference in actual and predicted DMI that was measured 
over a 6 to 7-week period on about 6-month old heifers. 
A description of the design, measurements, and calcu-
lations for RFI is in Pryce et  al. [22]. Full details of the 
management of animals, the diets they were fed, and 
recording of each trait are described in Williams et  al. 
[23] and Pryce et al. [22].

Australian cow (AUSc)
The AUSc dataset consisted of 584 cows, of which 
137 overlapped with the animals in the AUSh data-
set (i.e., they had measurements as heifers and as 
cows) [22]. RFI for AUSc was calculated based on the 
average DMI over the 28-days experimental period 
using the model that is described in Pryce et  al. [22],  
which is as follows: RFI = DMI –  (mean + contemporary 

Table 1  List of datasets and GBLUP analyses used in this study

a na: not applicable; bivariate or trivariate: analyses using two or three datasets, which were treated as individual traits, respectively

Dataset code Analysesa Heifer or cow Country or continent

AUSh Univariate Growing heifer Australia

AUSc Univariate Lactating cow Australia

USA na Lactating cow United States

CAN na Lactating cow Canada

DNK na Lactating cow Denmark

GBR na Lactating cow United Kingdom

CHE na Lactating cow Switzerland

NLD na Lactating cow the Netherlands

EU Univariate Lactating cow DNK + GBR + CHE + NLD

NA Univariate Lactating cow USA + CAN

OVE Univariate Lactating cow EU + NA

AUShAUSc Bivariate Heifer + cow AUSh and AUSc

AUScEU Bivariate or univariate Lactating cow AUSc and EU

AUScNA Bivariate or univariate Lactating cow AUSc and NA

AUScOVE Bivariate or univariate Lactating cow AUSc, AUSc and OVE

AUShAUScEU Trivariate Heifer + cow AUSc, AUSc and EU

AUShAUScNA Trivariate Heifer + cow AUSc, AUSc and NA

AUShAUScOVE Trivariate Heifer + cow AUSc, AUSc and OVE
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group + DIM + Parity + ECM + MBW + ∆BW), where 
mean is the overall mean of DMI across the population, 
MBW is the mean BW, and ∆BW is the change in BW 
during the trial period, ECM is the energy-corrected milk; 
ECM, MBW, and ∆BW were fitted as covariates in the 
model; contemporary group (16 different cohort groups 
from trials run between November 2011 and November 
2017), DIM at the beginning of the trial as a covariate, 
and parity (1, 2, 3, and 4+) were the systematic environ-
mental effects fitted as fixed effects. Units for traits in the 
model are the same as in the AUSh data. The RFI values 
were averaged when more than one lactation record was 
available per animal. Energy-corrected milk (kg/days) 
was calculated as in Pryce et  al. [22]: ECM = 0.1 × milk 
(kg/days) + 5.2 × fat (kg/days) + 2.6 × protein (kg/days), 
where milk, fat, and protein are milk, protein, and fat 
yields, respectively.

Overseas cows
The phenotypes from USA, CAN, DNK, and CHE 
were downloaded from the EDGP database in Decem-
ber 2019. The RFI phenotypes from NLD and GBR are 
described in Pryce et  al. [22] and the DMI phenotypes 
for GBR were extracted from the EDGP database. Ini-
tially the dataset of each country was treated separately. 
The number of records and animals for RFI and the traits 
used to calculate RFI are in Table 2. The RFI phenotypes 
for OVE cows within each country were calculated as 
RFI = DMI – (mean + parityST +​ DIM ​+ HYS​ ​+ p​oly​(age,-
2) + trial + ECM + MBW + ∆BW), where DMI, ECM, 
MBW, and DIM are the same as above, ∆BW is daily BW 
change, and poly(age,-2) is the age of cows at calving fit-
ted as a second-order orthogonal polynomial; ∆BW was 
calculated by fitting a fifth-order orthogonal polynomial 
regression on DIM (5 to 306 DIM) to daily BW, and then 
∆BW was calculated as the difference in predicted BW 
between consecutive days. Units for traits in the model 
are the same as for the AUSh data. In the above model, 

trial was only fitted for the CHE data, which covered 
three different feeding systems. ECM for each overseas 
country was calculated using the same formula [22] 
that was used to calculate ECM for AUSc. To calculate 
phenotypes of RFI, no missing records were allowed for 
the covariates ECM, BW, and ∆BW (Table 2). The fixed 
effects were: overall mean across population (mean), par-
ity stage (parityST), and herd-year-season (HYS). For 
CHE, diets (3 levels) were also fitted as fixed effects. Pari-
tyST is a combination of parity (3 levels: 1, 2, and 3+) and 
four stages of lactation (4 levels: ≤ 30 days, 31–100, 101–
200; and > 200 days), and HYS is a combination of herd, 
year, and season of calving (2 herds for CAN, 3 herds for 
CHE, and the remaining countries had animals from one 
herd, and four seasons (autumn (October 1–December 
31), winter (January 1–March 31), spring (April 1–June 
30), and summer (July 1–September 30)). Means for 
each trait were calculated per animal. Trait deviations for 
RFI in NLD and GBR cows were calculated in an earlier 
study by Pryce et al. [22], which also provides a complete 
description of the design, measurements, and calcula-
tions. Before collating the datasets from each country, 
each dataset was standardised ((x − mean)/SD) to avoid 
any potential differences in measurement scales, and 
country of origin was always fitted as a fixed effect in fur-
ther analyses.

Genotypes
The 824 Australian heifers were genotyped with the high-
density (HD ~ 600k) SNP array. The genotypes of the 584 
Australian cows were imputed to HD genotypes (~ 600k 
SNPs) using the Fimpute software [24]. The imputation 
from HD SNPs to WGS variants was performed using 
the Minimac3 algorithm [25]. The sequences of 3090 Bos 
taurus cattle representing multiple breeds and crosses 
from across the world (Run 7 of the 1000 Bull Genomes 
project, [26]) were used as reference animals for imput-
ing from HD to WGS. Prior to imputation, the variants 

Table 2  Number of records (and number of animals in parentheses) for dry matter intake and traits used to calculate residual feed 
intake per country

Acronyms as described in Table 1

DMI: dry matter intake; ECM: energy corrected milk; BW: body weight; ∆BW: change in body weight; DMIRFI: dry matter intake used to calculate RFI when ECM, BW, and 
∆BW had no missing values

Dataset DMI ECM BW ∆BW DMIRFI

AUSh 46,144 (824) 46,144 (824) 46,144 (824) 46,144 (824)

AUSc 20,384 (584) 20,384 (584) 20,384 (584) 20,384 (584) 20,384 (584)

USA 126,863 (673) 18,485 (676) 127,693 (672) 127,693 (672) 17,568 (671)

CAN 137,517 (755) 38,543 (785) 150,208 (492) 150,208 (492) 13,278 (473)

DNK 34,284 (439) 30,648 (431) 30,777 (429) 30,777 (429) 27,559 (425)

CHE 3887 (95) 2192 (127) 4167 (95) 4167 (95) 297 (63)



Page 5 of 17Bolormaa et al. Genetics Selection Evolution           (2022) 54:60 	

called in the cattle reference sequences were pre-filtered 
to retain only bi-allelic variants with allele counts of 
four or more (i.e. variants for which the alternate allele 
appeared less than 4 times were excluded), a Beagle R2 
coefficient higher than 0.9, and a GATK Tranche score 
of 99.0 or more. In addition, variants with a heterozygo-
sity higher than 0.5 were removed if they were located 
in chromosome segments (0.5  Mb) with an excessive 
heterozygosity higher than 0.5 (indicating alignment or 
mapping issues such as long tandem repeat regions) [27]. 
Minimac3 requires pre-phased genotypes in both the ref-
erence (WGS) and target sets, prephasing was done using 
the Eagle software [28].

The genotypes of the USA, CAN, DNK, and CHE cows 
were downloaded from the EDGP database, and the 50k 
genotypes of NLD and GBR cows were part of the dataset 
used in the development of the 2015 EBV for Feed Saved, 
as described by Pryce et al. [22]. The genotypes of cows 
from the different countries in the EDGP database were 
obtained from a variety of medium to HD chips, ranging 
in size from 55,647 to 777,961 SNPs.

Prior to imputation, all positions of the genotypes 
for each country were prepared according to the ARS-
UDC1.2 sequence build of the bovine genome [29], 
and all unknown chromosomes and/or positions were 
removed. The allele frequency of each SNP across all 
countries was checked to ensure that the coding pro-
tocols for homozygotes were likely to be in the same 
direction (see Additional file  1: Figure S1). The missing 
genotypes for animals from each country were imputed 
separately up to the HD SNP array using a reference pop-
ulation of 2700 Australian animals that were genotyped 
directly with the HD SNP chips. Then, all HD genotypes 
were collated, and for consistency with the WGS data, 
were all converted to forward/forward sequence format 
and then were phased using the Eagle software. Imputa-
tion from HD to WGS was carried out as for the Austral-
ian animals described above. The genotypes on the Bos 
taurus (BTA) X chromosome were not included in the 
subsequent analyses.

Population structure
The genomic relationship matrix (GRM) was constructed 
using HD genotypes of all 3711 animals from the seven 
countries using the method of Yang et  al. [30]. Since 
the degree of relatedness between reference and valida-
tion populations has a strong impact on the accuracy of 
genomic prediction, we undertook several tests to better 
understand the relationships within and across datasets. 
First, a principal component analysis was performed on 
the GRM to show the degree of diversity among the 3711 
genotypes of the animals from the seven countries. The 
numbers of animals per country used in this analysis are 

in Table 4. Also, a neighbour-joining (NJ) tree represent-
ing the genetic distance between each pair of countries’ 
groups of animals was drawn using the pairwise FST coef-
ficients, which were calculated using the HD genotypes 
of all cows by adopting the formula of Hedrick [31]. In 
addition, the heterozygosity predicted from the GRM 
(HEpr) was compared to the mean observed heterozygo-
sity (HEo) per country and the heterozygosity assuming 
Hardy–Weinberg equilibrium (HEoHW). HEpr was calcu-
lated as: HEbase*(1− F), where F is the inbreeding within 
each breed relative to the base population [8] and HEbase 
is the heterozygosity in the base population calculated as ∑

i 2pi(1− pi)/N  , where pi is the allele frequency of the 
i th SNP across all datasets and N  is the total number of 
SNPs. The HEo per country was calculated as the average 
number of heterozygous SNPs for each animal from each 
country.

Statistical analyses
Genomic prediction
In total, 40,510 (50k) and 620,269 (HD) SNPs, which 
overlapped with WGS variants and were in common 
among the AUSc, AUSh, and OVE datasets, were used to 
build the 50k and HD GRM, respectively. Genomic pre-
diction analyses were performed using two approaches:

(1)	 either by using a multivariate model where the 
AUS cow and heifer datasets and the OVE dataset 
were analysed by treating them as correlated traits 
(bivariate or trivariate models), or using the com-
bined AUS cow and OVE cow datasets by treating 
them as a single trait;

(2)	 or by using the most significant variants selected 
from the WGS variants combined with either the 
50k or HD SNP array to mimic a scenario where 
sharing of the raw data among countries is not fea-
sible. The sequence variants were selected from the 
results of the GWAS, which was undertaken based 
on the OVE dataset, and were then used for the 
AUS cows to improve the genomic accuracy.

Validation and training populations
Only the AUSc dataset was used as validation popula-
tion. Validation animals were split in two different ways: 
cohort-by-birth year and fourfold random cross-valida-
tions (where we avoided paternal half-sibs to be included 
in the reference and validation sets). For the cohort split, 
individuals were split into four sets by allocating ani-
mals according to their year of birth (2013, 2014, 2015, 
and 2016 + 2017 (in this case, a combined set of 2016 and 
2017 animals was used due to the small sample size for 
these last 2 years). Any remaining animals were retained 
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in the training sets. For the random split (fourfold 
cross-validation), any animals with unknown sires were 
retained in the training set (but not in the validation set) 
and the remaining individuals were split into four sets by 
allocating all offspring of randomly selected sires into one 
of the four datasets. Thus, the analysis was performed 
four times using each data fold in turn as a validation 
group and the other three folds used in the training pop-
ulation (i.e., 3-folds plus the remaining cows from above).

For the bi-variate model, the training populations were 
obtained by adding sequentially and in turn: the AUSh, 
EU, NA, and OVE cow datasets to the AUSc dataset 
(referred to as AUScAUSh, AUScEU, AUScNA, and 
AUScOVE, see Table  1). For the tri-variate model, the 
training populations were obtained by adding in turn the 
EU, NA, and OVE cow datasets to the AUScAUSh data-
set (referred to as AUScAUShEU, AUScAUShNA, and 
AUScAUShOVE, see Table 1). For the univariate analysis 
in which the AUSc and OVE cow datasets were treated as 
a single-trait dataset, we used the same animals as in the 
AUScEU, AUScNA, and AUScOVE training populations.

Selecting sequence variants from GWAS for genomic predic-
tion
Single‑trait GWAS  To capture the associations between 
sequence genotypes and feed efficiency, we undertook a 
GWAS for both RFI and DMI. The single-trait GWAS for 
RFI and DMI were performed using the OVE dataset. The 
mixed model used for the GWAS fitted each sequence 
variant as a covariate, one at a time, and tested for an asso-
ciation with each trait:

where y is the vector of observed phenotypic values of 
the animals, 1n is an n × 1 vector of 1s ( n = number of 
animals with phenotypes), µ is the overall mean, X is a 
design matrix relating observations to the corresponding 
fixed effect (dataset), b is a vector of fixed effects, si is a 
vector of genotypes (coded as 0, 1, and 2) for each ani-
mal at the i th variant, αi is the covariate effect of the cor-
responding variant, g is a vector of GEBV ∼ N(0,Gσ2g ), 
where σ2g is the genetic variance and G is the GRM con-
structed from HD SNPs, and e is residual error. For a var-
iant to be included in the GRM, its minor allele frequency 
had to be higher than 0.01, once the genotypes (real and 
imputed) were combined in the whole dataset. The analy-
sis was performed using the GCTA software [32].

Multi‑trait meta‑analysis  A multi-trait, meta-analysis 
[33] was used to identify plausible individual and pleio-
tropic variants associated with feed efficiency. The multi-
trait, meta GWAS (m-tr_G) was performed based on the 

y = 1nµ+ Xb+ siαi + g + e,

signed-t values of estimated effects of sequence variants 
from the two single-trait GWAS (s-tr_G for DMI and 
RFI). The multi-trait χ2 statistic for m-tr_G was calculated 
as in [33]:

 where ti is a vector of the signed t-values of the effects of 
the i-th SNP for DMI and RFI and V−1 is the inverse of 
the 2 × 2 correlation matrix where the correlation is cal-
culated over all the estimated SNP effects (signed t-val-
ues) between DMI and RFI.

Selecting the  most significant variants  In total, 
31,380,025 WGS autosomal variants (excluding variants 
on BTA X) were used to perform the GWAS. Bolor-
maa et  al. [34] showed that the Minimac3 R2 statistic 
is a good proxy for empirical imputation accuracy for 
use in filtering poorly imputed variants. According to 
their study, a Minimac3 R2 value greater than 0.4 corre-
sponded to an empirical imputation accuracy of ≥ 0.87 
(measured as the correlation between real and imputed 
genotypes). Approximately 60% of the 31,380,025 vari-
ants (18,921,317) had a Minimac R2 value greater than 0.4 
in the OVE imputed WGS dataset (see Additional file 2: 
Table S1). About 96% of these 18,921,317 variants in the 
OVE cow dataset overlapped with the variants (R2 > 0.4) 
in the AUS cow WGS dataset. The sequence variants were 
removed if imputation R2 was less than or equal to 0.4 in 
both the OVE and AUS cow datasets, and variants also 
were removed if their minor allele frequency was lower 
than or equal to 0.006 in the OVE dataset. This resulted 
in 14.6 million sequence variants, which were available 
for further analysis. To avoid selecting a large number of 
closely-linked variants, only the three most significant 
variants with P-values < 0.001 were selected from within 
each 100-kb window along each chromosome, and slid-
ing by 50  kb to the next window. This variant selection 
approach was undertaken using: (1) the results from sin-
gle-trait GWAS (s-tr_G) for DMI and RFI, (2) the results 
from multi-trait, meta GWAS (m-tr_G), and (3) the com-
bined variants from s-tr_G for RFI, s-tr_G for DMI, and 
m-tr_G (sm-tr_G).

GBLUP model
RFI was analysed as a single- and multi-trait genomic 
model based on restricted maximum likelihood 
(GREML) analyses with different combinations of data-
sets including AUSc, AUSh, and OVE cows. The analyses 
were performed using the ASReml package [32]. GEBV 
were calculated based on the following model:

multi-trait χ
2
= t

′

i
V
−1

ti,
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where yT is a T× n matrix of observations for T traits  
( T = 1, 2, or 3), XT is the incidence matrix for fixed 
effects, bT is the matrix of fixed effects (in this case, 
the mean  for each trait and country of origin), ZT is an 
incidence matrix relating trait records to animals, gT 
comprises GEBV for T traits for animals with geno-
types, distributed as N (0,G⊗ P) where P is a T × T 
matrix of additive genetic (co)variances between RFI of 
the AUSc, OVE cows, and/or AUSh, and G is the animal 
by animal GRM. eT is a T × n matrix of residuals with 
var(eT) = R ⊗ I , where R is a T × T matrix of residual 
(co)variances and I is an n × n identity matrix. The GRM 
used in the GREML analysis was built based on the gen-
otypes from either 50k or HD SNPs using the method 
of Yang et  al. [30]. SNPs with a minor allele frequency 
higher than 0.01 to 0.05 (to ensure that a minimum of 20 
alleles per variant were segregating in each of the refer-
ence populations) were included in the GRM.

For scenarios for which the most significant vari-
ants from the WGS GWAS combined with the 50k SNP 
array were used in the GREML analysis, first the GRM 
were built separately using either 50k SNP genotypes 
(GRMSNP) or genotypes for the selected sequence vari-
ants (GRMseq) in each set. Then, the GREML analyses 
were performed using the phenotypes of the reference 
populations to estimate the genetic variance explained 
by the GRMSNP (σ2

SNP) and GRMseq (σ2
seq). The genetic 

variance estimates were used as weights to aggregate 
the GRMSNP and GRMseq into a single weighted GRM 
(GRMweighted): GRMweighted = (σ2

SNP * GRMSNP + σ2
seq * 

GRMseq)/(σ2
SNP + σ2

seq) as described by Khansfield et  al. 
[35]. The weighted GRM was then used for the GBLUP 
analyses to estimate the GEBV in the validation popula-
tion. The accuracy of the predicted GEBV was compared 
to the accuracy of GEBV predicted by using only the 50k 
or HD SNP GRM.

Accuracy of GEBV
For each validation population (AUSc), the accuracy of 
genomic prediction was calculated as the correlation 
between GEBV and the phenotype corrected for fixed 
effects. Then, the correlation was divided by the square 
root of the genomic heritability of the trait (h2) in the 
AUSc dataset. The h2 was estimated as the proportion 
of the phenotypic variance that was explained by the 50k 
SNPs. Estimates of genomic heritability and of the accu-
racy of GEBV were averaged across the four validation 
sets for each trait. The standard error of the accuracy of 
GEBV was estimated from the four randomly sampled 
independent fold validation sets for each trait (i.e., as 

(1)yT = XTbT + ZTgT + eT,
the standard deviation of the 4 accuracies divided by the 
square root of 4). Note that this is an approximate stand-
ard error because the reference fold sets are not com-
pletely independent from each other.

Results
Population structure
The first two principal components from the GRM were 
used to show the degree of differentiation between the 
genotypes of the 3711 cows from the seven countries. 
As expected, all cows (Holsteins) appeared as a single 
cloud (one breed) (Fig. 1a). The USA and CAN cows were 
slightly separated from the others, as shown on the left 
side of the first principal component (PC1) axis, while 
the remaining groups were either in the middle or on 
the right side of the PC1 axis. This separation is clearly 
shown on the NJ tree in Fig. 1b, which displays four main 
clusters: USA and CAN cows formed a separate cluster 
on the opposite side of all other clusters. As expected, 
AUS cows and heifers belonged to the same cluster, and 
the European countries of DNK, GBR, and NLD also 
formed their own cluster, while CHE sat outside this 
cluster.

There was agreement among these population meas-
ures, with all the genotype groups displaying a similar 
range of heterozygosity (0.32–0.34) (Table  3), which 
shows that the GRM constructed with animals from dif-
ferent groups is a reliable representation of the relation-
ships among and within groups of animals.

Genetic parameters
Stage of lactation affects DMI and, hence, we present 
the mean and standard deviation (SD) for DIM and DMI 
in the same table (Table  4). The mean DIM was lowest 
for the AUSc and USA cows and highest for the DNK 
cows. The experimental design resulted in a DIM for 
AUSc that spanned 32–245 DIM, however 67% of ani-
mals were recorded with the relevant traits between 75 
and 124 DIM. Although the DIM for cows from other 
countries was restricted to be between 5 and 306  days, 
the mean and SD of DIM for the USA cows was smaller 
compared to those for the cows from other countries 
because about 78% of the DMI for the USA cows were 
recorded between 6 and 99 DIM. The SD of raw DMI was 
smaller for the CHE, AUSc, and DNK datasets compared 
with USA, CAN and GBR datasets. The SD of DMI cor-
rected for fixed effects was within a similar range (~ 2.6) 
for the AUSc, EU, NA, and OVE datasets. For RFI, the SD 
ranged from 1.17 to 2.26, except for the CAN cows, for 
which the SD was equal to 3.0. As expected, compared 
to the RFI for cows, the RFI for heifers had a lower mean 
and SD (Table 4).
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The h2 for DMI and RFI estimated with a univariate 
model in the different datasets that were used for genomic 
prediction analyses are in Table 5. DMI was moderately her-
itable, with an h2 ranging from 0.29 (EU) to 0.40 (NA). The 
h2 for RFI was equal to 0.19 for AUSc, 0.36 for AUSh, and 

ranged from 0.27 to 0.32 for the three combined datasets 
of international cows (EU, NA or OVE). The h2 estimates 
using the bivariate and trivariate models were comparable. 
The standard errors (SE) of h2 ranged from 0.032 to 0.090. 
The rg from the trivariate analyses in which the three data-
sets (i.e., AUSh, AUSc, and OVE) were treated as correlated 
traits are in Table 6. For the AUScAUShOVE dataset, the 
rg for RFI was 0.30 and 0.95 between AUSc and AUSh and 
between AUSc and OVE cows, respectively. As expected, 
the rg of AUSh with OVE cows was comparably lower than 
with AUSc. The estimates of the rg were associated with 
quite large SE (0.18–0.39).

Genomic prediction
Using datasets treated as different traits
Figure  2 shows the genomic prediction accuracies for 
RFI obtained in the different scenarios (i.e., where we 
used different prediction models including univariate, 
bivariate, and trivariate analyses) with the 50k GRM. 
As expected, the accuracies estimated using the 50k 
GRM and HD GRM were nearly at the same level (not 
shown). The same validation population (i.e., AUSc) was 
used across scenarios. There were 118 cows (SD = 23) 

Fig. 1  a Principal component decompositions of the genomic relationship matrix constructed from HD SNP genotypes for 3711 animals from 
seven different countries and b Neighbor-Joining tree representing the genetic distances between animals from different countries

Table 3  Observed and predicted heterozygosities for each 
genotype set

Acronyms as described in Table 1

Number of animals: number of animals used to calculate residual feed 
intake (RFI); HEpr: heterozygosity predicted from the GRM; HEo: observed 
heterozygosity; HEoHW: heterozygosity when SNP are assumed to be in Hardy–
Weinberg equilibrium

Dataset Number of 
animals

HEpr HEo HEoHW

AUSc 584 0.33 0.34 0.33

AUSh 687 0.33 0.34 0.34

USA 671 0.33 0.33 0.32

CAN 473 0.32 0.32 0.32

DNK 425 0.33 0.33 0.33

CHE 63 0.32 0.33 0.34

GBR 211 0.33 0.34 0.33

NLD 597 0.33 0.33 0.33
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for each of the cohort-split datasets and 115 cows 
(SD = 6) in each of the random-split validation popu-
lations. In many cases, as expected, the accuracy esti-
mated using the random split was slightly higher than 
that estimated using the cohort-split approach (Fig. 2). 
The overall pattern of accuracy across scenarios was 

the same regardless of whether the cohort- or the ran-
dom cross-fold approach was used. Compared to the 
mean accuracy estimated using the univariate model, 
for which only AUSc were present in the training set, 
the accuracies improved when using bivariate and 
trivariate models, except when the AUScAUSh training 

Table 4  Mean of days in milk (DIM) (and standard deviation in parenthesis) and mean and standard deviation of raw and corrected 
dry matter intake (DMI) and residual feed intake per country and dataset

Acronyms as described in Tables 1 and 2

na: not applicable
a Corrected phenotypes for dry matter intake (DMI) and residual feed intake (RFI) in GBLUP

Dataset Raw DMI DMIa RFIa

DIM Mean SD Number Mean SD Number Mean SD

AUSh 8.29 1.34 824  − 0.01 0.84 824  − 0.02 0.42

AUSc 108 (35) 22.93 3.80 584  − 0.02 2.10 584 0.00 1.29

USA 81 (67) 21.52 4.47 673 0.09 1.97 671 0.01 1.46

CAN 121 (77) 20.54 5.47 755 0.04 3.20 473  − 0.07 3.04

DNK 140 (83) 21.93 3.57 439 0.34 1.87 425 0.12 1.17

CHE 120 (79) 21.48 3.62 95 0.10 2.88 63 0.09 1.20

GBR 143 (83) 16.70 5.25 564  − 0.31 2.85 211  − 0.14 2.26

NLD na na na na na na 597 0.00 0.97

EU na na na 1098  − 0.02 2.52 1296 0.02 1.33

NA na na na 1428 0.07 2.69 1144  − 0.02 2.25

OVE na na na 2526 0.03 2.62 2440 0.00 1.82

Table 5  Number of animals, variance explained by 50k genotypes and residuals, and genomic heritability estimates for DMI and RFI 
within each dataset

Acronyms as described in Tables 1 and 2

Dataset RFI DMI

Number of 
animals

Vg Ve h2 (s.e.) Number of 
animals

Vg Ve h2 (s.e.)

AUSh 824 0.37 0.65 0.36 (0.087) 824 0.37 0.65 0.36 (0.086)

AUSc 584 0.19 0.82 0.19 (0.088) 584 0.33 0.67 0.33 (0.090)

EU 1296 0.29 0.60 0.32 (0.053) 1098 0.23 0.55 0.29 (0.053)

NA 1144 0.26 0.71 0.27 (0.051) 1428 0.34 0.52 0.40 (0.045)

OVE 2440 0.26 0.68 0.27 (0.034) 2526 0.25 0.58 0.30 (0.032)

AUScEU 1880 0.28 0.65 0.30 (0.043) 1682 0.25 0.61 0.29 (0.044)

AUScNA 1728 0.23 0.75 0.23 (0.041) 2012 0.32 0.58 0.36 (0.038)

AUScOVE 3024 0.24 0.70 0.26 (0.030) 3110 0.25 0.61 0.29 (0.029)

Table 6  Genetic correlations (SE) for RFI in trivariate model using different scenarios

Acronyms as described in Tables 1 and 2

SE: standard error

Dataset Number of animals AUSc-AUSh AUSc-EU/NA/OVE AUSh-EU/NA/OVE

AUScAUShEU 2567 0.30 (0.26) 0.68 (0.31) 0.28 (0.22)

AUScAUShNA 2415 0.37 (0.27) 0.90 (0.39) 0.19 (0.24)

AUScAUShOVE 3711 0.34 (0.26) 0.95 (0.28) 0.25 (0.18)
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population (i.e., where the AUS cows and growing heif-
ers were combined) was used. The largest improvement 
in prediction accuracy was obtained when all OVE cows 
were included in the training datasets (i.e. AUScOVE 
and AUScAUShOVE) (Fig.  2). The training population 
that consisted of EU cows provided a greater accuracy 
for RFI compared to that of NA cows. Including AUSh 

in the training population (AUScAUShOVE) did not 
improve the accuracy for RFI compared to AUScOVE 
(Fig. 2).

Using datasets treated as the same trait
Because the rg for RFI between AUSc and OVE cows 
were quite high (Table 6) and there were no overlapping 

Fig. 2  Box plot showing accuracies of GEBV for RFI using single- and multi-variate GREML analyses using cohort and random cross-fold validation 
approaches. As a training population, AUSc (Australian cows) used for the single-variate analysis; AUScAUSh, AUScEU, AUScNA, and AUScOVE 
(AUSc with Australian heifers (AUSh), European cows (EU), North American cows (NA), and overseas cows (OVE), respectively) used for the bi-variate 
analyses. AUScAUShEU, AUScAUShNA, and AUScAUShOVE (EU, NA, and OVE cow datasets on top of the AUScAUSh dataset) used for the tri-variate 
analyses

Fig. 3  Mean accuracies of GEBV for RFI by treating Australian cow and overseas cow datasets as a single trait and using cohort and random 
cross-fold validation approaches. The standard error (SE) bars are approximate estimates. As a training population, AUSc (Australian cows) used for 
the single-variate analysis; AUScEU, AUScNA, and AUScOVE (AUSc with European cows (EU), North American cows (NA), and overseas cows (OVE), 
respectively) used for the bi-variate analyses
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animals with phenotypes, we merged the AUSc and OVE 
cow datasets so that the RFI phenotypes were treated as 
the same trait (Fig. 3). By combining the training popula-
tions AUScEU, AUScNA, and AUScOVE, the mean accu-
racies were around 0.4 to 0.5, which was 8 to 22% higher 
than the accuracy obtained by using only AUSc in the 
training set (Fig.  3). The improvement in accuracy was 
smallest when using the AUScNA cows as the training 
set.

Using top sequence variants
WGS GWAS
To determine the relevance of using the variants selected 
from the GWAS, we used the largest dataset (OVE) as 
the discovery population. The number of animals used in 
the GWAS was 2440 for RFI and 2596 for DMI (Table 3). 
The overall power of single- and multi-trait, meta WGS 
GWAS was weak due to the small size of the datasets 
(see Additional file 3 Figure S2). For example, the largest 
number of significant sequence variants at P < 5 × 10–5 
was 1690 in the multi-trait GWAS. Because the primary 
purpose of this study was focused on improving genomic 
prediction using sequence variants, we applied a rather 
lenient threshold P-value (P < 10–3) to select the most 
significant three variants (P < 10–3) within every 100-kb 
window, with a sliding window of 50  kb to generate a 
subset of sequence variants for genomic prediction. We 
selected four different sets of the ‘top sequence variants’ 
from the GWAS results: single trait GWAS (s-tr_G, num-
ber of variants (N) = 3359 for RFI and N = 3432 for DMI), 
multi-trait GWAS (m-tr_G, N = 4999), and combined 
set of s-tr_G and m-tr_G (sm-tr_G, N = 8946). These top 
(non-50k) sequence variants across the bovine genome 
were used in GBLUP in addition to the 50k SNPs.

Accuracy of GEBV
Table  7 shows the mean accuracies across different 
analyses and the slopes of the regression of corrected 
phenotypes on GEBV. A single-weighted GRM was 
tested using only the AUSc training and validation pop-
ulations, where the GRM was built from 50k SNPs and 
top sequence variants that were weighted by the genetic 
variance explained by the selected sequence variants, 
as described in Khansefid et  al. [35]. The accuracies 
of GEBV across the AUSc validation population using 
the weighted GRM with 50k SNPs + ‘top sequence 
variants’ selected from the OVE GWAS are compara-
ble to the accuracies using GRM with only 50k or HD 
SNPs (Table 7). The proportion of the average weights 
of the variance explained by the top sequence variants 
against the variance explained by 50k SNPs ranged 
from 0.42 to 0.96 across different validation sets and 

splits. Consistent apparent improvements in accuracy 
were observed as the number of informative sequence 
variants increased (s-tr_G, m-tr_G, and then sm-tr_G). 
Across the different selected sequence variant scenar-
ios, the general pattern of accuracies using cohort- and 
random-validation splits were very similar.

As shown in Table  7, the accuracies using only 50k 
and HD SNPs were almost the same. Compared to using 
only 50k or HD SNPs, accuracies improved by up to 22% 
for RFI when using international data and either treat-
ing traits from international data as independent traits 
or merging them as single-trait or top sequence variants 
from GWAS with international datasets. Bivariate (AUS-
cOVE) and trivariate analyses (AUScAUShOVE) yielded 
the highest accuracies that were within a similar range. 
The accuracies of genomic prediction estimated by using 
selected sequence variants with 50k SNPs were lower 

Table 7  Average weighted accuracies of GEBV for RFI and 
regression slopes of corrected phenotypes on GEBV (bias) of the 
four cohort and random fourfold cross-validation subsets

Acronyms as described in Table 1
a Number of traits (datasets) used in each analysis
b Difference in accuracy of GEBV (%) between using the Australian cow dataset 
(AUSc) with 50k GRM and the corresponding dataset

Training 
set

Number 
of traitsa

Variant set Accuracy Bias Differenceb

Cohort

 AUSc 1 50k 0.29 1.13

 AUSc 1 HD 0.29 1.10 0.0

 AUS‑
cAUSh

2 50k 0.25 0.90 − 3.5

 AUScOVE 2 50k 0.52 1.31 22.9

 AUS‑
cAUSh‑
OVE

3 50k 0.50 1.28 21.1

 AUScOVE 1 50k 0.50 0.99 21.8

 AUSc 1 50k + s-tr_G 0.34 1.28 5.6

 AUSc 1 50k + m-tr_G 0.38 1.10 9.0

 AUSc 1 50k + sm-tr_G 0.39 1.15 10.8

Random

 AUSc 1 50k 0.32 1.07

 AUSc 1 HD 0.32 1.14 0.5

 AUS‑
cAUSh

2 50k 0.29 0.84 − 3.0

 AUScOVE 2 50k 0.53 1.26 21.3

 AUS‑
cAUSh‑
OVE

3 50k 0.50 1.17 18.4

 AUScOVE 1 50k 0.52 0.93 20.1

 AUSc 1 50k + s-tr_G 0.34 1.17 1.8

 AUSc 1 50k + m-tr_G 0.37 1.10 5.5

 AUSc 1 50k + sm-tr_G 0.38 1.15 6.6
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compared to the accuracies estimated using the individ-
ual cow phenotypes (AUSc + OVE datasets). Accuracy 
increased as the number of informative sequence vari-
ants increased (Table 7). The mean slopes of the regres-
sion of corrected phenotypes on GEBV across validation 
sets were closer to 1.

Discussion
This study shows that in a small cross-validation study, 
the inclusion of additional data on feed efficiency traits 
from international partners increases the accuracy of 
genomic prediction of breeding values. Although col-
lating datasets from additional sources (e.g., interna-
tional cow data) is crucial to improve the accuracy of 
expensive-to-measure traits, there are two ways in which 
the information can be used to improve the accuracy of 
genomic prediction: (1) sharing of phenotypes and geno-
types, or (2) sharing of signed t-values of SNP effects only 
to generate a custom set of more highly predictive vari-
ants. Both of these strategies were effective for increasing 
the genomic prediction of RFI although higher accuracies 
were achieved from sharing the full data.

Genetic parameters
The h2 estimates were moderate, ranging from 0.32 to 
0.40 for DMI and from 0.20 to 0.36 for RFI. The smaller 
SE of the OVE h2 estimate of RFI compared to that of 
the AUSc reflects the larger number of cows used in the 
OVE dataset. The estimates obtained in the AUSc data-
set were the same as those previously published by Pryce 
et al. [22], which is not surprising given that the 235 cows 
in that study were part of our dataset. Other studies have 
reported various estimates for the h2 of RFI and DMI in 
lactating cows, ranging from 0.12 [36, 37] to 0.38 [38] and 
from 0.20 [39] to 0.40 [40], respectively. The h2 estimate 
for RFI in 417 growing heifers reported by Korver et al. 
[41] was 0.22, which is lower than that obtained in our 
study on 824 heifers.

The h2 and rg estimated with the bivariate and trivariate 
models where the AUSc, AUSh, and OVE cow datasets 
were treated as individual traits were all very similar. The 
limitation of using a multivariate analysis was the small 
dataset and thus the resulting large SE associated with 
the genetic parameters, particularly for the rg of traits 
in AUSc with the equivalent trait in other countries. For 
example, the rg (± SE) of RFI between AUSc and OVE 
cows was 0.95 (± 0.28) and between AUSc and EU cows 
was 0.68 (± 0.31), which are higher than the estimates of 
0.60 reported by Pryce et  al. [22], but with a very large 
SE (± 0.60). The rg of RFI between growing heifers and 
lactating cows was much lower. In fact, the highest rg 
(0.37 ± 27) was found for AUScAUShNA, which was con-
siderably lower than those reported by Pryce et  al. [22] 

(0.67 ± 0.45) and Nieuwhof et  al. [42] (0.74 ± na) using 
Dutch lactating cows and heifers but again with quite 
large SE. The rg of DMI between AUSc and OVE cows 
ranged from 0.64 (± 0.28) to 0.82 (± 0.24), which are 
within the estimates reported in different populations 
(0.14–0.84) and closer to the estimates of 0.76–0.84 in 
the high input European production system [15].

Genomic predictions
The accuracies of GEBV estimated in the different sce-
narios tested in this study ranged from 0.25 to 0.53 for 
RFI and increased by up to 21% when international data 
(OVE cows) were added to the AUSc or AUScAUSh 
datasets. Therefore, such collaborations are beneficial to 
genomic prediction. A steep increase in the accuracy of 
GEBV for RFI (up to 21%) was observed as the size of the 
training population increased as expected from the the-
ory [43] that traits with larger training populations and/
or high h2 achieve higher accuracies of GEBV. Some stud-
ies in cattle and sheep [8, 17, 44] reported that using an 
enlarged mixed breed training population leads to higher 
accuracies for breeds with small training populations.

In this study, we used data that were collected during 
the lactation period (DIM: 5–306  days). The traits used 
were measured at different stages of lactation and in dif-
ferent environments. The duration of the experiments in 
USA and CAN were longer and therefore, the number of 
records per cow in these studies was much larger than 
that of the AUSc dataset, for which most of the records 
(~ 70%) were deliberately collected between 75–124 
DIM. To capture the effect of lactation period, we used 
the approach of Berry et al. [15] that divides the lactation 
into four stages and then combined lactation stage with 
the parity levels for OVE cows.

While all the cows used in this study were Holsteins, 
they were from different countries and continents. The 
populations from North America and Europe were man-
aged under comparatively higher input systems (i.e., fed 
more concentrates) than the Australian cows, that were 
fed a diet predominantly of lucerne cubes with some con-
centrates fed at milking time. A possible genotype-by-
environment interaction effect could exist across broader 
groups of cows (across continents). To address this issue, 
we used three training sets (NA, EU, and OVE cows in 
addition to AUSc or AUScAUSh). However, even within 
these populations, sub-populations seem to be present. 
The PC plot obtained from the GRM and the NJ tree 
constructed using FST coefficients, which were calculated 
using HD genotypes, showed that the CHE cows are sep-
arated from other EU cows. However, the HEo and HEpr 
estimates for the CHE cows were in the same range, with 
no distortion in the within-population genetic variance 
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(Table  3). We always fitted dataset as a fixed effect to 
account for population differences, so the relationships 
between populations were not used in the calculation of 
GEBV and in the GWAS. Therefore, we assumed that the 
GRM, which was constructed from different populations 
and used for genomic prediction, correctly reflected the 
amount of genetic variation within each population. In 
some cases, a distortion in the within-population (breed) 
genetic variance could occur. This is especially the case 
when collating data from different breeds (Holstein and 
Jersey in dairy cattle or different breeds in beef cattle and 
sheep). For example, Erbe et al. [45] reported such a dis-
tortion in the data collated on a large sample size from 
the Holstein dataset and a small sample size from the Jer-
sey dataset.

We also observed some differences in the variance esti-
mates of the studied traits (see Table 4). Compared to the 
AUSc population, a slightly greater standard deviation 
in RFI was found for the NA cows. Such differences can 
be appropriately quantified or accounted for in the mul-
tivariate analysis by using the (co)variances between the 
variables (traits), and hence a multivariate analysis could 
be a better option than a single-trait model when all the 
cows’ phenotypes are collated. However, the multivariate 
analyses (that treat the AUSc and OVE cow datasets as 
correlated traits) used in this study yielded very similar 
levels of accuracy to those of the single-trait analyses of 
AUSc combined with OVE (Table 7).

The accuracies of genomic prediction for RFI using the 
training set were comparatively higher when it was sup-
plemented with EU cows than with NA cows. It is not 
surprising that, compared to the NA cows, the size of the 
training populations for RFI was slightly larger for the EU 
cows and variation of RFI in AUSc and EU were at simi-
lar levels. A few studies have investigated the accuracy 
of genomic prediction estimates for feed intake and effi-
ciency, particularly in lactating cows (e.g. [7, 10]). Based 
on a dataset of 1801 Holstein lactating cows and heifers 
from three research herds in Australia and Europe, Haas 
et al. [7] reported that the estimated accuracy of genomic 
prediction for DMI ranged from 0.33 to 0.39 using a mul-
tivariate (3-country) model. In the most recent report by 
Li et  al. [46], the average theoretical reliability was esti-
mated to be 0.34 in 3.9k Holstein cows with RFI pheno-
types and genotyped for 61k SNPs.

The accuracies of GEBV using the GRM constructed 
from 50k SNP genotypes were at almost the same level 
as those using a GRM from HD SNP genotypes, prob-
ably because of long-range LD sharing across Holstein 
animals and hence, the 50k SNP density was as effec-
tive in tagging QTL as the HD SNP. In addition to the 
50k SNPs, the variants from imputed sequence data 
selected in the discovery set (independent, international 

cow data) increased the accuracy of genomic prediction 
in the AUSc dataset. Several other research groups also 
reported an increase in genomic prediction accuracies 
by combining more predictive variants from imputed 
sequence data with a standard SNP chip, particularly for 
across-breed prediction, or prediction of animals that are 
weakly related to the reference animals [17–21, 47, 48].

Causal sequence variants may be rare and, hence, in 
low LD with the SNPs on the SNP arrays. On the one 
hand, the study by Druet et al. [49] who used WGS vari-
ants for genomic prediction showed that, compared to 
dense SNP arrays, the greatest improvement in accu-
racy was reached when causal variants were rare. On the 
other hand, in a within-breed study, Veerkamp et al. [50] 
reported no advantage in using selected sequence vari-
ants compared to the standard 50k SNP genotypes for 
several traits in dairy bulls. However, compared to our 
study, they used a larger reference population with accu-
rate breeding values for bulls and a validation set that 
appeared to be strongly related to the reference set. These 
key differences resulted in reasonably high base accura-
cies of genomic prediction for the traits studied, and the 
results reported in [18, 36] demonstrated that in such a 
setting, further improvements in accuracy are more dif-
ficult to achieve. In addition, Veerkamp et  al. [50] used 
a sequence variant discovery set that was not independ-
ent from the reference set (i.e. the discovery and refer-
ence sets were the same population). It has been shown 
that the use of an independent discovery set can lead to 
improved accuracy and less bias compared to when the 
reference and discovery population are not independ-
ent [18]. The power of GWAS is generally inadequate to 
detect variants that explain all the genetic variance in 
highly polygenic traits (e.g., [30]), and hence it is impor-
tant to combine selected sequence variants with the 
standard 50k SNP array (using a weighted approach). In 
addition, we pre-filtered the imputed sequence variants 
(Minimac3 R2 > 0.4) for imputation quality and applied a 
MAF threshold (MAF ~ 0.01), which are important fac-
tors to reduce the level of false positives in the GWAS. 
In our study, the external independent data (interna-
tional data) were used to select the sequence variants, 
which were subsequently used in genomic prediction 
for the Australian cows. The genetic variation for DMI 
varies across lactation stages and the genetic correla-
tions between DMI at different stages of lactation were 
lower than 1 [36]. Several studies [36, 51–53] reported 
that the heritability for RFI varies with the stage of lac-
tation. Some overseas data recorded DMI for a range of 
lactation stages (early to late) or across the entire lacta-
tion (e.g., DNK) and this possibly increased the power to 
identify the sequence variants that affect feed efficiency 
traits.
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In our study, the relative increase in accuracies 
obtained by using the selected sequence variants with 
50k SNPs were lower than the accuracies estimated using 
the external phenotypes (OVE) with the AUSc dataset, 
but were consistently higher than when only 50k or HD 
SNP genotypes were used. The increase in accuracy was 
generally largest for the SNPs that were selected and 
combined from the single and multi-trait meta-GWAS, 
as expected, because the multi-trait GWAS increases the 
power to detect pleiotropic variants [33], while the single 
trait meta-GWAS is likely to complement the selection 
with variants that are not pleiotropic and individually do 
not have a large effect. Although in theory the QTL for 
the DMI component of RFI can be detected in the RFI 
GWAS, the multi-trait GWAS may help to amplify the 
QTL with smaller effects that might have been other-
wise missed given the small size of the data sets. While 
our results should be interpreted with caution due to the 
small size of the reference and validation sets used in this 
study, it is possible that the apparent success was also in 
part due to the OVE discovery set being five times larger 
than the training population. If using selected sequence 
variants in addition to the 50k SNPs proves to be an 
advantage, it could be a great opportunity with each 
contributing country providing GWAS results (signed-
t values) for a meta-analysis to generate custom SNP 
sets instead of sharing raw individual cow data. Indeed, 
combining raw datasets from different institutes is a very 
time-consuming and tedious work that is fraught with 
possible errors. It is unlikely that individual countries 
on their own can generate large enough RFI phenotype 
datasets to achieve high genomic prediction accuracy. 
Therefore, it is crucial to maintain international col-
laboration to provide access to more data or to combine 
GWAS results from more countries. The latter may be 
more straightforward to implement in practice. However, 
the disadvantage of using GWAS data is that there would 
be a lag-period before the industry benefits from them 
because it is necessary to design custom genotyping plat-
forms that the commercial (dairy) industry can use to 
genotype or impute these SNPs. In addition, currently 
the cost is often associated with increasing the number of 
SNPs on genotyping platforms.

We used two validation approaches, i.e. one using 
cohort-by-birth year sets treated as different validation 
sets and the other using random cross-validation sets, 
which, whenever possible, do not allocate the same sires’ 
offspring to the training and validation sets. In most 
cases, the relative increase in accuracy of GEBV using 
random validations was slightly greater than using the 
cohort validations. This is probably because animals in 
the training and random validation sets are more closely-
related than those in the cohort-split datasets. A strong 

relationship between the animals in the training and vali-
dation populations is likely to lead to a greater increase 
in accuracy due to the sharing of long haplotypes as 
observed previously in cattle and sheep [18, 54]. Another 
consideration is that the size of the validation population 
used in this study was small. Therefore, it is necessary to 
continue these studies with larger training and validation 
populations to confirm if our findings can be generalised 
for other traits and breeds. Although the achieved accu-
racies of GEBV for feed intake and efficiency were lower 
than those for production traits, they are sufficient for 
implementation in commercial breeding programs.

The improvement of the genomic prediction accuracy 
obtained for feed efficiency using sequence variants is 
interesting since it is an expensive and difficult-to-meas-
ure trait with limited data availability. Improving the pre-
cision of variant detection not only contributes to better 
understand the underlying biology, it can also be valuable 
to enhance and improve the accuracy of genomic pre-
diction, as shown here. Adding AUSc data to the inter-
national dataset increased the power for identifying the 
putative causal sequence variants, but the main focus of 
our study was to implement genomic prediction using 
international cows as an independent discovery popula-
tion and to select the top sequence variants for improv-
ing the accuracy of genomic prediction. Furthermore, 
integrating feed efficiency data with other phenotypic 
sources, such as ruminal microbes and potential interme-
diate phenotypes (e.g., metabolites and milk mid-infrared 
spectroscopy) could help identify potential physiologi-
cal mechanisms to enhance feed uptake and production 
efficiency. In a study on a Holstein cattle population, 
Delgado et  al. [55] showed that there is an association 
between the rumen microbiota and traits related to feed 
efficiency using whole metagenome sequencing (e.g., 
cows with a greater relative abundance of Bacteroidetes 
were more efficient at feed utilization.). A few other stud-
ies [56, 57] have also shown that certain rumen microbial 
features are heritable and that their abundance is signifi-
cantly influenced by the host genetics.

Conclusions
The accuracy of genomic prediction of RFI improved 
when more than 3700 Australian cows and heifers 
and overseas cows were used by fitting a multivariate 
model. The results suggest that the accuracies of feed 
efficiency will improve if the training population is 
increased in size through international collaboration. 
The predictive sequence variants from the meta-GWAS 
of overseas data combined with the 50k SNP array 
data also provided an apparent increase in accuracy, 
but it was smaller than that obtained by combining 
the phenotypic datasets. However, this result should 
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be interpreted with caution because of the small size 
of the reference and validation sets used in this study, 
and repeating the approach with larger datasets may 
be informative. However, our finding is important, 
because when international data are limited by sample 
size, sharing genetic variants from a GWAS approach 
is likely to be an effective alternative to sharing pheno-
type and genotype datasets. Since the current training 
population based on Australian animals remains small, 
international collaboration is crucial to achieve more 
accurate EBV for feed efficiency in Australia. The stand-
ard errors of genomic parameters, including estimates 
of heritability and genetic correlations, were large and 
hence, further studies with larger datasets are required 
to obtain more accurate estimates.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12711-​022-​00749-z.

Additional file 1: Figure S1. Allele frequency of HD SNPs in Australian 
cows (on the X axis) and Australian heifers or cows from each international 
country.

Additional file 2: Table S1. Number of filtered polymorphic variants 
(Minimac R2 > 0.4) per chromosome in the imputed WGS for the overseas 
cows.

Additional file 3: Figure S2. –log10(P-values) of single SNP regressions 
from single-trait GWAS for residual feed intake (RFI, a) and dry matter 
intake (DMI, b), and multi-trait meta GWAS (mt-tr, c) using the overseas 
(OVE) cow dataset. The orange points represent selected significant vari‑
ants at P < 10–3.

Acknowledgements
We thank DairyBio, jointly funded by Dairy Australia (Melbourne, Australia), 
The Gardiner Foundation (Melbourne, Australia) and Agriculture Victoria 
(Melbourne, Australia) for funding this project. The Australian authors extend 
their gratitude to Wageningen University Research, especially Drs Birgit 
Gredler, Roel Veerkamp and Yvette de Haas in addition to Scotland’s Rural 
College (SRUC), especially Drs Eileen Wall and Mike Coffey for continued use 
of their genomic, pedigree and phenotype data for NLD and UK popula‑
tions respectively. The authors gratefully acknowledge the use of data from 
Ellinbank Research Centre (belonging to Agriculture Victoria) and the EDGP 
and its participants. EDGP was funded by Genome Canada (Ottawa, ON, 
Canada), Genome Alberta (Calgary, AB, Canada), Ontario Genomics (Toronto, 
ON, Canada), Alberta Ministry of Agriculture (Edmonton, AB, Canada), Ontario 
Ministry of Research and Innovation (Toronto, ON, Canada), Ontario Ministry of 
Agriculture, Food and Rural Affairs (Guelph, ON, Canada), Canadian Dairy Net‑
work (Guelph, ON, Canada), GrowSafe Systems (Airdrie, AB, Canada), Alberta 
Milk (Edmonton, AB, Canada), Agriculture Victoria (Australia), Scotland’s Rural 
College (Edinburgh, UK), USDA Agricultural Research Service (Beltsville, MD), 
Qualitas AG (Zug, Switzerland), and Aarhus University (Aarhus, Denmark). The 
staff caring for the cows used in the study are gratefully acknowledged. The 
authors also thank the anonymous reviewers for their constructive feedback 
that helped to improve this manuscript.

Author contributions
JEP and SB conceived the study. SB, LCM, GJN, WJW, and MK were involved in 
preparing pedigree, phenotypes, and genotypes. CFB, FSS, FM, EEC, PS and 
CMP represent organisations and projects providing phenotypes and geno‑
types from international partners. SB performed all the analyses and imputed 
the genotype data to sequence. SB and JEP drafted the manuscript. PS and EH 
generated the annotations for the sequence variants. SB, JEP, IMM, and MEG 

contributed to the design of the study with other co-authors contributing to 
writing the manuscript. All authors read and approved the final manuscript.

Funding
This work was jointly funded by Dairy Australia (Melbourne, Australia), The Gar‑
diner Foundation (Melbourne, Australia) and Agriculture Victoria (Melbourne, 
Australia).

Declarations

Ethics approval and consent to participate
No ethical approval was required for this study.

Consent for publication
All authors have given consent to publish.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Agriculture Victoria Research, Agribio, Bundoora, VIC 3083, Australia. 2 Agricul‑
ture Victoria Research, Ellinbank Centre, Ellinbank, Gippsland, VIC 3821, Aus‑
tralia. 3 School of Agriculture and Food, University of Melbourne, Parkville, VIC 
3010, Australia. 4 LACTANET, Sainte‑Anne‑de‑Bellevue, QC H9X 3R4, Canada. 
5 CGIL, University of Guelph, Guelph, ON N1G 2W1, Canada. 6 Institute of Genet‑
ics, Vetsuisse Faculty, University of Bern, 3002 Bern, Switzerland. 7 Animal 
Genomics and Improvement Laboratory, USDA, Agricultural Research Service, 
Beltsville Agricultural Research Center, Beltsville, MD 20705, USA. 8 Department 
of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA. 
9 Center for Quantitative Genetics and Genomics, Aarhus University, Blichers 
Alle 20, 8830 Tjele, Denmark. 10 Faculty of Agricultural, Life & Environmental 
Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada. 11 DataGene 
Ltd, Agribio, Bundoora, VIC 3083, Australia. 12 School of Veterinary and Agricul‑
tural Sciences, University of Melbourne, Parkville, VIC 3052, Australia. 13 School 
of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia. 

Received: 22 September 2021   Accepted: 17 August 2022

References
	1.	 Pryce JE, Nguyen TTT, Axford M, Nieuwhof G, Shaffer M. Symposium 

review: building a better cow -The Australian experience and future 
perspectives. J Dairy Sci. 2018;101:3702–13.

	2.	 Berry DP, Crowley JJ. Cell Biology Symposium: genetics of feed efficiency 
in dairy and beef cattle. J Anim Sci. 2013;91:1594–613.

	3.	 Gonzalez-Recio O, Pryce JE, Haile-Mariam M, Hayes BJ. Incorporating 
heifer feed efficiency in the Australian selection index using genomic 
selection. J Dairy Sci. 2014;97:3883–93.

	4.	 Herd RM, Oddy VH, Richardson EC. Biological basis for variation in residual 
feed intake in beef cattle. 1. Review of potential mechanisms. Anim Prod 
Sci. 2004;44:423–30.

	5.	 Brito LF, Oliveira HR, Houlahan K, Fonseca PAS, Lam S, Butty AM, et al. 
Genetic mechanisms underlying feed utilization and implementation 
of genomic selection for improved feed efficiency in dairy cattle. Can J 
Anim Sci. 2020;100:587–604.

	6.	 Hayes BJ, Bowman PJ, Chamberlain AC, Goddard ME. Genomic selection 
in dairy cattle: progress and challenges. J Dairy Sci. 2009;92:433–43.

	7.	 de Haas Y, Calus MPL, Veerkamp RF, Wall E, Coffey MP, Daetwyler HD, et al. 
Improved accuracy of genomic prediction for dry matter intake of dairy 
cattle from combined European and Australian data sets. J Dairy Sci. 
2012;95:6103–12.

	8.	 Bolormaa S, Pryce JE, Kemper K, Savin K, Hayes BJ, Barendse W, et al. Accu‑
racy of prediction of genomic breeding values for residual feed intake, 
carcass and meat quality traits in Bos taurus, Bos indicus and composite 
beef cattle. J Anim Sci. 2013;91:3088–104.

	9.	 Wang Y, Zhang F, Chen L, Vinsky M, Crowley J, Plastow G, et al. Genomic 
prediction for residual feed intake and its component traits based on 50K 

https://doi.org/10.1186/s12711-022-00749-z
https://doi.org/10.1186/s12711-022-00749-z


Page 16 of 17Bolormaa et al. Genetics Selection Evolution           (2022) 54:60 

and imputed 7.8 million whole genome sequence SNPs in multiple breed 
populations of Canadian beef cattle. J Anim Sci. 2018;96:S107.

	10.	 Verbyla KL, Calus MPL, Mulder HA, de Haas Y, Veerkamp RF. Predicting 
energy balance for dairy cows using high-density single nucleotide 
polymorphism information. J Dairy Sci. 2010;93:2757–64.

	11.	 Pryce JE, Arias J, Bowman PJ, Davis SR, Macdonald KA, Waghorn GC, et al. 
Accuracy of genomic predictions of residual feed intake and 250 day 
bodyweight in growing heifers using 625000 SNP markers. J Dairy Sci. 
2012;95:2108–19.

	12.	 Pryce JE, Wales WJ, de Haas Y, Veerkamp RF, Hayes BJ. Genomic selec‑
tion for feed efficiency in dairy cattle. Animal. 2014;8:1–10.

	13.	 Mujibi FDN, Nkrumah JD, Durunna ON, Stothard P, Mah J, Wang Z, et al. 
Accuracy of genomic breeding values for residual feed intake in beef 
cattle. J Anim Sci. 2011;89:3353–61.

	14.	 de Haas Y, Pryce JE, Calus MPL, Wall E, Berry DP, Løvendahl P, et al. 
Genomic prediction of dry matter intake in dairy cattle from an 
international data set consisting of research herds in Europe, North 
America, and Australasia. J Dairy Sci. 2015;98:6522–34.

	15.	 Berry DP, Coffey MP, Pryce JE, de Haas Y, Løvendahl P, Krattenmacher 
N, et al. International genetic evaluations for feed intake in dairy 
cattle through the collation of data from multiple sources. J Dairy Sci. 
2014;97:3894–905.

	16.	 Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total 
genetic value using genome-wide dense marker maps. Genetics. 
2001;157:1819–29.

	17.	 Moghaddar N, Khansefid M, van der Werf JHJ, Bolormaa S, Duijvesteijn 
N, Clark SA, et al. Genomic prediction based on selected variants from 
imputed whole-genome sequence data in Australian sheep popula‑
tions. Genet Sel Evol. 2019;51:72.

	18.	 MacLeod IM, Bowman PJ, Vander Jagt CJ, Haile-Mariam M, Kemper 
KE, Chamberlain AJ, et al. Exploiting biological priors and sequence 
variants enhances QTL discovery and genomic prediction of complex 
traits. BMC Genomics. 2016;17:144.

	19.	 Brøndum RF, Su G, Janss L, Sahana G, Guldbrandtsen B, Boichard D, 
et al. Quantitative trait loci markers derived from whole genome 
sequence data increases the reliability of genomic prediction. J Dairy 
Sci. 2015;98:4107–16.

	20.	 VanRaden PM, Tooker ME, O’Connell JR, Cole JB, Bickhart DM. Selecting 
sequence variants to improve genomic predictions for dairy cattle. 
Genet Sel Evol. 2017;49:32.

	21.	 van den Berg I, Boichard D, Lund MS. Sequence variants selected from 
a multi-breed GWAS can improve the reliability of genomic predictions 
in dairy cattle. Genet Sel Evol. 2016;48:83.

	22.	 Pryce JE, Gonzalez-Recio O, Nieuwhof G, Wales WJ, Coffey MP, Hayes BJ, 
et al. Hot topic: definition and implementation of a breeding value for 
feed efficiency in dairy cows. J Dairy Sci. 2015;98:7340–50.

	23.	 Williams YJ, Pryce JE, Grainger C, Wales WJ, Linden N, Porker M, et al. 
Variation in residual feed intake in Holstein-Friesian dairy heifers in 
southern Australia. J Dairy Sci. 2011;94:4715–25.

	24.	 Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient 
genotype imputation using information from relatives. BMC Genomics. 
2014;15:478.

	25.	 Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-
generation genotype imputation service and methods. Nat Genet. 
2016;48:1284–7.

	26.	 Hayes BJ, Daetwyler HD. 1000 bull genomes project to map simple and 
complex genetic traits in cattle: applications and outcomes. Ann Rev 
Anim Biosci. 2019;7:89–102.

	27.	 MacLeod IM, Bolormaa S, Vander Jagt CJ, Nguyen TV, Chamberlain 
AJ, Daetwyler HD. Current challenges for imputation of SNP chips to 
whole genome sequence in cattle and sheep. Proc Assoc Advmt Anim 
Breed Genet. 2021;24:212–6.

	28.	 Loh PR, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane HK, 
et al. Reference-based phasing using the haplotype reference consor‑
tium panel. Nat Genet. 2016;48:1443–8.

	29.	 Rosen BD, Bickhart DM, Schnabel RD, Koren S, Elsik CG, Tseng E, et al. 
De novo assembly of the cattle reference genome with single-mole‑
cule sequencing. Gigascience. 2020;9:giaa021.

	30.	 Yang J, Benyamin B, McEvoy NP, Gordon S, Henders AK, Nyholt DR, et al. 
Common SNPs explain a large proportion of the heritability for human 
height. Nat Genet. 2010;42:565–9.

	31.	 Hedrick PW. Genetic of populations. 3rd ed. Sudbury: Jones and Bart‑
lett Publishers; 2005.

	32.	 Yang JS, Lee H, Goddard ME, Visscher PM. GCTA: a tool for genome-
wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

	33.	 Bolormaa S, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K, et al. 
A Multi-trait, meta-analysis for detecting pleiotropic polymorphisms for 
stature, fatness and reproduction in beef cattle. PLoS Genet. 2014;10: 
e1004198.

	34.	 Bolormaa S, Chamberlain AJ, Khansefid M, Stothard P, Swan AA, Mason 
B, et al. Accuracy of imputation to whole-genome sequence in sheep. 
Genet Sel Evol. 2019;51:1.

	35.	 Khansefid M, Pryce JE, Bolormaa S, Miller SP, Wang Z, Li C, et al. Estimation 
of genomic breeding values for residual feed intake in a multibreed cattle 
population. J Anim Sci. 2014;92:3270–83.

	36.	 Negussie E, Mehtiö T, Mäntysaari P, Løvendahl P, Mäntysaari E, Lidauer MH. 
Reliability of breeding values for feed intake and feed efficiency traits in 
dairy cattle: When dry matter intake recordings are sparse under different 
scenarios. J Dairy Sci. 2019;102:7248–62.

	37.	 Hardie LC, VandeHaar MJ, Tempelman RJ, Weigel KA, Armentano LE, 
Wiggans GR, et al. The genetic and biological basis of feed efficiency in 
mid-lactation Holstein dairy cows. J Dairy Sci. 2017;100:9061–75.

	38.	 Veerkamp RF, Emmans GC, Cromie AR, Simm G. Variance components for 
residual feed intake in dairy cows. Livest Prod Sci. 1995;41:111–20.

	39.	 Li B, Fikse WF, Lassen J, Lidauer MH, Løvendahl P, Mäntysaari P, et al. 
Genetic parameters for dry matter intake in primiparous Holstein, 
Nordic Red, and Jersey cows in the first half of lactation. J Dairy Sci. 
2016;99:7232–9.

	40.	 Santana MHA, Oliveira Junior GA, Gomes RC, Silva SL, Leme PR, Stella 
TR, et al. Genetic parameter estimates for feed efficiency and dry matter 
intake and their association with growth and carcass traits in Nellore cat‑
tle. Livest Sci. 2014;167:80–5.

	41.	 Korver S, van Eekelen EAM, Vos H, Nieuwhof GJ, van Arendonk JAM. 
Genetic parameters for feed intake and feed efficiency in growing dairy 
heifers. Livest Prod Sci. 1991;29:49–59.

	42.	 Nieuwhof GJ, Van Arendonk JAM, Vos H, Korver S. Genetic relationships 
between feed intake, efficiency and production traits in growing bulls, 
growing heifers and lactating heifers. Livest Prod Sci. 1992;32:189–202.

	43.	 Goddard ME. Genomic selection: prediction of accuracy and maximisa‑
tion of long term response. Genetica. 2009;136:245–57.

	44.	 Weber KL, Thallman RM, Keele JW, Snelling WM, Bennett GL, Smith TP, 
et al. Accuracy of genomic breeding values in multi-breed beef cattle 
populations derived from deregressed breeding values and phenotypes. 
J Anim Sci. 2012;90:4177–90.

	45.	 Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich M, et al. 
Improving accuracy of genomic predictions within and between dairy 
cattle breeds with imputed high-density single nucleotide polymor‑
phism panels. J Dairy Sci. 2012;95:4114–29.

	46.	 Li B, VanRaden PM, Guduk E, O’Connell JR, Null DJ, Connor EE, et al. 
Genomic prediction of residual feed intake in US Holstein dairy cattle. J 
Dairy Sci. 2020;103:2477–86.

	47.	 Khansefid M, Bolormaa S, Swan AA, van der Werf JHJ, Moghaddar N, Dui‑
jvesteijn N, et al. Exploiting sequence variants for genomic prediction in 
Australian sheep using Bayesian models. In Proceedings of the 11th World 
Congress on Genetics Applied to Livestock Production: 11–16 February 
2018; Auckland. 2018.

	48.	 Raymond B, Bouwman AC, Schrooten C, Houwing-Duistermaat J, 
Veerkamp RF. Utility of whole-genome sequence data for across-breed 
genomic prediction. Genet Sel Evol. 2018;50:27.

	49.	 Druet T, Macleod IM, Hayes BJ. Toward genomic prediction from 
whole-genome sequence data: Impact of sequencing design on 
genotype imputation and accuracy of predictions. Heredity (Edinb). 
2014;112:39–47.

	50.	 Veerkamp RF, Bouwman AC, Schrooten C, Calus MPL. Genomic predic‑
tion using preselected DNA variants from a GWAS with whole-genome 
sequence data in Holstein-Friesian cattle. Genet Sel Evol. 2016;48:95.

	51.	 Tempelman RJ, Spurlock DM, Coffey M, Veerkamp RF, Armentano LE, 
Weigel KA, et al. Heterogeneity in genetic and nongenetic variation and 
energy sink relationships for residual feed intake across research stations 
and countries. J Dairy Sci. 2015;98:2013–26.



Page 17 of 17Bolormaa et al. Genetics Selection Evolution           (2022) 54:60 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	52.	 Li B, Berglund B, Fikse WF, Lassen J, Lidauer MH, Mäntysaari P, et al. 
Neglect of lactation stage leads to naive assessment of residual feed 
intake in dairy cattle. J Dairy Sci. 2017;100:9076–84.

	53.	 Hurley AM, López-Villalobos N, McParland S, Lewis E, Kennedy E, 
O’Donovan M, et al. Genetics of alternative definitions of feed efficiency 
in grazing lactating dairy cows. J Dairy Sci. 2017;100:5501–14.

	54.	 Bolormaa S, Brown DJ, Swan AA, van der Werf JHJ, Hayes BJ, Daetwyler 
HD. Genomic prediction of reproduction traits for Merino sheep. Anim 
Genet. 2017;48:338–48.

	55.	 Delgado B, Bach A, Guasch I, González C, Elcoso G, Pryce JE, et al. Whole 
rumen metagenome sequencing allows classifying and predicting feed 
efficiency and intake levels in cattle. Sci Rep. 2019;10:2875.

	56.	 Li F, Li C, Chen Y, Liu J, Zhang C, Irving B, et al. Host genetics influence the 
rumen microbiota and heritable rumen microbial features associate with 
feed efficiency in cattle. Microbiome. 2019;7:92.

	57.	 Wallace RJ, Sasson G, Garnsworthy CC, Tapio I, Gregson E, Bani P, et al. 
A heritable subset of the core rumen microbiome dictates dairy cow 
productivity and emissions. Sci Adv. 2019;5:eaav8391.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Sharing of either phenotypes or genetic variants can increase the accuracy of genomic prediction of feed efficiency
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Phenotypes
	Australian heifer (AUSh)
	Australian cow (AUSc)
	Overseas cows

	Genotypes
	Population structure
	Statistical analyses
	Genomic prediction
	Validation and training populations
	Selecting sequence variants from GWAS for genomic prediction
	Single-trait GWAS 
	Multi-trait meta-analysis 
	Selecting the most significant variants 

	GBLUP model
	Accuracy of GEBV


	Results
	Population structure
	Genetic parameters
	Genomic prediction
	Using datasets treated as different traits

	Using datasets treated as the same trait
	Using top sequence variants
	WGS GWAS
	Accuracy of GEBV


	Discussion
	Genetic parameters
	Genomic predictions

	Conclusions
	Acknowledgements
	References




