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Abstract 

Background: Bovine paratuberculosis, or Johne’s disease (JD), is a contagious and incurable disease caused by 
Mycobacterium avium subsp. paratuberculosis (MAP). It has adverse effects on animal welfare and is very difficult to 
control, leading to serious economic consequences. An important line of defense to this disease is host genetic resist‑
ance to MAP, which, when it will be more fully understood, could be improved through selective breeding. Using a 
large dataset of Holstein cows (161,253 animals including 56,766 cows with ELISA serological phenotypes and 12,431 
animals with genotypes), we applied a single‑step single nucleotide polymorphism (SNP) best linear unbiased predic‑
tion approach to investigate the genetic determinism underlying resistance to this disease (heritability estimate and 
identification of relevant genomic regions) and estimated genetic trends, reliability, and relative risk factors associated 
with genomic predictions.

Results: Resistance to JD was moderately heritable (0.14) and 16 genomic regions were detected that accounted for 
at least 0.05% of the breeding values variance (GV) in resistance to JD, and were located on chromosomes 1, 3, 5, 6, 7, 
19, 20, 21, 23, 25, and 27, with the highest percentage of variance explained by regions on chromosomes 23 (0.36% 
GV), 5 (0.22% GV), 1 (0.14% GV), and 3 (0.13% GV). When estimated for the whole chromosomes, the autosomes with 
the largest overall contributions were chromosomes 3 (5.3% GV), 10 (4.8%), 23 (4.7%), 1 (3.6%), 7 (3.4%), 5 (2.9%), 12 
(2.5%), 11 (2.2%), and 13 (2%). We estimated a slightly favorable genetic trend in resistance to JD over the last two 
decades, which can be explained by a low positive genetic correlation between resistance to JD and total merit index 
(+ 0.06). Finally, in a validation population of 907 cows, relatively reliable genomic predictions (reliability = 0.55) were 
obtained, which allowed the identification of cows at high risk of infection.

Conclusions: This study provides new insights into the genetic determinism of resistance to JD and shows that this 
trait can be predicted from SNP genotypes. It has led to the implementation of a single‑step genomic evaluation that 
should rapidly become an effective tool for controlling paratuberculosis on French Holstein farms.
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Background
Paratuberculosis, or Johne’s disease (JD), is a mycobacte-
rial disease caused by Mycobacterium avium subsp. para-
tuberculosis (MAP). Worldwide, JD is very common in 
livestock and primarily affects domestic ruminants [1]. In 
Europe, the cattle sector is particularly affected, with half 
of all herds being infected and the within-herd preva-
lence reaching 20% [2].
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After being contaminated in utero or, more fre-
quently, via the intake of MAP-infected feces as a 
young calf, animals experience a long latency phase 
that can last several years. Subclinical symptoms of JD 
are weight loss and reduced milk production, together 
with an inconsistent humoral immune response and 
fecal shedding. Such cases are difficult to detect and 
can contaminate their environment for years. The dis-
ease often evolves into chronic granulomatous enteritis 
and, in its clinical form, JD eventually results in chronic 
diarrhea and severe emaciation, ending in the death of 
the animal [3]. No effective treatment is available and 
vaccination is restricted because of the risk of interfer-
ence with diagnostic methods used for bovine tubercu-
losis [4]. The most commonly used diagnostic tests are 
fecal culture, serum ELISA, milk ELISA, and fecal PCR, 
which are characterized by varying sensitivities and 
specificities depending on the stage of the infection.

As a result, JD is very difficult to control, which 
results in adverse effects on animal welfare and serious 
economic consequences [5]. Recent efforts to reduce 
the impact of this disease have focused on the role of 
host genetics in resistance to MAP. Heritability esti-
mates for this trait range between 0.03 and 0.27 [6], and 
genome-wide association studies (GWAS), which were 
conducted using genotypes of single nucleotide poly-
morphisms (SNPs) at different densities (e.g. [7, 8]), 
have detected various genomic regions, i.e. quantitative 
trait loci (QTL) that are associated with resistance to 
JD. Although these results are not all consistent (prob-
ably due to differences in the study designs, e.g., the 
population used, the definition of the resistance pheno-
type, the disease prevalence, or the detection power), 
overall, they suggest that genetics may help to control 
the disease. However, apart from a very recent study 
that estimated the accuracy of genomic predictions [9], 
little effort has been made to investigate the possibility 
of predicting resistance to JD from genomic data.

In an earlier study by our group, we conducted GWAS 
on imputed whole-genome sequences of 1644 Hol-
stein cows with an accurately defined status for MAP 
(repeated serum ELISA and fecal PCR tests); in this 
population, we identified various candidate SNPs that 
accounted for a substantial part of the phenotypic vari-
ance in resistance to MAP infection [10]. Using these 
data, together with additional data collected in infected 
herds, and a single-step genomic best linear unbiased 
prediction (GBLUP) model, we conducted a study in 
Holstein cattle with a two-fold objective: (1) to further 
investigate the genetic determinism of resistance to JD, 
and (2) to estimate genetic trends, reliability, and risk 
factors associated with genomic predictions.

Methods
Animals and phenotypes
In this study, we did not perform any experiments on ani-
mals; thus, no ethical approval was required. Data from 
Holstein cows were collected from herds in northwest-
ern France that were enrolled in JD control plans. Two 
datasets were merged and analyzed. The first dataset was 
obtained from the PARADIGM project, which contained 
reliable MAP statuses that were deduced from repeated 
and concordant serum ELISA and fecal PCR results for 
4100 cows. More details can be found in Sanchez et  al. 
[10]. The second dataset, which constituted the majority 
of the overall dataset, included MAP statuses of 243,274 
cows that were deduced from serological tests that have 
been routinely recorded since 2015. Cows for which all 
the tests were negative were considered non-infected 
while cows with at least one positive test were consid-
ered infected. Of the entire dataset of 247,374 cows, 
about 92% were non-infected (n = 228,337) and about 
8% were infected (n = 19,037) by MAP. These cows origi-
nated from 15,476 herds, of which 5637 had at least one 
infected cow. All serum samples were analyzed with one 
of two ELISA kits: Idexx Paratuberculosis Screening Ab 
Test (Idexx, Montpellier, France) for ~ 75% of the cows 
and Idvet ID  Screen® Paratuberculosis Indirect (Idvet, 
Montpellier, France) for ~ 25% of the cows.

The PARADIGM dataset had already been cleaned 
and filtered; on the second dataset, we applied filters as 
follows. The S/P threshold values (sample optical den-
sity over positive control optical density) recommended 
by the manufacturer were used to distinguish between 
infected and non-infected cows. However, cows present-
ing intermediate S/P values, i.e., between 10 and 50, were 
considered to be of uncertain status and were excluded 
from the analyses (17.6%). We kept only the cows that 
were more than 24 months old and that had at least one 
calving. We also excluded non-infected cows that were 
less than 3  years old to eliminate individuals that could 
potentially still be in the latency period. After apply-
ing these filters, 119,992 non-infected cows and 18,025 
infected cows remained in the dataset. Then, to maxi-
mize the probability of exposure to MAP and to estimate 
the effect of the contemporary group, we kept only birth 
herd × birth-year combinations with at least one infected 
and one non-infected cow. We considered the birth herd 
regardless of the herd in which the animals were located 
on the day of the test. These filters resulted in a drastically 
reduced dataset, which ultimately contained 56,766 Hol-
stein cows from 3114 herds. Of these cows, 42,829 were 
non-infected (~ 75%) and 13,937 were infected (~ 25%).

The pedigree was traced over four generations and 
contained 161,253 animals, including 12,431 genotyped 
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individuals among which, 4031 cows had MAP statuses 
(2787 non-infected and 1244 infected). The 12,431 geno-
typed animals had previously been genotyped with dif-
ferent versions of the 50K SNP Beadchip, including the 
EuroGMD Beadchip currently used for genomic selec-
tion (https:// www. eurog enomi cs. com/ actua lites/ the- 
eurog- md:-a- unique- genot yping- micro array- for- cattl 
e-. html). In total, 53,469 SNPs passed all quality control 
filters (individual call rate > 95%; SNP call rate > 90%; 
minor allele frequency (MAF) > 1%; genotype frequencies 
in Hardy–Weinberg equilibrium with P >  10−4). Miss-
ing genotypes were imputed using the FImpute software 
[11] as part of the French routine system of evaluation 
(covering more than one million French Holstein ani-
mals with genotypes), with a reference population com-
prising about 35,000 genotyped bulls used for artificial 
insemination.

Model
Resistance to JD was modeled as follows:

where y is the vector of phenotypes, i.e., 1 for non-
infected cows and 0 for infected cows, a ∼ N (0,Hσ

2
a) 

is the vector of random additive genetic effects, and 
e ∼ N (0, Iσ2e) is the vector of random residual effects. β 
is the vector of fixed effects of contemporary group (herd 
of birth × birth year combination), season (birth month), 
and ELISA test (Idexx or Idvet), to account for variabil-
ity in exposure to MAP among farms and in time, as well 
as for differences in test sensitivities and specificities. X 
and Z are incidence matrices, H is the relationship matrix 
among individuals that combines genotypic and pedigree 
information, and I is the identity matrix, with σ2a and σ2e as 
the additive genetic and residual variances, respectively. 
Variance components were estimated with the WOM-
BAT software using the AI-REML algorithm [12] and 
Model (1). The heritability h2 of resistance to JD was cal-
culated as follows: h2 = σ

2
a/
(
σ
2
a + σ

2
e

)
.

Breeding values
Model (1) was applied to the hybrid single-step (HSS) 
model, proposed by Fernando et  al. [13], and imple-
mented in the HSSGBLUP software that is used in the 
French bovine evaluation. We defined six unknown par-
ent groups depending on the birth year of the animals 
(≤ 2008, 2009–2010, 2011–2012, 2013–2014, 2015–2016, 
and 2017–2018). Coherence between pedigree and geno-
types was obtained by fitting a J vector [14, 15] for each 
unknown parent group. This method directly provides 
estimates of SNP effects and single-step estimated breed-
ing values (ssEBV) of non-genotyped animals. The ssEBV 
of the genotyped animals were obtained from genotypes 

(1)y = Xβ+ Za + e,

and SNP effects. ssEBV were expressed in genetic stand-
ard deviation ( σa ) units by dividing predictions obtained 
on the raw scale by the genetic standard deviation esti-
mated with Model (1) and were centered around a base 
population consisting of the genotyped cows born from 
2015 to 2018.

Genetic trends
Genetic trends in resistance to JD were assessed sepa-
rately in females and in males by averaging ssEBV per 
year of birth. We retained only the animals with the most-
accurate ssEBV, i.e., cows with phenotypes (2356 to 8674 
cows born each year between 2008 and 2017) and bulls 
with at least 10 daughters with MAP statuses (31 to 117 
bulls born each year between 2000 and 2014). The Inter-
bull method 2 proposed by Boichard et al. [16] was used 
to test for the absence of bias in the estimate of genetic 
trends in the bull population. In this approach, the unbi-
asedness hypothesis is accepted if no significant within-
bull birth-year effect is detected on the performance 
of the daughters after adjustments for environmental 
effects and the breeding value of the dam estimated by 
the model. We also calculated within-year correlations 
between the total merit index and genomic predictions 
(GP) of resistance to JD obtained after applying the SNP 
effects previously estimated on 9800 French Holstein bull 
genotypes.

Reliability of genomic predictions
Model (1) was applied to a truncated dataset (training) 
that included the phenotypes of the 41,774 cows born 
before 2015 (31,115 non-infected and 10,659 infected), of 
which 3118 had genotypes (2069 non-infected and 1049 
infected). The reliability of ssEBV for the animals with-
out phenotypes or progeny was estimated in a valida-
tion (VAL) population of 907 cows born between 2015 
and 2018 that had both genotypes and MAP statuses 
(715 non-infected and 192 infected cows). Reliability 
was estimated by r2/h2 , where r is the correlation in the 
VAL population between MAP status (1 or 0, adjusted 
for non-genetic effects estimated with Model (1) on the 
complete dataset) and GP (calculated using SNP effects 
estimated from the training dataset).

Relative risk of MAP infection
To assess the risk of MAP infection with respect to GP, 
we calculated the relative risk (RR) of infection for a cow 
in the VAL set. A logistic regression of the status (0/1) 
was carried out with GP as predictor. As an illustration 
and to check the quality of the fit of the data, these risk 
factors were also compared to those computed by the 

https://www.eurogenomics.com/actualites/the-eurog-md:-a-unique-genotyping-microarray-for-cattle-.html
https://www.eurogenomics.com/actualites/the-eurog-md:-a-unique-genotyping-microarray-for-cattle-.html
https://www.eurogenomics.com/actualites/the-eurog-md:-a-unique-genotyping-microarray-for-cattle-.html
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ratio of infected to healthy animals in each 0.5 class of 
GEBV, expressed relatively to class 0.

Single‑step GWAS
To detect QTL for resistance to JD, we performed a sin-
gle-step GWAS (ssGWAS) [17, 18] from the SNP effects 
estimated with the HSSGBLUP software. We split the 
genome into non-overlapping, adjacent 1-Mb regions 
and calculated the percentage of ssEBV variance ( %GV i ) 
accounted for by the i th genomic region as:

where n is the sample size, σ 2
α is the variance in ssEBV, 

and âi = Mi ŝi is the vector of genomic values for the 
i th region with Mi the matrix of SNP content in region 
i and ŝi is the vector of estimated effects of the SNPs in 
the region. We also applied the same approach to whole 
chromosomes to obtain the %GV c explained by each 
chromosome. Genomic regions with %GV  > 0.05% were 
annotated with FAANGMine v1.1 (https:// faang mine. 
elsik lab. misso uri. edu), which was developed by the Func-
tional Annotation of ANimal Genomes initiative [19] and 
integrates the ARS-UCD1.2 bovine reference genome 
with a variety of external data sources, including RefSeq 
from NCBI (https:// www. ncbi. nlm. nih. gov) and Ensembl 
(https:// www. ensem bl. org) gene sets.

Results
Heritability estimate for resistance to JD
Estimates of genetic and residual variances were 0.019 
and 0.113, respectively, corresponding to a moderate h2 
estimate of 0.143 ± 0.01 for resistance to JD. Therefore, 

(2)%GV i =

1

nσ 2
α

â
′

iâi

the estimate of the genetic standard deviation (used to 
standardize ssEBV) was 0.0190.5, i.e., close to 0.14.

Genetic trends in resistance to JD
First, we performed single-step analyses to obtain 
ssEBV by considering phenotypes and/or genotypes for 
all the individuals in the pedigree. Genetic trends in the 
Holstein population were then estimated by averaging 
ssEBV of cows and bulls by year of birth. In both the 
bull and cow populations, we observed steadily increas-
ing genetic trends in resistance to JD over the period 
considered (Fig.  1). In other words, the younger ani-
mals appeared to be genetically more resistant than the 
older ones. Bulls born in 2014 had, on average, ssEBV 
that were + 0.76σa higher than bulls born in 2000, cor-
responding to an increase of 0.054σa per year. Over 
a shorter and more recent period (2008–2017), the 
increase in ssEBV was + 0.60σa in cows, i.e., + 0.067σa 
per year. Interbull method 2 did not detect any bias 
in these estimates of genetic trends. In addition, we 
obtained a low, but positive (+ 0.061) and favorable, 
within-birth-year correlation between GP of resistance 
to JD and the total merit index.

Reliability of genomic predictions
The effects of SNPs were estimated using a reduced 
training population and were then applied to the gen-
otypes of the VAL population to predict resistance to 
JD (GP). The correlation between GP and phenotypes 
(adjusted for fixed effects) in the VAL group was equal 
to 0.28 (SE = 0.03). The estimate of genomic reliability, 
which was obtained by dividing the squared correlation 

Fig. 1 Genetic trends in resistance to paratuberculosis

https://faangmine.elsiklab.missouri.edu
https://faangmine.elsiklab.missouri.edu
https://www.ncbi.nlm.nih.gov
https://www.ensembl.org
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by the value of h2 that we estimated in the present 
study, was ~ 0.55.

Relative risk
To assess the effect of genetics on the phenotype, 
we used the VAL population to estimate the rela-
tive risk of cows being infected based on their GP 
by logistic regression. The regression equation was 
log(P(0)/P(1)) = − 1.428–1.0313 GP (P < 0.0001). The 
estimated effect of one genetic standard deviation 

(− 1.0313) corresponded to a relative risk multiplied by 
exp(1.0313) = 2.80 when GP decreased by 1, or equiva-
lently a relative risk multiplied by exp(− 1.0313) = 0.36, 
or divided by 2.8, when GP increased by 1. To illustrate 
this result, the relative risk, on the log scale and the 
observed scale, is represented in Fig.  2. Figure  2 also 
presents the observed relative risk computed within 
each 0.5 class of GP. Both are quite consistent pro-
vided that the number of observations per class is not 
too small. Combined with the fact that infection occurs 

Fig. 2 Relative risk of MAP infection in the validation population. a Results of the logistic regression (log(P(0)/P(1)) = − 1.428 to 1.0313 GP) with 
P(0) = probability of cows being infected, P(1) = probability of cows being non‑infected, and GP = genomic predictions. b Relative risks of cows 
being infected (P(0)/P(1)) as predicted by logistic regression (in blue) observed within each 0.5 class of genomic predictions (in red). Numbers in 
parentheses are numbers of non‑infected and infected cows, respectively
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early in life, these results show that selection can be an 
efficient lever to control paratuberculosis.

Identification of QTL
To identify QTL, i.e., genomic regions with the largest 
contributions to the genetic variance of the trait, we split 
the genome into non-overlapping 1-Mb segments, each 
containing on average 22.5 SNPs (min = 4; max = 199). 
Then, we calculated the GV percentage in resistance to 
JD that was explained by each segment, as described in 
“Methods” section. The 1-Mb genomic regions accounted 
for 0 to 0.36% GV in this trait. The segment that 
accounted for the highest GV percentage was located on 
chromosome 23 and started at 25,207,610 bp (Fig. 3 and 
Table 1). We also identified lower peaks, which explained 
0.05 to 0.22% of the total GV, that were located in other 
genomic regions on chromosomes 1, 3 (two regions), 5, 6, 
7, 19 (two regions), 20, 21 (two regions), 23 (two regions), 
25, and 27.

Then, we summed the GV percentages explained by 
all the 1-Mb regions of each chromosome. The chromo-
somes with the largest contributions were chromosomes 
3 and 23 (1% for each), 5 (0.86%), 1 (0.84%), 7 (0.72%), 
10 (0.65%), 2 (0.62%), 12 (0.57%), 19 (0.55%), and 11 
and 6 (0.51% each). Other chromosomes accounted for 
a smaller part of the ssEBV variance, i.e., from 0.18% 
(chromosome 28) to 0.48% (chromosomes 20 and 21). 
For the whole genome, 2385 regions were defined that 
together accounted for 13.6% of the GV in resistance to 
JD (Table 2). It should be noted that the accumulation of 
1 Mb—segment contributions over a chromosome does 

not take potential covariance between segments into 
account, which explains this relatively small cumula-
tive contribution. When the same approach to compute 
contributions was extended to the whole chromosome, 
we obtained quite different results (Table  2): the most 
important chromosomes being chromosomes 3 (5.3%), 
10 (4.8%), 23 (4.7%), 1 (3.6%), 7 (3.4%), 5 (2.9%), 12 (2.5%), 
2 (2.5%), 11 (2.2%), and 13 (2%). Other chromosomes 

Fig. 3 Resistance to paratuberculosis: percentage of ssEBV variance explained by 1‑Mb genomic regions. The 29 bovine autosomes are represented 
by different colors

Table 1 One‑Mb genomic regions that explained more than 
0.05% of ssEBV variance in resistance to JD

Chromosome % ssEBV 
variance

Start (bp) Number 
of SNPs

1 0.144 131,181,000 85

3 0.077 11,556,988 30

3 0.133 82,176,437 45

5 0.219 55,871,314 105

6 0.050 37,030,480 55

7 0.073 20,940,338 25

19 0.056 14,338,858 27

19 0.062 55,308,916 110

20 0.117 21,307,568 117

21 0.083 56,929,149 106

21 0.051 67,739,884 21

23 0.363 25,207,610 52

23 0.113 26,549,915 42

23 0.140 27,565,479 63

25 0.051 33,768,908 57

27 0.081 35,824,524 34
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accounted for 0.6% (chromosome 28) to 1.8% (chromo-
some 21) of the ssEBV variance. Overall, the 29 auto-
somes accounted for ~ 58% GV.

Discussion
This study, conducted in Holstein cows, is based on a sin-
gle-step SNP-BLUP evaluation using MAP statuses that 
were deduced from serological data, which are routinely 
recorded in French herds enrolled in paratuberculosis con-
trol plans. It provides new insights into the genetic deter-
minism of resistance to MAP and gives very encouraging 
results for the implementation of this kind of genomic eval-
uation in Holstein cattle.

New insights into the genetic determinism underlying 
resistance to JD
To the best of our knowledge, the current study is one 
of the few studies that estimates the heritability of the 
resistance to JD from thousands of cows with serum 
ELISA measurements. The obtained h2 value is moderate 
(0.14), but similar to or higher than estimates that have 
been reported in the literature (from 0.04 to 0.18) from 
serum ELISA phenotypes measured in various Holstein 
populations [20–24]. However, our value is much lower 
than the value that we had estimated in a previous study 
(0.57) from a genomic relationship matrix [10], probably 
because our earlier study was conducted with a smaller 
sample (1644 Holstein cows) with both very accu-
rate (confirmed by PCR on feces) and strongly selected 
phenotypes.

To identify genomic regions that are involved in the 
genetic determinism underlying resistance to JD, we 
applied a multi-SNP GWAS approach that analyzed 
161,253 animals in the pedigree, including 56,766 with 
phenotypes and 12,431 with genotypes. Previous stud-
ies have demonstrated equivalence between GBLUP 
and classical single-marker GWAS, e.g., [25], and fur-
thermore, it has been shown that the detection of QTL 
via GBLUP can be extended to single-step GBLUP, also 
referred to as ssGWAS [17, 18]. In recent years, ssGWAS 
approaches, which have the advantage of estimating 
all SNP effects jointly, have been applied in multiple 
studies to identify QTL for different traits, e.g., [26]. 
When applied to resistance to JD in our Holstein cat-
tle dataset, it highlighted regions of the genome located 
on chromosomes 1, 3, 5, 6, 7, 19, 20, 21, 23, 25, and 27, 
which account for the largest GV percentage in this trait 
(> 0.05%). However, this method has some limitations. 
First, it requires genomic regions to be defined arbitrar-
ily (e.g., fixed size in bp or fixed number of SNPs, over-
lapping or non-overlapping intervals), which can have 
an impact on the results, in particular if the density of 
SNPs in the genome varies from one region to another. 
In the current study, we tested intervals of different sizes 
and with different numbers of SNPs that overlapped or 
not, and obtained comparable results in all cases (data 
not shown). In addition, we found that when we added 
up the GV percentages in resistance to JD across all the 
1-Mb genomic regions, only slightly more than one-
eighth of the total GV in the trait was accounted for. This 
result is likely due to the long-range linkage disequilib-
rium (LD) that occurs in the genome of dairy cattle and 
the distribution of QTL effects over a large number of 
potentially distant markers. To test this hypothesis, we 
calculated the percentage of ssEBV variance explained 
by each chromosome as a whole (i.e., by considering each 

Table 2 Maximal and total percentage of ssEBV variance (% GV) 
in resistance to JD explained by each autosome

a By summing the % GV for all the 1-Mb regions of each chromosome
b By considering each chromosome as a single region

Chromosome 1 Mb non‑overlapping regions Whole 
chromosome

Number 
of regions

Max % GV Total %  GVa %  GVcb

1 152 0.14 0.84 3.56

2 129 0.04 0.62 2.45

3 116 0.13 1.01 5.33

4 116 0.01 0.31 1.38

5 115 0.22 0.86 2.85

6 113 0.05 0.51 2.22

7 106 0.07 0.72 3.38

8 108 0.01 0.31 1.38

9 99 0.05 0.37 1.49

10 99 0.04 0.65 4.77

11 103 0.02 0.51 2.17

12 83 0.04 0.57 2.50

13 80 0.04 0.44 2.00

14 80 0.02 0.34 1.13

15 81 0.02 0.31 1.11

16 78 0.03 0.33 1.25

17 70 0.03 0.27 1.30

18 63 0.04 0.30 0.77

19 61 0.06 0.55 1.54

20 69 0.12 0.48 1.55

21 66 0.08 0.48 1.80

22 59 0.02 0.30 1.45

23 50 0.36 1.00 4.69

24 60 0.03 0.28 1.05

25 42 0.05 0.39 1.56

26 50 0.04 0.20 0.71

27 44 0.08 0.25 0.88

28 44 0.03 0.18 0.60

29 49 0.03 0.27 1.05
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chromosome as a single segment), and found that the 
total GV percentage explained by the whole genome was 
four times higher (58%) than when we considered the 
1-Mb genomic regions. This result supports our hypoth-
esis about the impact of long-range LD and also seems 
to provide evidence for a notable degree of covariance 
between SNPs on different chromosomes, supporting the 
existence of LD between SNPs located on different chro-
mosomes [27].

Consistent with our earlier study of imputed whole-
genome sequences from 1644 Holstein cows with 
extreme phenotypes [10], our findings confirm the effects 
of genomic regions located on chromosome 23. However, 
there are some notable differences between the two anal-
yses. Our current study reveals new regions that affect 
resistance to JD that were not identified in our earlier 
work, and fails to confirm the major effects that we had 
previously detected, at the sequence level in a single-SNP 
GWAS, on chromosomes 12 and 13 [10]. It is noteworthy 
that, in these two QTL regions detected at the sequence 
level, variants were rare and probably in low LD with the 
50k SNPs, especially in this much larger population. In 
spite of this, in the whole-chromosome analysis presented 
here, chromosomes 12 and 13 accounted for 2.5 and 2% 
of the ssEBV variance in resistance to JD, which ranks 
them 7th and 11th out of the 29 autosomes, respectively. 
This discrepancy is not very surprising given that there 
has been little agreement among the numerous GWAS 
analyses that have been conducted to date (using SNPs 
at different densities) for resistance to JD. The genomic 
region located in the vicinity of the major histocompat-
ibility complex on chromosome 23 is the only QTL that 
has been detected by almost all published GWAS, in par-
ticular the most recent ones that were performed with 
high-density SNP genotypes or imputed whole-genome 
sequences [8, 9, 28, 29]. Most of the other genomic 
regions detected in this study were previously described 
as affecting resistance to JD in at least one GWAS. These 
regions are located on chromosomes 1 [7, 30], 3 [8, 28], 
7 [28, 31], 20 [28, 32], 21 [8, 32], 25 [8], and 27 [28, 33]. 
In contrast, the genomic regions that we identified on 
chromosome 5 at ~ 56 Mb, on chromosome 6 at ~ 37 Mb, 
and on chromosome 19 at ~ 14 and ~ 55 Mb, have not, as 
far as we know, ever been identified. In these regions, we 
identified a number of positional candidate genes, among 
which, seven are plausible functional candidates. The 
ATG4D gene on chromosome 3 is an autophagy-related 
gene. Autophagy is a cellular process that can eliminate 
intracellular pathogens, including bacteria. Moreover, the 
ATGD4 gene is known to be associated with resistance 
to bovine paratuberculosis [9] and human Crohn’s dis-
ease [34], which is a chronic inflammatory bowel disease 
with a possible link to paratuberculosis. Silencing of the 

LRP1 gene, located in the QTL region on chromosome 
5, has been found to exacerbate inflammatory response 
in mice [35]. The GNG7 and GADD45B genes on chro-
mosome 7 were both found to be differentially expressed 
in ileal lymph nodes of MAP-infected and non-infected 
cows [36] and in MAP-infected bovine monocyte-mac-
rophages and uninfected bovine cells [37], respectively. 
The BOLA-DRB3 gene, which is located in the major his-
tocompatibility complex on chromosome 23, has been 
shown to be associated to bovine paratuberculosis in dif-
ferent studies (see review by Kravitz et al. [38]). The HIP1 
gene (chromosome 25) plays a role in the susceptibility 
to tuberculosis, which is an infection that is very similar 
to MAP at the cellular level. HIP1 promotes pathogen-
esis, by impairing host immune responses [39]. Finally, 
the ANK1 gene on chromosome 27 has been described 
as an up-regulated gene in MAP-infected mice compared 
to control mice [40]. Causality of these genes is yet to be 
demonstrated, but they are very good functional candi-
dates to explain the effects that we observed in the cur-
rent study.

Resistance to JD can be predicted from SNP genotypes
In a validation population, we obtained relatively reli-
able genomic predictions for resistance to JD (reli-
ability = 0.55), which were estimated from a reduced 
reference population that included about 75% of cows 
with phenotypes. Such genomic predictions can be of 
great help to identify cows at high risk of infection. As 
mentioned in  the “Background” section, only one prior 
study has estimated the accuracy of genomic predictions 
for resistance to JD using cross-validation [9]. Those 
authors estimated correlations between genomic predic-
tions for bulls and daughter averages for MAP infection, 
and obtained values ranging from 0.43 to 0.53. Although 
these correlation values are higher than those estimated 
here, the daughter averages used in that study are likely 
to be more heritable than the cows’ individual perfor-
mances; if this is taken into account, the reliability value 
is probably on the same order of magnitude as that found 
in our study (0.55).

When estimated over the last two decades, trends in 
genomic predictions reveal a favorable genetic evolu-
tion in resistance to JD. These trends are supported by a 
method recommended by Interbull. Indeed, no signifi-
cant within-bull birth year effect was observed on the 
phenotypes of the daughters adjusted for fixed effects 
and breeding value of the dam. We also found a slightly 
positive correlation between the total merit index, pro-
duced by the national genetic evaluation of the French 
Holstein population, and the breeding values estimated 
for resistance to JD, suggesting that the favorable genetic 
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trend observed for resistance to paratuberculosis could 
be the result of indirect selection in the Holstein breed.

Currently, breeding values for resistance to paratu-
berculosis are routinely produced. Such values can be 
used for two important objectives: (i) in infected herds, 
this information is useful for management decisions, to 
guide the early culling of highly susceptible animals and 
plan matings with resistant bulls; and (ii) at the level of 
the overall breeding scheme, these breeding values can 
be integrated into the breeding goal and, more impor-
tantly, used to produce bulls for artificial insemina-
tion that are resistant to JD and can be used in infected 
herds.

As the number of genotyped and phenotyped cows 
increases, genomic predictions will rapidly become 
an effective tool for controlling paratuberculosis on 
French Holstein farms. The same strategy is currently 
being developed in the Normande breed and could be 
extended to other populations in the future.

Conclusions
Using a single-step genomic evaluation applied to a large 
dataset of Holstein cows, we confirm the genetic deter-
minism that underlies host resistance to paratuberculo-
sis. Overall, the heritability estimate for resistance to this 
disease was 0.14 and we identified various regions on the 
genome that account for a substantial part of the ssEBV 
variance in resistance to paratuberculosis in Holsteins, 
with the largest contributions due to regions located 
on chromosomes 23, 5, 1, and 3. In these regions, asso-
ciation analyses at the sequence level allowed the iden-
tification of individual genes and gene variants that are 
responsible for resistance to paratuberculosis. Genomic 
predictions for this trait were found to have a satisfac-
tory reliability (0.55), which means that such predictions 
could be of great interest to identify cows at high risk of 
infection and to highlight resistant bulls for inclusion in 
mating plans. This approach could be easily applied in 
any breed of cattle affected by this disease for which a 
similar number (i.e., a few thousand) of cow phenotypes 
and genotypes are available.
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