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Abstract 

Background: Selection schemes distort inference when estimating differences between treatments or genetic 
associations between traits, and may degrade prediction of outcomes, e.g., the expected performance of the progeny 
of an individual with a certain genotype. If input and output measurements are not collected on random samples, 
inferences and predictions must be biased to some degree. Our paper revisits inference in quantitative genetics when 
using samples stemming from some selection process. The approach used integrates the classical notion of fitness 
with that of missing data. Treatment is fully Bayesian, with inference and prediction dealt with, in an unified manner. 
While focus is on animal and plant breeding, concepts apply to natural selection as well. Examples based on real data 
and stylized models illustrate how selection can be accounted for in four different situations, and sometimes without 
success.

Results: Our flexible “soft selection” setting helps to diagnose the extent to which selection can be ignored. The clear 
connection between probability of missingness and the concept of fitness in stylized selection scenarios is high-
lighted. It is not realistic to assume that a fixed selection threshold t holds in conceptual replication, as the chance 
of selection depends on observed and unobserved data, and on unequal amounts of information over individuals, 
aspects that a “soft” selection representation addresses explicitly. There does not seem to be a general prescription 
to accommodate potential distortions due to selection. In structures that combine cross-sectional, longitudinal and 
multi-trait data such as in animal breeding, balance is the exception rather than the rule. The Bayesian approach 
provides an integrated answer to inference, prediction and model choice under selection that goes beyond the 
likelihood-based approach, where breeding values are inferred indirectly.

Conclusions: The approach used here for inference and prediction under selection may or may not yield the best 
possible answers. One may believe that selection has been accounted for diligently, but the central problem of 
whether statistical inferences are good or bad does not have an unambiguous solution. On the other hand, the qual-
ity of predictions can be gauged empirically via appropriate training-testing of competing methods.
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Background
Quantitative genetics explains and describes inheritance 
of complex traits such as many diseases in humans and 
animals or agriculturally relevant targets, e.g., yield and 
product quality in maize or dairy cattle. It focuses on 
statistical quantities, e.g., allelic and haplotype frequen-
cies, locus effect sizes, means, variances and covariances 
between individuals or traits. Theory-derived parameters 
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like heritability and genetic correlations and linkage dis-
equilibrium are of interest as well. Although they are 
interpretable, these parameters may not provide a mean-
ingful mechanistic explanation of genetic systems and 
represent abstractions. Interaction is key in biological 
processes, both at the biochemical (e.g., cycles) and pop-
ulation levels, e.g., the shifting balance theory of evolu-
tion [1, 2]. Yet, quantitative genetics heavily relies on the 
additive genetic model, both in its pre- and post-genom-
ics versions. Actually, this model is a crucial tool in the 
armamentarium of animal and plant breeders and also 
plays a role in the “polygenic scores” used for prediction 
in human medicine [3]. Hence, learning well the param-
eters of additive models is important.

All unknown quantities are inferred using finite sam-
ples of experimental or observational data. Quantitative 
genetic models have been informed by phenotypes and 
genealogies [4–7] and more recently by molecular mark-
ers [8–11]. Also, it is increasingly feasible to obtain (often 
expensively) joint measures of the genome, epigenome, 
metabolome, proteome, metagenome, behavior, robust-
ness, resilience and sustainability from samples of indi-
viduals. Such inputs are fed to prediction and decision 
machines used for artificial selection, field fertilization, 
animal management and disease treatment algorithms. 
However, data are often not representative of a target 
population because of selection schemes in animals and 
plants, and expensive measurements are seldom taken 
at random. Likewise, in medical trials, individuals not 
meeting certain criteria or “culling levels” are excluded 
and there may be a non-random dropout of accepted 
patients, i.e., some abandon the study due to treatment 
effects. Selection schemes distort inference when esti-
mating differences between treatments or genetic associ-
ations between traits, or degrade prediction of outcomes, 
e.g., the expected performance of the progeny of an indi-
vidual with a certain genotype. If input and output meas-
urements are not taken on random samples, inferences 
and predictions may be biased to some extent.

The preceding problem is not novel in quantitative 
genetics. Ideally, properties of estimators and predictors 
should be studied relative to a setting representing the 
selection or dropout process occurring, which is not an 
easy task. There are many potential scenarios: selection 
may be by truncation of a distribution, it may be disrup-
tive with two tails of the distribution selected, or aimed at 
stabilizing a population near some optimum [12]. How-
ever, there are situations in which it is impossible or awk-
ward to model the selection process in a simple manner. 
For instance, if individuals are heterogeneous, related 
through complex pedigree loops or possess unequal 
amounts of information, classical balanced-data selection 

index formulae [13–15] or stylized treatments for param-
eter estimation are not entirely adequate.

With the advent of genomics and “big” post-genomic 
data, distortions produced by selection may have been 
exacerbated. Best linear unbiased prediction (BLUP) 
evolved into GBLUP, with “G” denoting “genomic” and 
Bayesian linear regression models emerged as competing 
prediction machines [10, 16–20]. Although the data used 
in genome-based models is rarely random, the “selec-
tion problem” has been seldom discussed in depth from 
a theoretical perspective. Earlier studies [21–23] pointed 
out that if a process (e.g., selection) that leads to “missing 
data” depends on observed data only and on parameters 
that are “separate” from those of the statistical model 
employed for analysis, selection is said to be ignorable. 
However, when data is available on “survivors” only, the 
selection process and its parameters must be considered 
in the analysis for appropriate inference or prediction. In 
between, there is a plethora of scenarios.

This paper revisits inference of quantitative genetic 
unknowns when using samples stemming from a selec-
tion process. Our approach integrates classical notions 
of fitness with that of missing data. The treatment is fully 
Bayesian, with inference and prediction dealt with, in an 
unified manner. The focus is on animal and plant breed-
ing but concepts apply to natural selection as well.

Bayesian setting
Let y and θ be vectors of observable variables and 
unknown quantities, respectively. In genetic contexts, 
θ may include genomic and epigenomic site effects, 
genetic and environmental components of (co) vari-
ance, nuisance location parameters, latent quantities 
such as breeding values and yet to be observed (future) 
phenotypes. One seeks to learn θ from the observed y. 
In a Bayesian treatment all elements of θ are viewed as 
randomly varying, reflecting aleatory or causal uncer-
tainty [24] and are assigned some prior distribution with 
density p(θ |Hyp,M) , where Hyp denotes known hyper-
parameters under some model M, e.g., a linear regression 
with a certain linear structure and distributional assump-
tions; model M′, say, may assume a thick-tailed residual 
distribution, while M may have a non-linear part and 
treat the residuals as Gaussian.

Without natural or artificial selection, the joint density 
of y and θ under model M is:

where p(y|θ ,M) is the density of the data-generating dis-
tribution under M, with θ fixed. The posterior density of 
θ is

(1)p(y, θ |Hyp,M) = p(y|θ ,M)p(θ |Hyp,M),
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The denominator p(y|Hyp,M) is the Bayesian marginal 
density of the data, that is, the reciprocal of the integra-
tion constant of the posterior density under M. The latter 
depends on y and on M, but not on θ , which has been 
averaged out using p(θ |Hyp,M) as weight function [25]. 
Often, the target of the analysis is a component of θ , e.g., 
the vector of breeding values. Partitioning the entire 
parameter vector into θi and θ−i, where θ−i is θ with-
out θi , the marginal posterior density of sub-vector θi is 
p(θi|y,Hyp,M) =

∫
p(θ |y,Hyp,M)dθ−i [25]. Bayesian 

computations are typically done via Monte Carlo sam-
pling procedures.

Fitness depending on observed data
Various formulations of fitness functions appear in [12, 
26–29]. Suppose natural or artificial selection operate on 
phenotypes through a fitness function H(y|ϕ,θ), where ϕ 
is a parameter vector that may be distinct from θ and that 
does not enter into the process generating observed data 
y . The fitness function may depend on phenotypes line-
arly or non-linearly and is proportional to the probability 
that an individual possessing some observed attributes 
will reproduce or survive.

Let p(θ ,ϕ|Hyp,M) be the joint prior density of all 
parameters. The post-selection joint density of y , θ and 
ϕ is:

Here, H  is “Bayesian mean fitness”; it does not involve y , 
θ and ϕ since these vectors have been averaged out, so 
H

−1 acts as an integration constant. Note that 
H(y|ϕ, θ)

H
 

is the relative fitness associated with y at fixed ϕ,θ; values 
conferring lower fitness are assigned less density follow-
ing selection. Without selection, H(y|ϕ,θ) is constant and 
H(y|ϕ,θ) = H  for all y.

To illustrate, suppose that there is a single known 
parameter µ and that phenotypes are distributed inde-
pendently as N

(
µ, σ 2

)
 . Suppose that selection is such 

that only phenotypes under a threshold t are observed 

(2)
p(θ |y,Hyp,M) =

p(y|θ ,M)p(θ |Hyp,M)∫
p(y|θ ,M)p(θ |Hyp,M)dθ

=
p(y|θ ,M)p(θ |Hyp,M)

p(y|Hyp,M)
.

(3)

ps(y, θ ,ϕ|Hyp,M) =
H(y|ϕ, θ)p(y|θ ,M)p(θ ,ϕ|Hyp,M)∫∫∫

H(y|ϕ, θ)p(y|θ ,M)p(θ ,ϕ|Hyp,M)dydθdϕ

=
H(y|ϕ, θ)p(y|θ ,M)p(θ ,ϕ|Hyp,M)∫∫∫
H(y|ϕ, θ)p(y,ϕ, θ |Hyp,M)dydθdϕ

=
H(y|ϕ, θ)p(y|θ ,M)p(θ ,ϕ|Hyp,M)

H

and that sample size is N; here, ϕ = t . The joint density of 
the observations, after selection, is:

where zi =
ti − µ

σ
 and H  is the mean fitness, given µ and 

σ 2 . If a prior distribution F were assigned to µ, Bayesian 
mean fitness would be EF

[
H
(
t,µ, σ 2

)]
= H

(
t, σ 2

)
, 

where the outer expectation indicates that the values of µ 
are averaged out using distribution F as mixing process. 
See [23] for an example of a discrete fitness function 
applied to the “cow setting” of [30], where fitness is 
equivalent to the probability of observing a certain 
pattern.

Therefore, the joint posterior density under selection is:

where p(ϕ|θ ,M) is the conditional (given θ ) prior den-
sity of ϕ . If ϕ and θ are independent a priori and if 
H(y|ϕ,θ) = H(y|ϕ), i.e., fitness does not depend on θ , 
one has

(4)

ps(y|t,µ, σ
2) =

p(y|µ, σ 2)
∫ t
−∞

p(y|µ, σ 2)dy
=

p(y|µ, σ 2)

N∏
i=1

Pr(zi < t)

=
p(y|t,µ, σ 2)

H
(
t,µ, σ 2

) ,

(5)

ps(θ ,ϕ|y,Hyp,M) ∝ ps(y, θ ,ϕ|Hyp,M)

∝ H(y|ϕ, θ)p(y|θ ,M)p(θ ,ϕ|Hyp,M)

∝ H(y|ϕ, θ)p(y|θ ,M)p(ϕ|θ ,M)p(θ |Hyp,M),

implying that θ and ϕ are also independent a posteriori. 
Therefore,

the posterior density of θ without selection. Thus, if 
selection is based on a fitness function (linear or non-
linear) H(y|ϕ) of the observed data that does not depend 
on parameters θ , and if θ and ϕ are a priori independ-
ent, the selection process is ignorable from a Bayesian 

(6)
ps(θ ,ϕ|y,Hyp,M) ∝ [H(y|ϕ)p(ϕ)][p(y|θ)p(θ |Hyp,M)],

(7)ps(θ |y,Hyp,M) = p(θ |y,Hyp,M),
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perspective. The posterior distributions before and after 
selection are exactly the same, in agreement with [22, 31, 
32].

The preceding argument is at the root of the often-
made claim that BLUP remains “unbiased if the history of 
the selection process is represented in the data used”, that 
is, if all records on which selection decisions were based 
are included in the analysis. The claim is not correct, at 
least from the frequentist perspective. Suppose y = g + e 
is an n-dimensional vector in Rn , where g∼N (0,G) is a 
vector of genetic effects and e∼N (0,R) is a vector of 
environmental deviates, with g independent of e. Selec-
tion is such that y∈S and S is the sampling space con-
strained by selection. If G and R are known, the posterior 
distribution of the genetic effects is 
g|G,R, y∼N

(
ĝ,
[
R−1 +G−1

]−1
)
, where the posterior 

expectation is ĝ = G[R +G]−1y [31]. Following Eq. (7), 
the posterior distribution is unaffected by selection for 
any y . Now, ĝ is also a BLUP in a frequentist context and, 
in the absence of selection ( y∈Rn ), 
E
(
ĝ
)
= G

[
R−1 +G−1

]−1
E
(
y
)
= 0 ; hence, E

(
ĝ
)
= E

(
g
)
 

and the predictor is unbiased in the frequentist Hender-
sonian sense. Furthermore, Var

(
ĝ
)
= G[R +G]−1G. 

However, if y∈S,

and

since selection modifies the distribution of y . Clearly, the 
distribution ĝ ∼ N

(
0,G[R +G]−1G

)
 is modified by the 

selection process. While the Bayesian treatment allows 
ignoring selection, a frequentist analysis requires finding 
the sampling distribution after selection. BLUP would be 
unbiased by selection only if it could be shown that 
Es
(
ĝ
)
= Es

(
g
)
.

In a Bayesian treatment, the predictive distribution 
under selection of yet to be observed phenotypes yf  is

If the process of generating future observations is unal-
tered by selection, ps

(
yf |y, θ ,Hyp,M

)
= p

(
yf |y, θ ,Hyp,M

) . 
Since the posterior distribution is unaffected by selection 
based on observed data, (10) can be re-written as:

(8)Es
(
ĝ
)
= G

[
R−1 +G−1

]−1
Es
(
y
)

(9)
Vars

(
ĝ
)
= G

[
R−1 +G−1

]−1
Vars

(
y
)
G
[
R−1 +G−1

]−1
,

(10)

ps
(
yf |y,Hyp,M

)
=

∫
ps
(
yf |y, θ ,M

)
ps(θ |y,Hyp,M)dθ .

Therefore, the predictive distribution is also unaltered 
by selection based on observed data. Prediction of future 
phenotypes can be carried out as if selection had not 
occurred. Hence, inferences from posterior or predictive 
probabilities are unaffected by this type of selection.

The same holds true for the posterior distribution 
of the model when treated as uncertain. Let there be K 
mutually exclusive and exhaustive competing models 
M1,M2, . . . ,MK  with prior probabilities P1,P2, . . . ,PK , 
and parameters θ1, θ2, . . . , θK , respectively. Under selec-
tion, the posterior probability assigned to model k is:

Above, ps
(
y|Mk ,Hyp

)
 is the marginal distribution of the 

data under model k with selection. Furthermore,

Using the reasoning employed for the predictive distribu-
tion, if ps

(
y|θk ,M

)
= p

(
y|θk ,M

)
 , then

Using Eq. (14) in Eq. (12)

Therefore, the posterior distribution of the “model ran-
dom variable” is also unaffected by selection and model 
choice can be carried out ignoring the selection process.

Fitness based on observed and missing data
Inference under selection in quantitative genetics was 
formalized by Im et  al. [22] by adapting missing data 
theory [21, 33] to maximum likelihood estimation of 
genetic parameters. In a study of the trajectory of genetic 
variance over time in a population undergoing selec-
tion, Sorensen et al [23] used such theory from a Bayes-
ian perspective. To motivate this, let traits A and B be 

(11)

ps
(
yf |y,Hyp,M

)
=

∫
p
(
yf |y, θ ,M

)
p(θ |y,Hyp,M)dθ

= p
(
yf |y,Hyp,M

)
.

(12)

Ps
(
Mk |y,Hyp

)
=

ps
(
y|Mk ,Hyp

)
Pk

K∑
k=1

ps
(
y|Mk ,Hyp

)
Pk

; k = 1, 2, . . . ,K .

(13)

ps
(
y|Mk ,Hyp

)
=

∫
ps
(
y|θk ,M

)
ps(θk |Hyp,Mk)dθk .

(14)

ps
(
y|Mk ,Hyp

)
=

∫
p
(
y|θk ,M

)
p(θk |Hyp,M)dθk = p

(
y|Mk ,Hyp

)
.

(15)

Ps
(
Mk |y,Hyp

)
=

p
(
y|Mk ,Hyp

)
Pk

K∑
k=1

p
(
y|Mk ,Hyp

)
Pk

= P
(
Mk |y,Hyp

)
; k = 1, 2, . . . ,K .
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measured in n individuals, respectively, but 25% lack 
phenotypes for trait B. If the records in this portion are 
missing at random (e.g., it is expensive to record B and 
a random choice is made), there is no selection. What 
about if there is a non-random basis for the pattern of 
observed data? A connection between missingness and 
fitness is made below from a Bayesian perspective. The 
dependence on model M will be suppressed in the nota-
tion hereinafter.

A classical example dating back to 1959 [30], where 
selection is based on observed data only, serves to intro-
duce the notion of missing data. Suppose two dairy 
cows have a first lactation record; only one of the cows 
will be allowed to produce a second lactation. With-
out selection, each of the cows would have milk records 
for each of the two lactations and the “complete” data 
would be y =

(
y11, y21, y12, y22

)′
, where i denotes 

cow and j record number. If y11 > y21, the observed 
data would be yobs =

(
y11, y21, y12

)′
; if y11 ≤ y21 then 

yobs =
(
y11, y21, y22

)′ . A vector r describing the pattern of 
“missingness” is part of the information on the problem. 
The two patterns are r = (1, 1, 1, 0)′ and r = (1, 1, 0, 1)′, 
respectively, where “ 1 ” is observed and “ 0 ” is missing. The 
complete data vector of phenotypes is y =

(
yobs, ymiss

)′ 
where ymiss includes the records that would have been 
observed if selection had not taken place.

Under selection, the joint density of all data (complete 
data and missingness pattern) and of the parameters is:

where ϕ are parameters of the missing data (selection) 
process and Pr

(
r|y, θ ,ϕ

)
 is the conditional probability 

of observing the pattern. Pr
(
r|yobs,ymiss, θ ,ϕ

)
 is equiva-

lent to the fitness function H(y| ϕ,θ) employed in Eq. (3) 
above and gives probabilities of “survival” (“death”), con-
ditionally on phenotypes, observed and unobserved, and 
model parameters. Integrating with respect to ymiss

(16)

ps
(
y, r, θ ,ϕ|Hyp

)

= Pr
(
r|yobs,ymiss, θ ,ϕ

)
p
(
yobs, ymiss|θ

)
p
(
θ ,ϕ|Hyp

)
,

(17)

ps
(
yobs, r, θ ,ϕ|Hyp

)

=

∫
Pr

(
r|yobs, ymiss, θ ,ϕ

)
p
(
yobs, ymiss|θ

)
p
(
θ ,ϕ|Hyp

)
dymiss

=

∫
Pr

(
r|yobs, ymiss, θ ,ϕ

)
p
(
ymiss|yobs, θ

)
p
(
yobs|θ

)
p
(
θ ,ϕ|Hyp

)
dymiss.

A rearrangment of the preceding equation leads to:

The term in brackets is the expected fitness after averag-
ing over the conditional distribution of the missing data, 
given yobs , and θ , which we will denote as H

(
yobs,ϕ, θ

)
. 

Since p
(
θ ,ϕ|Hyp

)
= p

(
θ |Hyp

)
p(ϕ|θ) it follows that the 

posterior density under selection is:

The preceding equation indicates that, in general, the 
posterior density under selection differs from the poste-
rior density without selection. Correct Bayesian inference 
needs to take into account the selection process by for-
mulating a selection model (i.e., defining a fitness func-
tion), as well as prior knowledge of ϕ , deterministic or 
probabilistic. A selection model or H

(
yobs,ϕ, θ

)
 , must 

be specified, and a prior distribution of ϕ elicited or the 
value of this parameter specified ex ante.

A special case is when the fitness function does 
not involve missing data and parameters θ , so 
Pr

(
r|yobs, ymiss, θ ,ϕ

)
= Pr

(
r|yobs,ϕ

)
. Here, the integral 

in (18) produces:

since p
(
ymiss|yobs, θ

)
 integrates to 1. Then, Eq. (19) 

becomes:

(18)

ps
(
yobs, r, θ ,ϕ|Hyp

)

∝ p
(
yobs|θ

)
p
(
θ ,ϕ|Hyp

)
[∫

Pr
(
r|yobs, ymiss, θ ,ϕ

)
p
(
ymiss|yobs, θ

)
dymiss

]
.

(19)

ps
(
θ ,ϕ|yobs, r,Hyp

)
∝ p

(
yobs|θ

)
p
(
θ |Hyp

)
H
(
yobs,ϕ, θ

)
p(ϕ|θ)

∝ p
(
θ |yobs,Hyp

)
H
(
yobs,ϕ, θ

)
p(ϕ|θ).

(20)

H
(
yobs,ϕ, θ

)
=

∫
Pr

(
r|yobs,ϕ

)
p
(
ymiss|yobs, θ

)
dymiss

= Pr
(
r|yobs,ϕ

)
,

(21)
ps
(
θ ,ϕ|yobs, r,Hyp

)
∝ p

(
θ |yobs,Hyp

)
Pr

(
r|yobs,ϕ

)
p(ϕ|θ).
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Furthermore, if ϕ and θ are independent a priori 
p(ϕ|θ) = p(ϕ), then:

where

is the posterior density of fitness function parameter ϕ. 
Expression (22) implies that θ and ϕ are also independent 
a posteriori. Hence, ps

(
θ |yobs, r,Hyp

)
= p

(
θ |yobs,Hyp

)
 , 

so Bayesian inference about θ can be carried out as if 
selection had not taken place, irrespective of the pat-
tern of missingness created by selection on yobs . In other 
words: if the conditional probability of observing a phe-
notype (“fitness”) depends on observed data but not on 
missing data and on θ , and if parameters θ and ϕ are inde-
pendent a priori  (note that Im et al. [22] used the term 
“distinct” in their likelihood-based treatment), selec-
tion can be ignored. The two conditions, however, rep-
resent strong assumptions. Equation (19) indicates that 
even if θ and ϕ are assigned independent prior distribu-
tions, selection cannot be ignored in inference any time 
that the fitness function involves θ , i.e., if it has the form 
H
(
yobs,ϕ, θ

)
 as opposed to H

(
yobs,ϕ

)
.

In spite of the strong assumptions required, most 
animal breeding programs employ statistical methods 
that ignore selection coupled with data sets that do not 
reflect the entire history of the selection process. Clearly, 
there are enormous difficulties in representing the type 
of selection undergoing in populations of animals. Gen-
erations overlap, animals have unequal amounts of infor-
mation and of relatedness to other animals, and it is not 
always transparent why certain individuals are kept as 
parents even when recording is complete and meticu-
lous. A cautionary view may be that inference of breed-
ing values is always distorted (often loosely referred to as 
“bias”) to some extent due to various factors that cannot 
be accounted for statistically. Viewing estimates as being 
free from selection bias is perhaps naïve.

Selection and partially observed data
Consider (19) placing focus on the fitness func-
tion H

(
yobs,ϕ, θ

)
 defined in (20). The distribution 

[ymiss|yobs, θ ] follows from the statistical model assumed. 
For example, if the joint distribution of ymiss and yobs , 
given θ , is normal, the conditional distribution is normal 

(22)

ps
(
θ ,ϕ|yobs, r,Hyp

)
∝ p

(
θ |yobs,Hyp

)
Pr

(
r|yobs,ϕ

)
p(ϕ)

∝ p
(
θ |yobs,Hyp

)
p
(
ϕ|yobs, r

)
,

(23)p
(
ϕ|yobs, r

)
=

Pr
(
r|yobs,ϕ

)
p(ϕ)∫

Pr
(
r|yobs,ϕ

)
p(ϕ)dϕ

as well, with mean vector and covariance matrix readily 
derived from theory. Next, one would need to assume a 
selection model representing the distribution of the miss-
ing data pattern (r). Four examples are presented below 
to illustrate concepts, motivated by those described in 
[22] and adapted to a Bayesian perspective.

Example 1: selection based on records not available 
for analysis
Country B buys frozen semen of m out of n bulls (m < n) 
in country A. The m bulls chosen exceed a minimum 
threshold of “performance” t based on information pro-
vided by country A. Country B develops a breeding 
program using such m bulls and collects records. Only 
records from country B are available for analysis. The 
performances in the two countries are regarded as dis-
tinct traits [34], a concept that has been employed in 
global dairy cattle breeding.

Assuming conditional (given θ ) independence between 
records, the data generating model for the m records 
observed in country B is:

where yiB is the performance of bull i ( i = 1, 2, . . . ,m ). 
Following [22], the conditional probability of selec-
tion involves two binary indicator variables, riA and riB, 
where the values 0 and 1 mean “missing” and “observed”, 
respectively. For i = 1, 2, . . . , n, where n (number of bulls 
in country A),

The value riA = 0 for all i means that all records from 
the exporting country (A) are not available (“missing”); 
riB = 1 means that records on bull i are observed in coun-
try B only if selection threshold t is exceeded by such bull 
in country A.

The density of all data (observed and missing) and of r , 
is:

(24)p
(
yobs|θ

)
=

m∏

i=1

p
(
yiB|θ

)
,

(25)

Pr
(
riA = 0|yobs, ymiss

)
= 1 and Pr (riB

= 1|yobs, ymiss

)

= 1
(t,∞)

(
yiA

)
.

(26)

p
(
yobs, ymiss, r|θ

)
=

m∏

i=1

p
(
yiA, yiB|θ

)
1(t,∞)

(
yiA

)

n∏

i=m+1

p
(
yiA, yiB|θ

)
1(−∞,t)

(
yiA

)
.
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Missing data includes all n records from country A, and 
the n−m records that would have been observed in 
country B but were not because the corresponding bulls 
did not perform over threshold t in A. Integrating Eq. 
(26) with respect to the missing data yields:

Using observed data does not make use of the informa-
tion on the selection process provided by the two terms 
between brackets.

Here, ϕ = t (known) is the only parameter that gov-
erns the missing data process. The posterior density after 
accounting for selection is:

where H
(
yobs, t, θ

)
 is the term in brackets.

This simple selection scheme produces an analyti-
cally intractable problem. In the absence of selection, 
let performances in countries A and B have the bivariate 

distribution:

(27)

p
(
yobs, r|θ

)

=

{
m∏

i=1

∫
p
(
yiA, yiB|θ

)
1(t,∞)

(
yiA

)
dyiA

}{
n∏

i=m+1

∫∫
p
(
yiA, yiB|θ

)
1(−∞,t)

(
yiA

)
dyiAdyiB

}

=

m∏

i=1

p
(
yiB|θ

)
[

m∏

i=1

Pr
(
yiA > t|yiB, θ

) n∏

i=m+1

Pr
(
yiA < t|θ

)
]
.

(28)

p
(
θ |yobs, r,Hyp

)

∝

m∏

i=1

p
(
yiB|θ

)
p
(
θ |Hyp

)
[

m∏

i=1

Pr
(
yiA > t|yiB, θ

) n∏

i=m+1

Pr
(
yiA < t|θ

)
]

∝ p
(
θ |yobs,Hyp

)
H
(
yobs, t, θ

)
,

(29)

[
yiA
yiB

]
|µA,µB,�∼N

([
µA

µB

]
,

[
σ 2
A ρσAσB

ρσAσB σ 2
B

])
; i = 1, 2, . . . n.

Assume such vectors are mutually independent, with µA 
and µB being country means, ρ the correlation coeffi-
cient between performances, and σ 2

A and σ 2
B the variances 

in countries A and B, respectively. Suppose all param-
eters are known, save for µB , the mean performance in 

the importing country. The conditional distribution 
[yiA|yiB, θ ] is:

(30)
yiA|yiB, θ∼N

(
µA.B = µA + b

(
yiB − µB

)
, vA.B = σ 2

A

(
1− ρ2

))
;

above, b=
ρσAσB

σ 2
B

 is the regression of performance in A on 

that in B. Using (28) and assigning a flat prior to µB , the 
posterior density is:

where �i,A.B is the distribution function of Eq. (30), which 
depends on µB. The expression involving �i,A , the distri-
bution function of performance in country A, is absorbed 
by the integration constant. If selection is ignored, the 
posterior distribution would be proportional to the 

(31)

p
�
µB|yobs, r,Hyp

�
∝ exp


−

m�
i=1

�
yiB − µB

�2

2σ 2
B




m�

i=1

[1−�i,A.B(t)]

n�

i=m+1

�i,A(t)

∝ exp


−

m�
i=1

�
yiB − µB

�2

2σ 2
B




m�

i=1

[1−�i,A.B(t)],
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Gaussian kernel above with mean (mode) µ̂B =

m∑
i=1

yiB

m
. 

Under selection, however, the posterior mean cannot be 
written in closed form and locating the mode requires an 
iterative procedure. If σ 2

A = σ 2
B = 1 and µA = 0, for 

instance, the posterior density takes the form:

where
(32)

p
(
µB|yobs, r,Hyp

)
=

exp
{
− 1

2

[
m
(
µB − µ̂B

)2
− 2f (µB)

]}

∫
exp

{
− 1

2

[
m
(
µB − µ̂B

)2
− 2f (µB)

]}
dµB

(33)

f (µB) =

m∑

i=1

log

[
1−�i

(
t − ρ

(
yiB − µB

)
√
1− ρ2

)]
.
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Fig. 1 Posterior distribution: selection for correlated traits at various intensities
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To illustrate how accounting for selection may lead 
to correct Bayesian inference, we simulated n = 1000 
pairs from a bivariate standard normal distribution with 
ρ = 0.8 . Selection operated on trait A by picking indi-
viduals with phenotypes that were above the mean or 1, 
1.5 and 2 standard deviations over the mean. Such selec-
tion produced samples of sizes m = 494, 155, 53 and 18 
on which performance for trait B was available. The only 
parameter treated as unknown was µB with a flat prior 
attached to it. If selection were ignored, the posterior dis-
tribution would be µB|yB ∼ N

(
µ̂B,m

−1
)
; if selection is 

accounted for, the posterior density is as in (32). On the 
one hand, Fig.  1 shows that ignoring selection grossly 
overstated the true value of the parameter: 0. On the 
other hand, the true value was assigned appreciable den-
sity in the “correct” posterior distributions, irrespective 
of the selection intensity applied. Note that the fitness 
function (missing data process) employed corresponds 
exactly to how selection was simulated. An incorrect for-
mulation of the selection process would have probably 
produced distorted inferences. The example illustrates 
that a proper Bayesian analysis may capture true param-
eter values in situations of non-ignorable selection when 
the latter is modeled properly.

Example 2: pre‑selected samples
The example is motivated by a situation in animal and 
plant breeding that has taken place during the genomic 
era and that it produces what is called “pre-selection 
bias”. It was studied by Patry and Ducrocq [35] in a dairy 
cattle setting but from a different perspective to the 
one employed in our paper. In New Zealand dairy cat-
tle, Winkelman et al. [36] proposed a method of genetic 
evaluation that combined a Gaussian kernel that is con-
structed using genomic information with features of 
single-step BLUP methodology. The procedure did not 
use the notions of missing data or of fitness functions. 
With real records, they found that the proposed meth-
odology delivered a smaller predictive bias and a higher 
predictive correlation than a previously used procedure 
that “blended” pedigree and genomic information. The 
correlation improved 1–2% for production  traits, but 
negligibly for traits such as fertility or longevity. In a 
simulation study [37], produced 15 generations of selec-
tion. At that point, parents were preselected with vari-
ous degrees of intensity using either parental averages, a 
genome-based choice, or at random. Subsequently, they 
estimated genomic breeding values of preselected ani-
mals with a single-step BLUP procedure that excluded all 
the information from pre-culled individuals. They were 
not able to detect bias in the evaluations of such ani-
mals. Wang et al. [38] considered the impact of genomic 
selection on estimates of variance components obtained 

from using different similarity kernels, and used simula-
tion and real data from broilers. When genotyping was 
at random, estimates obtained with a single-step model 
did not exhibit bias in the simulated data sets; otherwise, 
estimates had a marked bias. The impact of such bias on 
estimated breeding values was noticeable. It is unclear to 
what extent the results from these three studies general-
ize to more general forms of selection, as consideration 
of a general prescription was not addressed. Simulations 
provide “local” guidance only: results may change dras-
tically if the assumptions adopted or the structure of 
the data are varied. These researchers, however, seemed 
aligned with the view that accounting for the history of 
the selection process as completely as possible can atten-
uate the impact of selection on inference and prediction, 
rendering selection quasi-ignorable.

When genomic selection began to be applied [10], deci-
sions had to be made on individuals (e.g., bulls) to be gen-
otyped for single nucleotide polymorphisms (SNPs). Due 
to the high cost of SNP chips, not all candidates for selec-
tion could be genotyped; a similar situation occurs now 
with next-generation DNA sequences or with expensive 
epigenomic or metabolomic measurements. Suppose 
that m out of n ( m < n ) dairy bulls that possess pedi-
gree-based estimates of breeding value are chosen for 
genotyping, with “genomic breeding values” estimated as 
if the m bulls were randomly sampled. A “pre-selection 
bias” is expected to accrue since the m bulls chosen may 
not be representative of the current population. Can the 
distortion in inference be tempered analytically?

For illustration, a wheat yield data set examined in sev-
eral studies and available in the BGLR package was used 
[39–41]. The dataset spans n = 599 inbred lines of wheat, 
each genotyped for p = 1279 binary markers that denote 
presence or absence of an allele at a locus. The target 
phenotype was wheat grain yield in each line planted in 
“environment 1”. The dataset also includes a pedigree-
based additive relationship matrix, A, of size 599 × 599 
and several of the lines are completely inbred. A genomic 
relationship matrix [17] among lines was built as 
G = XX′/p where X was the 599× 1279 matrix of marker 
codes (0,1) with each column centered and standardized. 
Using the entire dataset, i.e., without any selection prac-
ticed, genetic (pedigree or genome based) and residual 
variance components were estimated via maximum like-
lihood. The random effects models used were y = a + e 
and y = g + e∗ in pedigree-based and genome-enabled 
analyses, respectively, where a and g are pedigree and 
genomic breeding values to be learned, with e and e∗ 
being model residuals. We posed a|σ 2

a ∼ N
(
0,Aσ 2

a

)
, 

e|σ 2
e ∼ N

(
0, Iσ 2

e

)
 as mutually independent, and likewise 

for g|σ 2
g ∼ N

(
0,Gσ 2

g

)
, e∗|σ 2

e∗ ∼ N
(
0, Iσ 2

e∗
)
; the σ 2′s are 
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variance components. Using the maximum likelihood 
estimates of variances as true values, best linear unbiased 
predictions of a and g were calculated, â and ĝ, respec-
tively. Under a Bayesian framework the posterior distri-
butions of the pedigree and genomic breeding values are 
a|y, σ 2

a , σ
2
e ∼N

(
â,Ca

)
 and g|y, σ 2

g , σ
2
e∗∼N

(
ĝ,Cg

)
 , with 

variance components treated as known hyper-parame-
ters. Here,

give the posterior expectations and

are the posterior covariance matrices. In a frequentist 
setting, the posterior means correspond to BLUP

(
g
)
 and 

BLUP(a), whereas Ca and Cg are interpreted as predic-
tion error covariance matrices.

Using the 599 values in â, we selected lines with pedi-
gree breeding value estimates larger than the threshold 
t = 0.20, 0.40 or 0.60, resulting in 231, 122 and 60 “top” 

(34)

â =

(
I+

σ 2
e

σ 2
a

A−1

)−1

y and ĝ =

(
I+

σ 2
e∗

σ 2
g

G−1

)−1

y,

(35)

Ca =

(
I+

σ 2
e

σ 2
a

A−1

)−1

σ 2
e and Cg =

(
I+

σ 2
e∗

σ 2
g

G−1

)−1

σ 2
e∗ ,

lines, respectively. The posterior distributions of g were 
calculated before and after selection (ignoring the miss-
ing data process but using the same variance compo-
nents) and compared. As depicted in Fig. 2, the analysis 
based on selected lines tended to overstate estimates of 
genomic breeding values relative to those obtained with-
out selection. Ignoring selection introduces a selection 
“bias” that is impossible to evaluate because the true 
breeding values are unknown, except when data are sim-
ulated. Letting Ma and Mg denote pedigree and genome-
based models, respectively, note that

Hence, both â and ĝ have an “epistemic” bias [24]. Such 
bias differs from the notion used by Henderson [42, 43], 
who defined “prediction unbiasedness” as E

(
â
)
= E(a) 

under Ma or E
(
ĝ
)
= E

(
g
)
 under Mg , i.e., posterior means 

(BLUP) are unbiased for the mean of the prior distribu-
tions, but not for the estimands a and g . Selection intro-
duces an additional distortion relative to “true” breeding 
values, pedigree or genome-defined.

(36)

E
(
â|a,Ma

)
=

(
I+

σ 2
e

σ 2
a

A−1

)−1

E
(
y|a

)
=

(
I+

σ 2
e

σ 2
a

A−1

)−1

a,

(37)

E
(
ĝ|g,Mg

)
=

(
I+

σ 2
e∗

σ 2
g

G−1

)−1

E
(
y|g

)
=

(
I+

σ 2
e∗

σ 2
g

G−1

)−1

g.
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How does one account for the distortion in inference? 
Our representation of selection will follow the protocol 
employed in the example. Threshold t is the only param-
eter governing selection here. Let “sel” and “nsel” denote 
selected and unselected individuals, respectively. Follow-
ing (28), the posterior density of the genomic breeding 
values after accounting for selection and assuming that [
â|y, g

]
=

[
â|g

]
 (i.e., given g, â is  independent of y ), one 

has:

The first term in brackets is the posterior density of the 
genomic breeding values calculated from selected data 
only but ignoring selection. The joint fitness function 
[second term in brackets in (38)] assumes that the choice 
of an individual for genotyping is based only on whether 
or not t is exceeded, independently of what happens with 
other individuals, but conditionally on the unknown 
genomic breeding value of the individual in question. 
Integrating (38) with respect to gnsel produces

Since unselected individuals are not genotyped, there is 
no information available for writing p

(
gnsel |gsel ,Hyp

)
, 

which is Gaussian with mean Gnsel,selG
−1
sel,selgsel and 

covariance matrix Gnsel,nsel −Gnsel,selG
−1
sel,selGsel,nsel . 

Hence the integral in (39) does not convey information 
on gsel and is treated as a constant. The preceding is an 
important matter and may adversely affect the ability of 
accounting for selection. Finally,

where,

(38)

p
(
g|yobs, r,Hyp

)

∝

m∏

i=1

p
(
yi|gsel,i

)
p
(
g|Hyp

)
[

m∏

i=1

Pr
(
âsel,i > t|gsel

) n∏

i=m+1

Pr
(
ânsel,i < t|gnsel

)
]

∝

[
m∏

i=1

p
(
yi|gsel,i

)
p
(
gsel |Hyp

)
]
×

[
m∏

i=1

Pr
(
âsel,i > t|gsel,i

) n∏

i=m+1

Pr
(
ânsel,i < t|gnsel,i

)
]
p
(
gnsel |gsel ,Hyp

)
.

(39)

p
(
gsel |yobs, r,Hyp

)

∝ p
(
gsel |yobs,Hyp

) m∏

i=1

Pr
(
âsel,i > t|gsel,i

)

×

∫ n∏

i=m+1

Pr
(
ânsel,i < t|gnsel,i

)
p
(
gnsel |gsel ,Hyp

)
dgnsel .

(40)p
(
gsel |yobs, r,Hyp

)
∝ exp

[
−

1

2σ 2
e∗

(
gsel − g̃sel

)′
C̃−1
g ,sel

(
gsel − g̃sel

)
+ fsel

(
gsel

)]
,

(41)g̃sel = C̃g ,selysel ,

and

(42)C̃g ,sel =

[
Isel,sel +

σ 2
e∗

σ 2
g

G−1
sel,sel

]−1

,

(43)fsel
(
gsel

)
=

m∑

i=1

log
[
Pr

(
âsel,i > t|gsel,i

)]
.

We note that it might be possible to approximate the dis-
tribution 

[
gnsel |gsel ,Hyp

]
 by making an imputation from 

pedigree information, as in single-step methods [44]; 
however, this is a technical matter beyond the scope of 
our paper.

Simplifying assumptions are required in order to pro-
ceed. A canonical case is one where individuals are inde-
pendently and identically distributed. Without selection, 
let

where ρgâ is the expected correlation between unknown 
genomic breeding value and pedigree-based posterior 
mean (BLUP here) and the σ 2 are variance parameters. In 
real applications ρgâ actually varies over candidates due 
to unequal amounts of information. In the simplest case, 
σâ =

√
Var

(
h2ayi

)
= h2a

√
σ 2
a + σ 2

e  , where σ 2
a  and σ 2

e   
pertain to the pedigree-based model and  

h
2
a =

σ 2
a

σ 2
a + σ 2

e

 is heritability. Then, E
(
âi|gi

)
= ρgâ

σâ

σg
gi, and 

Var
(
âi|gi

)
= h4a

(
σ 2
a + σ 2

e

)(
1− ρ2

gâ

)
 for all i. Dispersion 

parameter estimates were 
σ 2
a = 0.2859, σ 2

e = 0.5761, h2a = 0.3316 and σ 2
g = 0.5315 . 

Since there is no information on ρgâ , using the unselected 
data we crudely estimated ρĝ â at 0.82 and took ρgâ = 0.75 
for the example. In order to account somehow for the fact 
that individuals were not identically distributed, the 

(44)

[
gi
âi

]
∼ N

([
0
0

]
,

[
σ 2
g ρgâσgσâ

ρgâσgσâ σ 2
â

])
; i = 1, 2, . . . , n,
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following modifications of the previous formulae were 
made using BLUP theory: σâ →

√
σ 2
âi

 ; σg →
√
σ 2
gi

 and 

Var
(
âi|gi

)
= σ 2

âi

(
1−

σ 2
âi

σ 2
gi

)
 for i = 1, 2, . . . , n . Here, for 

example, ρgiâi is the correlation value specific to individ-
ual i and σgi is the square root of the appropriate diagonal 
element of Gσ 2

g  . The posterior density of genomic breed-
ing values after selection was therefore:

where

(45)
p
(
gsel |yobs, r,Hyp

)

∝ exp

{
−

1

2σ 2
e∗

(
gsel − g̃sel

)′
C̃−1
g ,sel

(
gsel − g̃sel

)
+

m∑

i=1

log[1−�(zi)]

}
,

(46)
zi =

t − ρgiâi
σâi

σgi
gi

√√√√σ 2
âi

(
1−

σ 2
âi

σ 2
gi

) .

(47)fsel
(
gsel

)
=

m∑

i=1

log [1−�(zi)].

The posterior distribution cannot be recognized and 
Markov chain Monte Carlo sampling may be considered 
for inference of gsel . A candidate-generating distribution 
in a Metropolis scheme [25, 45] could be

where ãsel =
(
Isel +

σ 2
e

σ 2
a
A−1
sel,sel

)−1

ysel . If g∗prop is a draw 
from the proposal distribution, the probability of moving 
from state gnow to g∗prop is α = min

[
R
(
gnow , g∗prop

)
, 1
]
 , 

where

and

(48)

g∗sel |y, σ
2
a , σ

2
e∗∼N

(
ãsel ,

(
Isel +

σ 2
e

σ 2
a

A−1
sel,sel

)−1

σ 2
e

)
,

(49)

R
(
gnow , g∗prop

)
= exp

[
−

1

2σ 2
e∗
Q
(
gnow , g∗prop

)
+�sel

(
gnow , g∗prop

)]
,

Fig. 3 Posterior means without, ignoring or accounting for selection
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The next state in the chain is given by the rule (U is an 
uniform random deviate):

A Metropolis sampler with Eq. (48) as a proposal-
generating process was used to estimate the posterior 
distribution having a density as given in Eq. (45) in sce-
narios where genotypes were available only for individu-
als whose â values exceeded 0.2,0.4 and 0.6, producing 
231, 122 and 60 selected lines, respectively. The posterior 
distribution of genomic breeding values of the 599 lines 
prior to selection was g|y, σ 2

g , σ
2
e∗∼N

(
ĝ,Cg

)
, as presented 

earlier. We also computed posterior distributions of the 
genomic breeding values ignoring the selection process 
from the data in selected lines. Metropolis sampling 
was done by running three chains (one per selection 
intensity) of length 100,000 each. After diagnostic tests 
[45, 46], a conservative burn-in period of 20,000 sam-
ples was adopted. Subsequently, a single long-chain of 
480,000 iterations was run, with 380,000 samples used for 

(50)
Q
(
gnow , g∗prop

)

=

(
g∗prop − g̃sel

)′
C̃−1
g ,sel

(
g∗prop − g̃sel

)
−

(
gnow − g̃sel

)′
C̃−1
g ,sel

(
gnow − g̃sel

)
,

(51)�sel

(
gnow , g∗prop

)
=

m∑

i=1

log
1−�(znowi )

1−�
(
z
prop
i

) .

(52)gnew =

{
g∗prop if U ≤ R

(
gnow , g∗prop

)

gnow otherwise
.

inference, per setting. Figure 3 (left panels) depicts scat-
ter plots of posterior means of genomic breeding values 
in the absence of selection (GBLUP without selection, 
y-axis) versus either GBLUP ignoring selection or pos-
terior means accounting for selection (x-axis). Ignoring 
selection tended to overstate the estimates of genomic 
breeding values calculated without selection and from 
a larger sample ( n = 599 versus n = 231, 122, 60 in the 
selection schemes). Accounting for selection produced 
estimated genomic breeding values (posterior means 
denoted as PM in the plots) that were even further away 
from those calculated without selection. The three pan-
els at the right of Fig. 3 show larger differences between 
posterior means without selection (GBLUPunsel) and 
with selection accounted for (PM in the y-axis) than 
between GBLUPunsel and GBLUPsel, i.e., with the selec-
tion process ignored. Our way of accounting for selection 
produced larger absolute errors (taking GBLUPunsel as 
reference) than when selection was ignored, i.e., GBLUP-
sel. Posterior densities of the genomic breeding values of 
lines 5, 81, 206, 309, 343 and 499 are presented in Fig. 4; 
the data with selection pertain to the setting were 60 
lines had been selected out of the 599 candidates. Den-
sities ignoring selection (in red) tended to match better 
those obtained without selection (in blue) than the den-
sities obtained with a selection model incorporated into 
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Fig. 4 Posterior densities of six lines without, ignoring or accounting for selection
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inference (green). However, there was much uncertainty 
within each of the settings, leading to overlap, although 
the “green” density function was centered further right 
along the x-axis than the “blue” or “red” densities.

The following messages can be extracted from the 
example. First, paradoxically, our attempt at accounting 
for selection seemed to distort inference on the selected 
lines beyond what was obtained by ignoring selection: 
there was a noticeable overstatement of estimated breed-
ing values. Second, it was not easy to account for selec-
tion even when the process leading to missing data was 
known. For instance, part of the information on selec-
tion had to be ignored because of the inability of writing 
the conditional distribution of genomic breeding values 
of unselected individuals, given those of the selected 
ones. That may be what “single-step” methods (e.g., [44]) 
implicitly do by including ungenotyped (but pedigreed) 
individuals in the analysis. Third, we employed variance 
parameters estimated prior to selection. This action was 
chosen because of the impossibility of obtaining suf-
ficiently precise estimates given the small sizes of the 
selected samples of lines. Finally, at least in small samples 
it is always difficult to disentangle the impact of non-

randomness from that of noise, in view of the uncertainty 
remaining after analysis, irrespective of whether selec-
tion is ignored or modelled explicitly.

Example 3: multiple‑trait sequential selection
A multiple-trait sequential selection scenario is 
described using two traits as an illustration, for simplic-
ity. There is a set of S candidates (e.g., lines) with phe-
notypes y11, y12, . . . , y1S available for trait 1, where the 
first subscript denotes the trait. A subset S+ of the can-
didates is chosen to be measured for a second trait; the 
complementary subset S− contains candidates that have 
phenotypes for trait 1 but not for trait 2. The dataset pre-
sented for analysis contains only the pairs 

{
y1i, y2i

}
 in S+ ; 

pairs in S− are missing. Here, yobs =
(
y′1S+ , y

′
2S+

)′ and 
ymiss =

(
y′1S− , y

′
2S−

)′.
To define the distribution of the vector r describing the 

missing data pattern, an assumption about the selection 

process must be made. It will be assumed that a candi-
date is measured for trait 2 if its phenotype for trait 1 is 
larger than some ϕ = y1,min , a “minimum threshold of 
performance” for trait 1. Following [22], the conditional 
probability of selection (“fitness”) for candidate i is:

where θ are the unknown model parameters; 
I(y1,min,∞)

(
y1i

)
= 1 if y1i > y1,min and 0 if y1i ≤ y1,min . If, 

given θ , pairs 
{
y1i, y2i

}
 are mutually independent over 

individuals, the complete dataset and r have the joint 
density:

Integrating out the missing data, i.e., 
{
y1i, y2i

}
 in S− , 

yields:

The posterior density is therefore:

The wheat dataset was employed again to give a numeri-
cal illustration. The 599 lines have records in each of four 
distinct environments. To represent a scenario where 
selection does not occur, we fitted a four-variate linear 
model with the performances of the lines in different 
environments treated as distinct traits [34]. The model 
was:

(53)
Pr

(
ri = 1|yobs, ymiss, θ ,ϕ

)
= I(ϕ=y1,min,∞)

(
y1i

)
; i = 1, 2, . . . , S,

(54)

p
(
yobs, ymiss, r|ϕ, θ

)

=
∏

iǫS+

p
(
y1i, y2i|θ

)∏

iǫS−

p
(
y1i, y2i|θ

)
I(−∞,ϕ)

(
y1i

)

=
∏

iǫS+

p
(
y1i, y2i|θ

)∏

iǫS−

p
(
y2i|y1i, θ

)
p
(
y1i|θ

)
I(−∞,ϕ)

(
y1i

)
.

(55)

p
(
yobs, r|ϕ, θ

)

=
∏

iǫS+

p
(
y1i, y2i|θ

)∏

iǫS−

∫ [∫
p
(
y2i|y1i, θ

)
dy2i

]
I(−∞,ϕ)

(
y1i

)
p
(
y1i|θ

)
dy1i

=
∏

iǫS+

p
(
y1i, y2i|θ

)∏

iǫS−

Pr
(
y1i < ϕ|θ

)
.

(56)

p
(
θ |yobs, r,Hyp

)

∝
∏

iǫS+

p
(
y1i, y2i|θ

)
p
(
θ |Hyp

)∏

iǫS−

Pr
(
y1i < ϕ|θ

)

=

p
(
θ |yobs,Hyp

)
exp

{
∑
iǫS−

log
[
Pr

(
y1i < ϕ|θ

)]
}

∫
p
(
θ |yobs,Hyp

)
exp

{
∑
iǫS−

log
[
Pr

(
y1i < ϕ|θ

)]
}
dθ

.
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where yi (i = 1, 2, 3, 4) is a 599× 1 vector of phenotypes 
for trait i,   the g′is are genomic breeding values for the 
trait (marked with the 1279 markers) and δi is a model 
trait-specific residual vector. Prior assumptions were:

where G is the genomic relationship matrix among the 
599 lines; G0 is a 4 × 4 between-trait genomic covari-
ance matrix and R0 is a 4 × 4 residual covariance matrix; 
residuals were independent between individuals, but a 
full covariance structure within individuals was posed. 
The four traits correspond to different locations so envi-
ronmental correlations are expected to be null. However, 
we specified an unstructured R0 to account for correla-
tions that are potentially created by non-additive genetic 
effects not accounted for in our additive genetic model, 
but known to exist for wheat yield. The two covariance 
matrices were estimated using a crude maximum like-
lihood procedure with ad-hoc adjustments to ensure 
positive-definiteness (a less crude but more involved 
algorithm would have given estimates that would not 
require any such adjustment). The estimates were subse-
quently taken as known and treated as hyper-parameters. 
The matrices (rounded values) were:

(57)




y1
y2
y3
y4


 =




g1
g2
g3
g4


+




δ1
δ2
δ3
δ4


,

(58)




g1
g2
g3
g4


|G0 ∼ N







0
0
0
0


,G0 ⊗G


,

(59)




r1
r2
r3
r4


|R0 ∼ N







0
0
0
0


,R0 ⊗ I599


,

and

The matrix of phenotypic correlations between traits (�) , 
V0 = G0 + R0, was:

The adjustment for positive-definiteness produced esti-
mates of phenotypic correlations (negative and similar 
between pairs of traits). Traits turned out to be negatively 
correlated at genetic, residual and phenotypic levels. The 
correlation values should not be interpreted inferentially 
as the adjustment was done solely to facilitate calculation 
and for illustrative purposes.

Prior to selection, each line had a grain yield in each 
environment. The data available for analysis post-selec-
tion (phenotypes centered and standardized) included 
the lines exceeding the performance thresholds t1 = 0 , 
t2 = 0.6 and t3 = 1.3 units above the mean in environ-
ments 1, 2 and 3, respectively, so only lines with perfor-
mance above the minimum values for the three traits had 
records in environment 4. Only 10 such lines met the 
“culling levels”, so phenotypes presented to the hypotheti-
cal analyst consisted of a 10× 4 matrix, lines in rows and 
traits in columns. Ignoring selection, the posterior distri-
bution (given G0 and R0 ) of the genomic breeding values 
using the selected dataset is multivariate normal, with 
the mean vector:

(60)G0 =




0.831 −0.319 −0.247 −0.350
−0.319 0.750 −0.195 −0.213
−0.247 −0.195 0.757 −0.176
−0.350 −0.213 −0.176 0.752


,

(61)R0 =




0.830 −0.225 −0.289 −0.202
−0.225 0.872 −0.330 −0.317
−0.289 −0.3330 0.918 −0.352
−0.202 −0.317 −0.352 0.895


.

� =




1 −0.329 −0.321 −0.334
−0.329 1 −0.3162 −0.322
−0.321 −0.3162 1 −0.318
−0.334 −0.322 −0.318 1


.

(62)�gsel =




�g1,sel
�g2,sel
�g3,sel
�g4,sel


 =

�
G0 ⊗Gsel,sel

��
G0 ⊗Gsel,sel + R0 ⊗ I10

�−1




y1,sel
y2,sel
y3,sel
y4,sel


,
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and covariance matrix

(63)

Cg ,sel =
(
G0 ⊗Gsel,sel

)
[
I−

(
G0 ⊗Gsel,sel + R0 ⊗ I10

)−1

(
G0 ⊗Gsel,sel

)]
.

Above, g̃i,sel is a 10× 1 vector of posterior means of 
genomic breeding values in the ten selected lines for 
trait i;   Gsel,sel is the 10× 10 genomic relationship 
matrix between selected lines, and yi,sel is their vector of 
phenotypes.

Under the multivariate selection scheme adopted, Eq. 
(56) is expressible as:
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Fig. 5 Posterior densities of six lines without, ignoring or accounting for selection: tetra-variate analysis
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Above,

where φ(.) is the density of a trivariate normal distribution 
with the mean vector gi,nsel =

(
g1i,nsel , g2i,nsel , g2i,nsel

)′ , Rij 
is an appropriate element of R0, and �(.) is a trivariate 
normal distribution function. Further, p

(
θnsel |θsel ,Hyp

)
 

is the density of a multivariate normal distribution with 
mean vector

and covariance matrix

Collecting terms,

where

(64)

p
(
θ |yobs, r,Hyp

)

∝
∏

iǫS+

p
(
y1i, y2i, y3i, y4i|θ

)
p
(
θ |Hyp

)∏

iǫS−

Pr
(
y1i < t1, y2i < t2, y3i < t3|θ

)

∝
∏

iǫS+

p
(
y1i, y2i, y3i, y4i|θsel

)
p
(
θsel |Hyp

)

×
∏

iǫS−

Pr
(
y1i < t1, y2i < t2, y3i < t3|θnsel

)
p
(
θnsel |θsel ,Hyp

)

∝ p
(
θsel |yobs,Hyp

)∏

iǫS−

Pr
(
y1i < t1, y2i < t2, y3i < t3|θnsel

)
p
(
θnsel |θsel ,Hyp

)
.

(65)

p
(
θsel |yobs,Hyp

)
∝ exp

[
−
1

2

(
gsel − g̃sel

)′
C−1
g ,sel

(
gsel − g̃sel

)]
,

(66)

Pr
�
y1i < t1, y2i < t2, y3i < t3|θnsel

�

=

t1�

−∞

t2�

−∞

t3�

−∞

φ


yi,nsel |gi,nsel ,



R11 R12 R13

R21 R22 R23

R31 R32 R33


, t1, t2, t3


dyi,nsel

= �
�
yi,nsel |gi,nsel ,R0, t1, t2, t3

�
; iǫS−,

(67)mn|s =
(
G0 ⊗Gnsel,sel

)(
G−1
0 ⊗G−1

sel,sel

)
gsel =

(
I4 ⊗Gnsel,selG

−1
sel,sel

)
gsel ,

(68)
Vn|s = G0 ⊗Gnsel,nsel −G0 ⊗Gnsel,selG

−1
sel,selGsel,nsel

(69)

p
(
θ |yobs, r,Hyp

)
∝ exp

[
−
1

2
(Qsel + Qnsel)+�

(
ynsel , gnsel

)]

(70)Qsel =
(
gsel − g̃sel

)′
C−1
g ,sel

(
gsel − g̃sel

)
,

(71)Qnsel =
(
gnsel −mn|s

)′
V−1
n|s

(
gnsel −mn|s

)
,

To estimate the posterior distribution, a Metropolis algo-
rithm was tailored as in Example 2. Here, the proposal 
distribution (with dimension 599) was a multivariate nor-
mal distribution with mean vector equal to:

and block-diagonal covariance matrix

The proposal distribution used an overdispersed covari-
ance matrix. We ran four separate chains: two had 2500 

iterations each, and the third and fourth ones had 5000 
and 40,000 iterations, respectively. The R metric [46] indi-
cated that convergence had been attained at about itera-
tion 1500. Conservatively, the last 500 iterations of chains 
1 and 2 were saved for inference; likewise, 3000 and 
38,000 iterations were saved from chains 3 and 4, respec-
tively. Posterior distributions of the genomic breeding 
values of the 10 selected lines were estimated from the 
42,000 samples available for inference. Figure  5 displays 
posterior densities of 6 out of the 10 selected lines. Ide-
ally, we would expect the blue and green curves to sep-
arate from the red curve (ignoring selection). Because 
selection was so severe (10 out of an initial 599), the three 
Bayesian analyses displayed great uncertainty, especially 
the one where the selection process was accounted for. 

(72)�
(
ynsel , gnsel

)
=
∑

iǫS−

log
[
�
(
yi,nsel |gi,nsel ,R0, t1, t2, t3

)]
.

(73)



µ1

µ2

µ3

µ4


 =




G11A(G11A+2R11I599)
−1y1

G22A(G22A+2R22I599)
−1y2

G33A(G33A+2R33I599)
−1y3

G44A(G44A+2R44I599)
−1y4


,

(74)
D = ⊕4

i=1GiiA
[
I599 − (GiiA+2RiiI599)

−1GiiA
]
.
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This example suggests that, even when the selection or 
dropout process is known, accounting for it may not be a 
fruitful process.

Example 4: nor‑optimal selection is not ignorable
Often, selection is of a stabilizing form and aimed at 

moving the population towards some optimum value. A 
model for such selection was introduced by [26] and used 
later by [29, 47]. Let y =

[
y′1, y

′
2

]′ be a vector of random 
variables; some of its components may be unobservable. 
Without selection, assume:

where the m′ s are mean vectors and the V′ s are covari-
ance matrices. Selection operates on y1 through the 
Gaussian fitness function

where � is a vector-valued “optimum” and the positive-
definite matrix Ŵ describes the sharpness of multivariate 
selection. The fitness function is symmetric about � and 
has a maximum value of 1 when y1 = � ; values of y1 “far 
away” from � confer lower fitness. In a single-variable sit-

uation, fitness takes the form H
(
y
)
= exp[−

(
y− �

)2

2γ
] . A 

smaller γ implies a sharper decay in fitness when y devi-
ates from � ; larger values denote a more gentle selection, 
with no selection at all if γ = ∞ . Write

where �′0 =
[
�
′ 0

]
 ; 0 is a null vector with order equal to 

that of y2 and Ŵ−
0
=

[
Ŵ
−1 0
0 0

]
 . The density of y after 

selection acting on y1 (ignoring dependence on parame-
ters in the notation) is:

(75)
[
y1
y2

]
∼ N

(
m =

[
m1

m2

]
,V =

[
V11 V12

V21 V22

])
,

(76)H(y1) = exp

[
−
1

2
(y1 − �)′Ŵ−1(y1 − �)

]
,

(77)H(y1) = exp

[
−
1

2
(y − �0)

′
Ŵ
−
0
(y − �0)

]
,

(78)

ps(y1, y2) =
H(y1)p(y1, y2)∫∫

H(y1)p(y1, y2)dy1dy2
=

H(y1)

H
p(y1, y2);

equivalently, the density in “survivors” is:

Using Eq. (77), the post-selection density becomes:

Combining the two quadratic forms on y in Eq. (80) 
yields

Above,

Since the second component of Eq. (81) does not involve 
y , (80) can be written as:

Hence, the joint distribution of y remains normal in sur-
vivors to selection but with different parameters. There-
fore, the post-selection distribution is:

Note that

where (I+ Ŵ
−
0
V)−1 is related to the “coefficient of cen-

tripetal selection” S [29]. In a scalar situation 
(I+ Ŵ

−
0
V)−1 =

γ

V + γ
= 1− S, gives the fraction of var-

iance (V ) remaining after selection and S =
V

V + γ
 meas-

ures the fraction removed by nor-optimal selection.
We use a canonical setting to show that selection is not 

ignorable, i.e., selection must be modelled for appropri-
ate inference. Assume that the mean and the additive 
genetic and environmental variance components prior 
to selection are known. The setting is y = u+ e, where 
u ∼ N (0, h2) and e ∼ N (0, 1− h2) are independently dis-
tributed standardized breeding values and environmental 
effects, respectively, and h2 is trait heritability. The mar-
ginal distribution of phenotypes is y ∼ N (0, 1). Without 
selection,

(79)ps(y1, y2) ∝ H(y1)p(y1, y2).

(80)ps(y1, y2) ∝ exp

{
−
1

2

[
(y − �0)

′
Ŵ
−
0
(y − �0)+ (y −m)

′V−1
(y −m)

]}
.

(81)

(
y − �0

)′
Ŵ
−
0

(
y − �0

)
+

(
y −m

)′
V−1

(
y −m

)

=
(
y −ms

)′(
Ŵ
−
0
+ V−1

)(
y −ms

)
+(�0 −m)′Ŵ−

0

(
Ŵ
−
0
+ V−1

)−1

V−1(�0 −m)

(82)ms =

(
Ŵ
−
0
+ V−1

)−1

(Ŵ−
0
�0 + V−1m)

(83)

ps(y1, y2) ∝ exp

{
−
1

2

(
y −mS

)′(
Ŵ
−
0
+ V−1

)(
y −mS

)}
.

(84)[y]s ∼ N [ms,Vs = (Ŵ−
0
+ V−1)−1].

(85)Vs = (Ŵ−
0
+ V−1)−1 = V(I+ Ŵ

−
0
V)−1
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E(u|y) = h2y , and Var(u|y) = h2(1− h2). After a round 
of phenotypic selection towards � with sharpness γ , the 
joint distribution of breeding values and phenotypes 
remains bivariate normal. Post-selection,

and

respectively, where S =
1

1+ γ
 . The additive variance is a 

fraction 1− h2S of the genetic variation prior to selec-
tion. Post-selection, the best predictor [42, 48] of u is:

and

The parameters of the conditional distribution [u|y] are as 
prior to selection, so the latter is ignorable from the point 
of view of learning u from y.

Suppose now that the model is yi = µ+ ui + ei with 
u ∼ N (0, h2) and e ∼ N (0, 1− h2) as before; h2 is known 
but µ is unknown. Given a sample of size n,   without 
selection, the posterior distribution of µ after assigning a 
flat prior to the latter parameter is µ|y∼N

(
y, n−1

)
 where 

y =

∑n
i=1yi

n
 is the maximum likelihood estimator of µ 

[25]. The analyst, however, is presented with a sample of 
m individuals known to belong to a population subjected 
to stabilizing selection towards � with coefficient of selec-
tion S. After selection, the marginal distribution of the 
phenotypes is:

If a flat prior is assigned to µs, then 

µs|y∼N

(∑m
i=1yi

m
, (1− S)m−1

)
 . What is the posterior 

distribution of µ ? Changing variables µs −→ µ,

(86)
[
y
u

]
∼ N

([
0
0

]
,

[
1 h2

h2 h2

])
,

(87)Es

[
y
u

]
=

[
�S

h2�S

]
,

(88)Vars

[
y
u

]
=

[
1− S h2(1− S)

h2(1− S) h2(1− h2S)

]
,

(89)Es
(
u|y

)
= h2�S +

h2(1− S)

1− S

(
y− �S

)
= h2y,

(90)

Vars
(
u|y

)
= h2(1− h2S)−

h4(1− S)2

1− S
= h2

(
1− h2

)
.

(91)N (µs = µ(1− S)+ �S,Vs = (1− S)).

The preceding implies that the posterior distribution of µ 

after selection changes to [µ|y]s ∼ N

[
y− �S

1− S
,

1

n(1− S)

]
 . 

In short, the missing data process must be considered 
from the point of view of inferring the mean of the base 
population, but can be ignored for learning the additive 
genetic value u.

Discussion
Selection is a central theme in evolutionary and applied 
quantitative genetics [12]. Yet, textbooks and papers 
place focus on stylized models, with less emphasis on 
parameter inference using data from real selection pro-
cesses. The literature from animal breeding has special 
relevance because their data derive mostly from farm 
records of performance with incomplete reporting and 
follow-up, especially of events leading to non-randomly 
missing observations. In this section, some landmark 
papers on the topic are discussed and their messages are 
contrasted with our results.

A large part of the animal breeding literature in the 
first six or seven decades of the 20th century reported 
randomized selection experiments, typically possessing 
a small scale and insufficient resolution or replication 
[49]. By virtue of design, the analysis of these experi-
ments was not too challenging, statistically speaking, and 
much work centered on the assessment of the expected 
variability of response to selection in unreplicated experi-
ments [50]. Perhaps the first formal attempt at addressing 
distortion in inference from observational data gener-
ated by a type of culling employed in animal breeding 
was [30]. Suppose y0, y1 ∈ S1 and y2 ∈ S2 are observable 
data derived from a sequential selection of individuals, 
i.e., y0 → y1 −→ y2 where S1 and S2 are sampling spaces 
modified by selection, while y0 has unrestricted space. 
Based on y0 , then y1 is observed, and given y0 and y1 , data 
y2 are collected. These authors showed bias of linear ordi-
nary least squares estimators of production differences 

ps
�
µ|y

�
∝ (1− S)ps

�
µs|y

�

∝ exp




−

m
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between, e.g., ages of cow or of time trends when there 
was sequential selection. The least squares estimators 
examined were: (a) difference between averages of sec-
ond lactation records ( y1 ) and of all first records y0 (gross 
comparison), and (b) between second and first lactation 
averages, but only for cows that had the two records of 
production (paired comparison). In the gross compari-
son, missing data for second records were those for cows 
with lower “fitness” due to having lower first production 
records. In the paired comparison, the missing data were 
all records (first and second lactation) of cows not given 
an opportunity to have a second lactation. In the absence 
of selection, a multivariate normal joint distribution was 
assumed by [30], with the fixed parameter vector θ (fixed 
effects and variance-covariance components) inferred 
by maximum likelihood. Henderson [30] noted that if all 
available records are used in the analysis, the maximum 
likelihood estimator of age effects, i.e., a location param-
eter, would not contain bias even if selection is ignored 
in the analysis. Under normality and with a general but 
known covariance structure, the maximum likelihood 
estimator is generalized least squares, not ordinary least 
squares. Their paper did not address inference of unob-
served producing abilities or of random genetic effects 
such as breeding values, which are factors underpinning 
the non-diagonal covariance matrix structure.

More generally, let [y0, y1, y2; θ ] represent the 
joint distribution (does not need to be Gauss-
ian) of the y vectors, indexed by some param-
eter θ . Apart from numerical issues, the maximum 
likelihood estimates are straightforward to obtain 
because of the automaticity of the method. Since the 
conditional distributions [y1|y0; θ ] and [y2|y0, y1; θ ] 
hold for any y0 and y1 , the joint density can be written 
as p

(
y0|θ

)
p
(
y1|y0; θ

)
p
(
y2|y0, y1; θ

)
= p

(
y0, y1, y2; θ

)
 . 

Hence, the likelihood function (any part of the joint 
density involving θ ) is unaffected by selection and the 
non-random process can be ignored when computing 
maximum likelihood estimates of θ if such sequential 
mechanism takes place. However, the asymptotic proper-
ties of the estimators are affected by selection, since Fish-
er’s expected information must be computed by taking 
expectations with respect to 

[
y0, y1, y2; θ , y1 ∈ S1, y2 ∈ S2

]
 

instead of [y0, y1, y2; θ ] ; a selection model must be 
adopted for calculation of expected second derivatives. 
This was done by [51] for estimation of repeatability of 
production in dairy cattle.

Maximum likelihood estimates are typically biased 
in finite samples even without selection, e.g., the maxi-
mum likelihood estimator of residual variance in linear 
regression models has a downwards bias. In an early 
study, Rothschild et  al. [52] examined bias of estimates 
of genetic parameters (based on variance and covariance 

components) by simulating first and second lactation 
records in dairy cattle. The selection scheme was styl-
ized: 50 % of 5000 progeny of 100 bulls was allowed to 
have second records, and individuals were chosen either 
at random or were those with the highest first record of 
production; the scheme was replicated 200 times. The 
simulation did not detect bias of estimates of heritabil-
ity of first and second records, or of genetic and pheno-
typic correlations between the two lactations. However, 
the mean squared error of the estimates was larger under 
selection than under a random choice, illustrating that 
the finite sample distribution of maximum likelihood 
estimates is affected by selection. In other words, ignor-
ability of selection cannot be claimed without quali-
fication: it does not necessarily imply bias removal or 
unaffected sampling distribution of estimates. Ignorabil-
ity means that the likelihood function can be constructed 
as if selection had not taken place.

Results in [30] carry beyond normality because compo-
sition of a joint density as a sequence of conditional den-
sities follows directly from probability theory. However, 
selection is often based on unobserved “externalities” as 
well as on data available for analysis, as discussed in our 
paper. For instance, in a clinical trial, a patient may aban-
don the study due to some unrecorded event, e.g., tooth 
ache, that may be treatment-related, so some component 
of θ affects a missing process involving unobserved data. 
The notion of ignorability of missingness of data was for-
malized in [21] and adapted to likelihood-based inference 
in animal breeding by Im et al. [22]. The main messages 
of such work are: if the probability of missingness (our 
fitness function is an equivalent metric) depends on 
observed data only, or if it involves parameters that are 
“distinct” from θ , the selection process can be ignored 
from the point of view of locating the maximizer of the 
likelihood.

Apart from genetic and environmental parameters, 
animal and plant breeders also seek estimates of unob-
servable breeding values, i.e., quantities that vary over 
individuals and that are not construed as parameters 
in classical inference. However, results in [30] do not 
apply without qualification to inference of unobserv-
able (but realized) random variables (called “prediction” 
of a random vector u ), since estimation and prediction 
are treated distinctly in frequency and likelihood-based 
approaches. Actually, the mixed model equations algo-
rithm was derived in their paper by joint maximization 
with respect to fixed effects and u, of a “penalized” likeli-
hood function under Gaussian assumptions and known 
dispersion structure, incorrectly interpreted as a classi-
cal likelihood. The u-solution of the estimating equations 
was later shown to correspond to the BLUP, and for many 
years was wrongly referred to as “maximum likelihood 
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estimator” of u. Since the the penalized likelihood is 
proportional [y0, y1, y2,u; θ ] one can also argue that the 
penalized maximum likelihood estimator of u (that is, 
what we would call BLUP) could be calculated ignoring 
the sequential selection process y0 → y1 −→ y2.

Perhaps the bias issue is what motivated Henderson 
et  al. [30] to study BLUP under the form of selection 
described by Pearson [53], who had shown how selec-
tion operating upon a multivariate normal distribution 
altered its mean vector and covariance matrix. A paper 
[54] noted that a special case of Pearson–Henderson 
selection is the truncation scheme in textbooks of quanti-
tative genetics [55]. Under Pearson’s model and Gaussian 
assumptions, the first and second moments of the joint 
distribution of a set of random variables (observed or 
latent) after selection, can be arrived at analytically; for-
mulae apply to a single cycle of selection only, as multi-
variate normality is destroyed post-selection. Assuming 
the dispersion structure was known [43], derived condi-
tions under which Pearsonian selection could be ignored 
in the computation of BLUP. Essentially, he considered 
linear predictors, L′y of an unobservable random vec-
tor u , such that Es

(
L′y

)
= Es(u), where s denotes Pear-

sonian selection. In this class of predictors, Henderson 
[43] searched for the L matrix that produced minimum 
variance of prediction error. Two of his results have had 
a marked influence on animal breeding modeling. One 
was that, if E

(
L′y

)
= 0 (location invariance), the selec-

tion process could be ignored, with BLUP computed as 
if selection had not taken place. The other one, was that if 
selection had been based on the linear combination L′u , 
by treating fixed effects levels of other random vectors 
in the model (e.g., contemporary groups) as fixed effects 
one could arrive at unbiased predictors of u.

Henderson’s treatment of selection was discussed criti-
cally by, e.g., [11] and by [56, 57]. The frequentist setting 
in [43] assumed that the L matrix was constant (and, 
therefore, the incidence matrices in the linear model) 
over conceptual repeated sampling. This assumption 
is not reasonable, as a conceptual replication with the 
same distribution of observations over subclasses could 
not be expected to occur with unbalanced field data col-
lected over a large number of contemporary groups and 
several years. The most widely cited result was that BLUP 
is unaffected by selection if the criterion used for rank-
ing ( L′y ) has a probability distribution that is transla-
tion invariant. This requirement is violated in animal 
breeding any time that a model with fixed “genetic group 
effects” is used, a routine modeling strategy, e.g., in beef 
cattle evaluation; in this case L′y has a non-null expecta-
tion. The L′u development is logically difficult to follow. 
For instance, selection based on L′u requires knowledge 
of u , so there, predicting this latter vector would not be 

needed. The study of  Schaeffer [58] discussed pros and 
cons of treating a large number of contemporary groups 
as fixed effects, the strategy recommended by Hender-
son to eliminate biases due to non-random associa-
tions between breeding values of bulls (used over many 
herds) and farm effects, which the latter interpreted as 
a special case of selection based on L′u . Furthermore, 
Schaeffer [58] observed that if the number of individu-
als per contemporary group is large, treating their effects 
either as fixed or random is inconsequential. However, 
the well-known James-Stein theoretical result indicates 
that shrinkage of fixed effects estimates can yield smaller 
mean squared of estimation if the number of contempo-
rary groups is large [59]. Hence, Henderson’s prescription 
is not on solid ground.

Many papers, mainly using simulation, observed that 
use of “full” relationship matrices in the statistical model 
could account in some sense for selection, even in  situ-
ations where missing data lead to non-ignorable selec-
tion. In our approach, unless genetic relatedness enters 
explicitly into the fitness function, there is no transpar-
ent theoretical reason for such expectation, other than 
the benefit stemming from a correct specification of the 
covariance matrix. As discussed, Henderson et  al. [30] 
observed that ordinary least-squares, assuming inde-
pendent and identically distributed observations, pro-
duced biased estimates of fixed effects under sequential 
selection, while generalized least-squares did not. In the 
“gross comparison” of the cow example, all records are 
used, so selection is based entirely on observed data. 
However, least squares assumes that first and second lac-
tation records are conditionally independent, inducing a 
likelihood that is proportional to the product (of densi-
ties) p

(
y0|θ

)
p
(
y1|θ

)
p
(
y2|θ

)
 , so all data used for selection 

decisions are included but all covariances are ignored. 
On the other hand, the generalized least-squares esti-
mator derives from a likelihood that is proportional to 
p
(
y0|θ

)
p
(
y1|y0, θ

)
p
(
y2|y1, y0, θ

)
. Thus, what a genetic 

relationship matrix does is to represent extant depend-
encies properly. Apart from an appropriate model speci-
fication, the more complete the pedigree (or genomic) 
information is, the better the dependencies are mod-
elled. The issue here is one of proper specification of the 
likelihood, i.e., some effects treated as random with an 
appropriate covariance structure producing shrinkage 
of least-squares solutions. Henderson et al. [30] referred 
to this matter as “incomplete repeatability” of records. 
Ignoring data relevant to the selection decisions does 
produce distortion in inference, since the fitness function 
contains information about the unknown θ that is not 
ignorable.
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Harville [60] examined selection using the following 
setting. Without selection, the data have a distribution 
with density function p(y|θ) and with the sample space of 
y unrestricted in any manner. Selection is such that only 
data in a restricted space S is observed, i.e., when y∈S. 
Under selection, observations appear with density

so the posterior density under selection, with the prior 
density being p(θ) , is:

Since Pr
(
y∈S|θ

)
 depends on θ , the selection process can-

not be ignored. A well known special case of this type 
of selection (as noted, also a special case of Pearsonian 
selection) is the classical truncation model of quantitative 
genetics. To illustrate this, suppose that, prior to selec-
tion, observations are identically and independently dis-
tributed as N

(
µ, σ 2

)
 with the variance σ 2 known but µ 

unknown. Selection is such that n observations exceed-
ing a known threshold t are presented to the analyst and 
a flat prior is assigned to µ. The posterior density after 
selection is:

which is the product of n truncated normal density func-
tions. Using standard algebra [25]

where �(.) is the normal distribution function. The pos-
terior density of µ under selection does not have a closed 
form.

A terminology employed in classification problems, 
i.e., “hard” versus “soft” [61] may be useful to contrast 
the treatments of selection employed by [43, 54, 60] with 
the one we used in the present paper. In “hard selection”, 
the sampling space S implies fixed constraints (e.g., cull-
ing levels) defining a simplex, inside of which data are 
observed. In a “soft selection model”, the fitness or prob-
ability of selection depend on arguments that can include 
fixed hyper-parameters, unknown parameters, observed 

(92)ps
(
y|θ

)
=

p
(
y|θ

)

Pr
(
y∈S|θ

) ; y∈S,

(93)

ps
(
θ |y

)
=

1

Pr
(
y∈S|θ

)p
(
y|θ

)
p(θ)

∫ 1

Pr
(
y∈S|θ

)p
(
y|θ

)
p(θ)dθ

∝
1

Pr
(
y∈S|θ

)p
(
θ |y

)
.

(94)ps
(
µ|y, t

)
∝

n∏

i=1

exp

[
−

1

2σ 2

(
yi − µ

)2
]

Pr
(
yi > t|µ, σ 2

) ,

(95)ps
(
µ|y, t

)
∝

exp
[
−

n

2σ 2

(
µ− y

)2]

[
1−�

(
t − µ

σ

)]n ,

and unobserved data. The latter corresponds to the miss-
ing data treatment examined in [21, 22]. The more real-
istic and flexible setting in “soft selection” may lead to a 
diagnosis of the extent to which selection can be ignored. 
It is not realistic to assume that a fixed selection thresh-
old t holds in conceptual replication. The chance of selec-
tion depends on varying observed and unobserved data, 
and on unequal amounts of information over individuals, 
aspects that the “soft” selection representation addresses.

There does not seem to be a general prescription to 
accommodate potential distortions due to selection. In 
structures that combine cross-sectional, longitudinal 
and multi-trait data such as in animal breeding, balance 
is the exception rather than the rule. In plant breeding, 
datasets are more structured and are often outcomes of 
designed randomized trials. However, such experiments 
may involve multiple-environments and years and multi-
ple traits. The missing data or fitness treatment presented 
here may be also pertinent to data from designed experi-
ments, where missing observations also occur in incom-
plete block layouts, and the missingness may not be 
random. The Bayesian approach, together with our treat-
ment of selection, offer an integrated answer to inference, 
prediction and model selection [25, 62, 63] and goes 
beyond the likelihood-based approach, where breeding 
values are inferred indirectly. In the Bayesian treatment, 
the fitness function can include data, parameters and 
breeding values, as the latter are members of the vector 
of unknowns, although assigned distinct prior distribu-
tions. Bayesian methods produce automatic measures of 
uncertainty even under selection and the posterior dis-
tribution of the fitness function can be estimated using 
draws from its posterior distribution.

Is it always fruitful to account for selection by intro-
ducing a fitness function or by modeling the missing data 
process? Modeling selection through a fitness function 
is not without pitfalls. An incorrect specification of fit-
ness may deteriorate inferences beyond those obtained 
by ignoring selection altogether. Accounting for selection 
may not reduce uncertainty about breeding values, as we 
found in our examples with real data, where the missing 
data process assumed, univariate or multivariate, pat-
terned exactly the protocols constructed. More generally, 
since the quality of inferences cannot be assessed unam-
biguously (one does not know the “true value” of param-
eters), it is risky to assert that inferences are good or 
bad. Formal model comparison may shed some light. For 
instance, a Bayes factor analysis may reveal that account-
ing for selection provides a more plausible description of 
the data than ignoring selection.

Lastly, since animal and plant breeders are interested 
in predicting future phenotypes, a predictive assessment 
may be the most appropriate gauge for constructing and 
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calibrating models representing competing forms of 
describing the selection process. For example, Gianola 
and Schön [64] address several ways of carrying-out 
cross-validation, directly or indirectly. From a Bayesian 
perspective, Fong and Holmes [65] argue that the mar-
ginal density of the data (denominator of Bayes theorem) 
is “equivalent” to exhaustive leave-k out cross-validation 
averaged all possible values of k when a log-posterior 
predictive distribution is used as scoring rule for com-
peting models. However, their theoretical results depend 
on the notion of “exchangeability”, i.e., that permutation 
of indexes of observations does not alter the analysis. 
This concept does not apply to quantitative genetics set-
tings, since, for example, if a parent is individual i,   say, 
the analysis would change drastically if it is permuted 
with grand-children j. Another example from dairy cat-
tle breeding is as follows: if a cow is m,   its production 
record cannot be exchanged with bull n,  with thousands 
of progeny. Obviously, a bull cannot be milked and a 
cow can seldom produce such a large progeny group of 
individuals.

Conclusions
We reviewed and extended theory for analyzing quantita-
tive genomics data stemming from cryptic or structured 
selection processes. The Bayesian approach provided an 
integrated approach to inference and prediction under 
selection, but may or may not yield the best possible pre-
dictions, as each problem is essentially unique. One may 
believe that selection has been accounted for meticu-
lously, but the central question of whether inferences are 
good or bad does not have an answer. As pointed out by 
Mark Twain: “It ain’t what you don’t know that gets you 
into trouble. It’s what you know for sure that just ain’t 
so”. It may well be that some statistical learning proce-
dure that ignores quantitative genetics theory and non-
randomness ends up as the best prediction machine. 
Since the most celebrated prediction and classification 
machines do not make claims about lack of bias or mini-
mum variance of structural parameters, e.g., connection 
strengths of deep neural networks, these two concepts 
largely driving the Hendersonian era (at least in animal 
breeding) may gradually lose relevance. On the one hand, 
Bayesians may experience a certain schadenfreude1 if this 
were to occur. On the other hand, it is possible to attain 
empirically unbiased predictions via calibration of the 
machines. A positive finding may not help to understand 
the state of nature, but it may enhance the progress of 
agriculture.
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