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Abstract 

Background:  Rabbit wool traits are important in fiber production and for model organism research on hair growth, 
but their genetic architecture remains obscure. In this study, we focused on wool characteristics in Angora rabbits, a 
breed well-known for the quality of its wool. Considering the cost to generate population-scale sequence data and 
the biased detection of variants using chip data, developing an effective genotyping strategy using low-coverage 
whole-genome sequencing (LCS) data is necessary to conduct genetic analyses.

Results:  Different genotype imputation strategies (BaseVar + STITCH, Bcftools + Beagle4, and GATK + Beagle5), 
sequencing coverages (0.1X, 0.5X, 1.0X, 1.5X, and 2.0X), and sample sizes (100, 200, 300, 400, 500, and 600) were 
compared. Our results showed that using BaseVar + STITCH at a sequencing depth of 1.0X with a sample size larger 
than 300 resulted in the highest genotyping accuracy, with a genotype concordance higher than 98.8% and geno-
type accuracy higher than 0.97. We performed multivariate genome-wide association studies (GWAS), followed by 
conditional GWAS and estimation of the confidence intervals of quantitative trait loci (QTL) to investigate the genetic 
architecture of wool traits. Six QTL were detected, which explained 0.4 to 7.5% of the phenotypic variation. Gene-level 
mapping identified the fibroblast growth factor 10 (FGF10) gene as associated with fiber growth and diameter, which 
agrees with previous results from functional data analyses on the FGF gene family in other species, and is relevant for 
wool rabbit breeding.

Conclusions:  We suggest that LCS followed by imputation can be a cost-effective alternative to array and high-
depth sequencing for assessing common variants. GWAS combined with LCS can identify new QTL and candidate 
genes that are associated with quantitative traits. This study provides a cost-effective and powerful method for investi-
gating the genetic architecture of complex traits, which will be useful for genomic breeding applications.
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Background
Genome-wide association studies (GWAS) have deliv-
ered new insights into the biology and genetic architec-
ture of complex traits. In the past decades, GWAS has 

accelerated the rate of gene discovery to an unprece-
dented scale, identifying many replicated genetic variants 
associated with complex diseases and quantitative traits 
in livestock, plants, humans, and model organisms [1–4]. 
Phenotypic variation in complex traits is often caused by 
the cumulative effect of numerous common variants, i.e., 
such traits are polygenic, and thus high-density GWAS 
can provide novel insights into their genomic architecture 
[5]. Traditional high-density GWAS requires two distinct 
genetic testing technologies: high-coverage sequencing 
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of whole genomes and a genome-wide genotyping array 
followed by imputation. Considering the cost to gener-
ate population-scale sequence data and a lack of inex-
pensive high-density chips, low-coverage whole-genome 
sequencing (LCS) followed by imputation is a much more 
affordable alternative for assessing common genetic vari-
ants and testing the association of millions of variants 
with phenotype for complex traits [6] and can increase 
the discovery power of trait-associated and/or causal 
genetic variants [6, 7]. To date, LCS has been widely used 
to accurately assess common variants using GWAS. It 
has been shown that 0.5 to 1X LCS achieved compara-
ble performance to commonly used low-density GWAS 
arrays [8]. LCS at a depth of 1X was able to detect signals 
that were missed by standard imputation of single nucle-
otide polymorphism (SNP) arrays [9]. A more systematic 
examination of the power of GWAS suggested that 1X 
LCS allows the identification of up to twice as many asso-
ciations as standard SNP array imputation [10]. Further-
more, LCS at a depth of ≥ 4X can capture variants with 
various frequencies more accurately than all commonly 
used GWAS arrays, at a comparable cost [8].

The approach of LCS followed by imputation exploits 
the fact that individuals in the same cohort are suffi-
ciently related to share large genome segments [7]. Miss-
ing genotypes in LCS data are imputed using local linkage 
patterns to infer unknown genotypes in target samples 
from known genotypes. The current available tools for 
imputation of LCS data include STITCH [11], Beagle 
[12], GeneImp [13], GLIMPSE [14], and loimpute [15], 
some of which use a haplotype reference panel. STITCH 
[11] imputes genotypes based only on sequencing read 
data, without requiring additional reference panels or 
array data, and is applicable in settings of extremely low 
sequencing coverage [16, 17]. The other tools are based 
on the use of reference panel information, for example, 
GLIMPSE phases and imputes LCS data using large ref-
erence panels [14]. In addition, Beagle was developed for 
genotype imputation and is tailored to work both with 
and without reference panels [12]. Since the costs of both 
library construction and sequencing are continuingly 
decreasing, LCS has become increasingly attractive to 
obtain genotyping information for farm animals [17].

Angora rabbits are particularly well known for their 
wool production. The economic value of Angora wool 
depends on the texture of the hair, which is mainly char-
acterized by fiber diameter and length. In this study, we 
generated accurate and dense genotype data on Angora 
rabbits with a cost-efficient LCS approach and evaluated 
imputation performance across five levels of sequencing 
coverage and six levels of sample size, using three impu-
tation strategies (BaseVar + STITCH, Bcftools + Bea-
gle4, and GATK + Beagle5). To decipher the genetic 

architecture of complex wool traits in Angora rabbits, 
we performed GWAS of six important economic traits at 
various time points with high resolution. We also devel-
oped a conditional GWAS and estimated the confidence 
intervals of identified quantitative trait loci (QTL) by the 
drop (∆) in log-transformed P values method in a multi-
variate linear mixed model, which were used to identify 
candidate genes.

Methods
The experimental procedures used in this study were 
approved by the Animal Care and Use Committee of 
Shandong Agricultural University.

Animals and phenotypes
In total, 629 Angora rabbits (298 males and 331 females) 
from the same batch were used in this study. The rabbits 
were raised in five houses on one farm under the same 
conditions, including diet, water and temperature. Since 
rabbits are artificially inseminated with mixed semen 
in standard production conditions, no precise pedigree 
information was available for the studied population. 
Wool traits were measured at 70, 140 and 210  days of 
age and included length of fine wool (LFW), diameter of 
fine wool (DFW), coefficient of variation of diameter of 
fine wool (CVDFW), length of coarse wool (LCW), and 
rate of coarse wool (RCW). Wool samples were obtained 
from the center of the lateral body by shaving with clip-
pers. Body weight (BW) was measured at weaning weight 
at 35 days and at 70, 140, and 210 days of age.

Sequencing
Ear samples were collected from each individual. 
Genomic DNA was isolated using the Qiagen Min-
Elute Kit. Genomic DNA from each sample was used 
to construct a paired-end library (PE150) with ~ 350-bp 
inserts. All libraries were sequenced on the DNBSEQ-
T7 platform. An average of 3.84X genomic coverage for 
627 samples was sequenced, with the read depth rang-
ing from 1.51X to 8.03X. In addition, 15 samples were 
deep-sequenced at 10X coverage for genotype validation. 
In total, 7305 gigabases of genomic sequence data were 
generated.

Preprocessing of sequence data
Read quality was assessed using the FastQC tool (https://​
www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/) 
with a focus on base quality scores, GC content, N con-
tent, and sequence duplication levels. Adapters and low-
quality bases were removed using Trimmomatic as “java 
-jar trimmomatic-0.38.jar PE sample_1.fq.gz sample_2.
fq.gz 1_paired.fq.gz 1_unpaired.fq.gz 2_paired.fq.gz 2_
unpaired.fq.gz ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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SLIDINGWINDOW:5:20 LEADING:5 TRAILING:5 
MINLEN:50” [18]. Sample reads were mapped to the 
rabbit reference sequence GCF_000003625.3 (Oryctola-
gus cuniculus) using the BWA-mem algorithm [19]. All 
PCR duplicates were removed using Picard tools (https://​
broad​insti​tute.​github.​io/​picard/).

Genotyping using high‑depth sequencing
Variant calling was performed using the GATK4 best 
practices [20]. Base quality score realignment and recali-
bration were applied to each sample and the haplotype-
caller software was used for variant discovery. Average 
coverage was estimated using Qualimap 2.2.1. To simu-
late low-pass sequencing, the 15 BAM files were down-
sampled to 0.1X, 0.5X, 1.0X, 1.5X and 2.0X coverage 
using Picard.

Genotype imputation using low‑coverage sequencing
Due to the lack of a reference panel, we used imputa-
tion tools that do not require reference information, i.e. 
STITCH and Beagle, to impute genotypes using the low-
coverage sequencing data. Error and bias towards the 
reference allele occur in SNP calling using low-coverage 
data because of its limited information and when using 
standard tools that are designed for high-coverage data, 
such as SAMtools followed by Bcftools and GATK [21]. 
BaseVar (https://​github.​com/​Shuji​aHuang/​basev​ar) was 
developed to call variants for large-scale low-pass whole-
genome sequencing (WGS) data and was suitable for 
our study. Useful discussions on the development of the 
BaseVar to call SNPs are reported in [16]. In addition, 
several articles (e.g. [22, 23]) have documented the rea-
sons why BaseVar is preferred for low-coverage sequenc-
ing data. In this study, BaseVar was mainly applied to 
identify variant sites, and STITCH was used to impute 
SNPs. The performance of Bcftools and GATK in SNP 
calling of LCS data was also tested, along with Beagle to 
impute SNPs. Hence, three imputation pipelines were 
compared including: (1) BaseVar + STITCH: SNPs were 
called using BaseVar and site information was provided 
to STITCH [11] to impute genotype probabilities and 
output imputed dosage genotypes and genotypes in VCF 
format; (2) Bcftools + Beagle4 (genotype likelihoods): 
SNPs were called using Bcftools [22] and then Beagle v4.1 
[23] was conducted to impute genotype probabilities and 
output imputed dosage genotypes and genotypes in VCF 
format; and (3) GATK + Beagle5: SNPs were called using 
GATK [20] and then Beagle v5.1 [24] was conducted to 
impute genotypes and output imputed genotypes in 
VCF format. The two versions of Beagle that were used 
to impute genotypes based on different types of data, i.e. 
Beagle v4.1 infers genotypes from genotype likelihood 
input data, whereas Beagle v5.1 uses genotype data and 

provides significantly faster genotype phasing and similar 
imputation accuracy [24].

Assessing imputation accuracy
Genotypes that are directly called from high-coverage 
sequencing are the de facto standard for validating the 
imputation of untyped SNPs. Here, imputation accu-
racy was assessed for the three cost-effective genotype 
imputation strategies by comparing imputed genotypes 
to high-coverage genotypes and was measured by two 
criteria, i.e. genotype concordance (GC) and geno-
type accuracy (GA), by identifying sites that are shared 
across the two datasets. Sites were considered shared if 
their position, reference allele, and alternate allele were 
identical. Genotype concordance was defined as the pro-
portion of imputed genotypes that were identical to the 
genotype determined using high-coverage sequencing. 
For each site, GC was set to 0 if the imputed genotype 
did not match the true genotype and to 1 if the imputed 
genotype did match the true genotype. Thus, GC of a site 
was calculated as the average over all the samples at that 
site. Genotype accuracy (GA) was defined as the Pearson 
correlation coefficient between imputed genotypes and 
genotypes obtained by high-coverage sequencing. Com-
pared to GC, GA was calculated based on imputed geno-
type probabilities [25]. Furthermore, in order to examine 
the influence of the number of samples and sequence 
coverage on imputation, we compared GC and GA for 
different sample sizes (100, 200, 300, 400, 500 and 600) 
and sequencing depths (0.1X, 0.5X, 1.0X, 1.5X, 2.0X) by 
down-sampling.

Selection of tagging SNPs and annotation
According to Teng et  al. [26], when imputation is done 
with STITCH, it is necessary to complete the remaining 
missing variants using Beagle. Thus, we also carried out 
such two-stage imputation, i.e., “Basevar-Stitch-Beagle5”. 
For convenience, we kept the “BaseVar + STITCH” name 
in the following section on genetic analyses. The SNPs 
(directly genotyped and imputed by STITCH) were fil-
tered for an imputation info score > 0.4 using Bcftools, 
and then for a minor allele frequency (MAF) > 0.05, a 
genotype missing rate < 0.1, and a Hardy–Weinberg equi-
librium (HWE) p-value > 1 × 10–6 using the PLINK soft-
ware [27]. The sites, which were missing in 10% of the 
individuals after STITCH imputation, were then imputed 
by Beagle v5.1. SNPs were annotated and categorized as 
polymorphisms in exonic regions, intronic regions, and 
intergenic regions using ANNOVAR [28] based on the 
rabbit reference genome, and SNPs in exons were further 
classified into synonymous or non-synonymous SNPs.

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://github.com/ShujiaHuang/basevar
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Population genetics analysis
We performed principal component analyses (PCA) on 
the population of 629 rabbits using the GCTA software 
[29]. The first five principal components were extracted 
and visualized in R. Linkage disequilibrium (LD) decay 
was measured across whole genomes by calculating r2 
values with the PopLDdecay software [30]. In order to 
detect regions of signatures of selection, the composite 
likelihood ratio (CLR) statistic test was implemented 
using the software SweeD [31]. Nucleotide diversity (Pi) 
was calculated using Vcftools [32] simultaneously with 
a window size set to 50 kb and a step size of 10 kb. Slid-
ing windows along the whole genome with the top 1% 
of CLR and Pi values were regarded as putative regions 
with signatures of selection.

Domestication and centuries of selective breeding 
have changed the genomes of rabbit breeds to adapt to 
environmental challenges and human needs. In order 
to explore and further detect signatures of selection, 
14 domesticated rabbits were sampled from the popu-
lation to analyze their genetic diversity and popula-
tion structure compared to 14 wild rabbits, i.e. their 
wild progenitor. A maximum-likelihood tree was con-
structed using the phylogeny program IQ-TREE2. PCA 
of the first two principal components was visualized 
and LD decay was compared between the two groups 
of rabbits. The genetic structure of the two populations 
was analyzed with ADMIXTURE [33], with the number 
of subpopulations (K value) ranging from 1 to 5. The 
K-value of 2 had the lowest cross validation error (CV-
error). Pi analysis was applied to estimate the degree of 
variability within each group and the fixation statistic 
FST was applied to explain population differentiation on 
the basis of the variance of allele frequencies between 
the two groups. Both Pi and FST were calculated using 
a sliding window approach using Vcftools, with a win-
dow size of 50 kb and a step size of 10 kb. The candidate 
signatures of selection that were discovered with the 
top 5% of Pi and FST were treated as highly divergent 
windows. Adjacent windows were merged into a single 
divergent region and annotated.

Functional enrichment analysis was performed by the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) software to analyze gene ontology 
(GO) and Kyoto Encyclopedia of Gene and Genome 
(KEGG) pathways [34]. The P-value for gene set enrich-
ment was corrected using the Benjamini–Hochberg false 
discovery rate (FDR).

Estimation of whole‑genome SNP‑based heritability
We used a three-trait model to analyze wool traits at three 
time points and a four-trait model for body weight. The 

three-trait model for the estimation of heritabilities of the 
studied traits was:

Here, yi is a vector of phenotypic values for the trait at 
the i th time point; bi is a vector of fixed effects (popula-
tion mean, sex and rabbit house); ui is a vector of additive 
polygenic genetic effects; ei is a vector of residual errors; 
X is the design matrix for the fixed effects; and ⊗ is the 
Kronecker product. The assumed distributions of the 
random effects were:


u1
u2
u3



 ∼ N (0,
�

u⊗K) and,

Here, �u and �e are 3× 3 covariance matrices for the 
additive polygenic effects and residual errors, respec-
tively, and K is the genotype-based genomic relationship 
matrix constructed using the method of VanRaden [35] 
as:

where, W is the centralized marker genotype matrix with 
its ij th element equal to:

where mij (2, 1, or 0) is the original genotype of individual 
i for SNP j , and pj is the MAF of SNP j.The narrow sense 
heritability for the trait at the i th time point was defined 
as:

where �u,ii is the additive genetic variance for the i th 
time point, i.e., the i th diagonal element of �u , and �u,ii 
is the residual variance for the i th time point, i.e., the i th 
diagonal element of �e.

The four-trait model was accordingly defined as the 
three-trait model.

(1)y = (I3 ⊗ X)b+ u + e,

(2)where y =




y1
y2
y3



,u =




u1
u2
u3



, and e =




e1
e2
e3



.

(3)




e1
e2
e3



 ∼ N (0,
�

e

⊗I).

(4)K =
WW′

∑
2pj(1− pj)

,

(5)wij = mij − 2pj ,

(6)h2a,i =
�u,ii

�u,ii +�e,ii
,
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Multivariate GWAS
To perform multivariate GWAS, the genotype at a single 
SNP was added as a fixed effect to Eq. (1), resulting in the 
following model:

with α = [α1α2α3]
′ , where α1 is the SNP’s allele substitu-

tion effect for the trait at the i th time point and w is a 
vector of SNP genotypes with values of 0, 1 or 2, respec-
tively, for aa , Aa and AA . The following Wald Chi-square 
test statistic was computed to test the significance of the 
SNP effects:

To adjust for multiple testing to control false-positive 
rates, the threshold for genome-wide significance was 
0.05/N, where N is the number of effective SNPs calcu-
lated by the PLINK “--indep-pairwise 50 5 0.2” command 
[36].

Conditional GWAS
To confirm whether the significant SNPs within clusters 
of loci are independent or are in high LD, we also per-
formed conditional GWAS with the significant lead SNP 
(the SNP in the genomic region that has the smallest P 
value) set as a fixed effect in the following model:

where αlead is the effect of the lead SNP and wlead is a 
vector of SNP genotypes for the lead SNP, α is the test 
SNP effect (except for the lead SNP) and w is a vector of 
the SNP genotypes.

Estimation of confidence intervals of QTL regions
Confidence intervals of identified QTL regions were esti-
mated by the drop log(P) method, following [37], which 
we expanded to its use for a multivariate linear mixed 
model. Using the SNP effects estimated with Eq. (5), we 
first removed the effect of the lead SNP at each QTL 
from the vector of phenotypes. We then randomly 
selected 1000 SNPs within the candidate QTL region 
and assigned the effect of the lead SNP to these selected 
SNPs, successively. The effects of simulated causal SNPs 
were added to the above vector of residual phenotypes 
(removing the lead SNP effect from the original pheno-
types), one SNP at a time, to produce 1000 simulated 
datasets. A local association analysis of the region using 
Eq. (5) with the simulated phenotype was performed, and 

(7)y = (I3 ⊗ X)b+ (I3 ⊗ w)α+ u + e,

(8)[�α1�α2�α3]



var




�α1
�α2
�α3








−1


�α1
�α2
�α3



 ∼ χ2(3).

(9)y = (I3 ⊗ X)b+
(
I3 ⊗ wlead

)
αlead + (I3 ⊗ w)α+ u + e,

the drop in log(P) value between the lead SNP for that 
data set and the simulated causal SNP was recorded. The 
distribution of these drops in log(P) was then estimated 
across the 1000 simulations, and the 95th percentile was 
used to determine confidence intervals of the QTL region 
identified in the original data.

Estimation of the heritability of QTL
We re-estimated the whole-genome SNP-based heritabil-
ity adjusted for the lead SNP, h′2

a,i , by adding the lead SNP 
to the model, i.e.:

with effects as described previously. The QTL heritability 
was then estimated as:

where h2a,i is the whole-genome SNP-based heritability 
from Eq. (6) without adjustment for the lead SNP effects.

Results
LCS imputation pipeline
In order to accurately capture variants in the rabbit 
genome, we compared three genotyping pipelines using 
LCS data and used the high-depth sequencing data 
results on chromosome 11 (Chr 11) as the gold stand-
ard for accuracy evaluation (Fig. 1). Chromosome 11 was 
chosen because it has a similar LD extent as the whole 
genome (see the results on genetic architecture below) 
and it is a middle-sized chromosome. Variant sites were 
identified based on all samples using all sequencing data 
to insure the number of variants. The variant sites discov-
ered by each variant caller (BaseVar, Bcftools and GATK) 
are shown in a Venn diagram (see Additional file 1: Fig. 
S1), with BaseVar detecting the largest number of vari-
ants. The screening of Chr11 with BaseVar identified 
1,737,601 polymorphic sites, which for the most part was 
also detected by Bcftools and GATK. Bcftools identified 
1,710,235 polymorphic sites, of which 1,333,126 over-
lapped with those identified by BaseVar. GATK identified 
1,474,234 polymorphic sites, of which 1,198,453 over-
lapped with those identified by BaseVar.

Genotype imputation of the variants was performed for 
the 600 rabbits with a down-sampled sequencing depth 
of 2X. Among the reference-panel-free methods, highly 
accurate genotypes were obtained using the pipeline 
BaseVar + STITCH, with an average GC of 99.08% and 
an average GA of 0.98, while for both Bcftools + Beagle4 
and GATK + Beagle5, GC did not exceed 95.73%, and GA 
did not exceed 0.88 (Fig. 2a, b) and (see Additional file 2: 
Table S1).

(10)y = (I3 ⊗ X)b+ (I3 ⊗ wlead)αlead + u + e,

(11)h2QTL = h2a,i − h′2a,i,
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We compared the patterns of imputation perfor-
mance of the three pipelines in relation to MAF. Using 
the BaseVar + STITCH pipeline, high and stable impu-
tation accuracy (average GC of 98.98% and GC, ranging 
from 98.82 to 99.31%, and average GA of 0.98 and GA 
ranging from 0.97 to 0.98) were obtained for common 
variants with a MAF ranging from 0.05 to 0.5. However, 
for this MAF range, the Bcftools + Beagle4 pipeline 
resulted in a poorer imputation accuracy and its accu-
racy was greatly affected by MAF (GC ranging from 
84.66 to 93.10% and GA from 0.75 to 0.80), and using 
the GATK + Beagle5 pipeline, imputation accuracy 
was even worse and fluctuated more (GC ranging from 
64.02 to 80.60% and GA from 0.42 to 0.63). For SNPs 
with a MAF lower than 0.05, both GA and GC tended 
to decrease compared to those with a higher MAF, and 
were greatly affected by MAF (Fig. 2c, d) and (see Addi-
tional file 2: Table S2), which means that the imputation 
accuracy of rare variants can be highly influenced by 
MAF. Based on the above results, the best-performing 
pipeline was BaseVar + STITCH, thus this pipeline was 
used in the subsequent analyses.

Effect of sample size and sequencing depth on imputation
As expected, GC and GA generally increased as sam-
ple size and sequencing depth increased. In par-
ticular, imputation accuracy improved greatly when 
sample size increased from 100 to 300 and sequence 
coverage increased from 0.1X to 1.0X. For sequencing 
depths higher than 1X, sample sizes larger than 300 had 
little effect on imputation performance, and showed a 
credible genotyping (Fig. 2e, f ) and (see Additional file 2: 
Table S3).

Tag SNPs
We retained 18,577,154 high-quality imputed SNPs by 
two-step imputation using STITCH followed by Beagle 
and stringent quality control. The SNP density corre-
sponded to 1 SNP per 150 bp in the rabbit genome. The 
variants were distributed uniformly along the genome 
(Fig. 3a). The majority of the identified SNPs were located 
in intergenic (57.78%) and intronic regions (35.50%), with 
exonic regions containing only 0.52% of the SNPs, which 
included 72,552 synonymous SNPs and 23,328 nonsyn-
onymous SNPs resulting in a nonsynonymous/synony-
mous ratio of 0.32 (see Additional file 2: Table S4).

Fig. 1  Pipeline for the analysis of low coverage sequence data and genetic architecture
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Genetic architecture
The population structure of the 629 rabbits was assessed 
by performing PCA. The first five principal components 
showed no distinct evidence of population structure 
(Fig.  3b). LD analysis indicated that the average physi-
cal distance between adjacent SNP pairs was ~ 6.5  kb 
(r2 = 0.50), Fig.  3c and (see Additional file  2: Table  S5). 
The average pairwise r2 decreased to 0.16 and 0.11 for 
an average distance between SNPs of 500 kb and 1 Mb, 
respectively. The distribution of r2 with respect to 
physical distance differed by chromosome. The slow-
est and fastest LD decays were observed for Chr15 and 
Chr21, respectively. Chr11 showed a level of LD extent 
that was similar to that of the whole genome. Com-
bining CLR and Pi analyses, we identified 151 poten-
tial signatures of selection, which overlapped with 
309 candidate genes (see Additional file  1: Fig. S2 and 
Additional file  2: Table  S6). These regions displayed 

a significant overrepresentation of genes involved in 
immunity (P = 4.10 × 10–12) and vitamin B6 metabolism 
(P = 1.30 × 10–4) (see Additional file  2: Table  S7). The 
immune system is one of the systems that is strongly tar-
geted by natural selection during evolution because it 
serves as the backbone of defense against pathogens [38–
40]. Vitamin B6 is actively involved as a catalyst in the 
metabolism of proteins to activate the chemical reactions 
that initiate the metabolism of the hair proteins, i.e. kera-
tin and melanin, and when these reach a sufficient level 
in the hair follicles, such that hair growth and renewal 
are promoted. Clinical studies in humans and mice have 
shown that vitamin B6 plays a role in improving hair 
condition and in reducing hair loss [41, 42]. In addition, 
several genomic regions that are involved in tryptophan, 
valine, leucine, isoleucine, nicotinate, nicotinamide, 
tyrosine, and retinol metabolism contained signatures of 
selection (see Additional file 2: Table S7).

Fig. 2  Comparison of the genotype imputation performance between three pipelines (red: BaseVar + STITCH, green: Bcftools + Beagle4 and blue: 
GATK + Beagle5) and different sample sizes (100, 200, 300, 400, 500 and 600) and sequencing depths (0.1 × , 0.5 × , 1.0 × , 1.5 × , 2.0 ×) based on 
genotype concordance (on the right) and genotype accuracy (on the left): a, b for 15 individuals, c, d for different minor allele frequencies, and e, f 
for different sample sizes and sequencing depths
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For genetic diversity between the Angora and wild rab-
bit populations, a maximum-likelihood tree showed that 
the genotypes could be classified into the two obvious 
divergent groups (Fig.  4a). The PCA showed diversity 
among the rabbit genotypes, with the first two principal 
components explaining 8.26% and 1.48% of the genetic 
variance, respectively (Fig.  4b). All individuals from the 
Angora rabbit population were grouped together and 
showed a consistent genetic relationship that coincided 
with that of rabbits artificially inseminated with mixed 
semen, while individuals of the wild rabbit population 
were relatively dispersed, probably because they origi-
nated from different geographical regions. In addition, 
assessment of the population structure using K values 
ranging from 1 to 5 showed that the most significant 
change of likelihood of the population number occurred 
when K increased from 1 to 2 (Fig. 4c) and thus, the most 
likely value of K was 2. Compared to K = 3, 4, or 5, at 
K = 2, the two populations clearly separated from each 
other, which indicates that their genetic backgrounds 
are significantly different. Such partitioning of these 
populations was consistent with the ancestral population 
analysis using K values (Fig. 4d) and was also in accord-
ance with the maximum-likelihood tree (Fig. 4a). LD was 
calculated to provide information on population history. 

LD between markers decreased as the physical distance 
between markers increased, but the degree of LD atten-
uation with distance differed greatly between the two 
populations. The wild population exhibited an extremely 
rapid LD decay, indicating the high diversity of the wild 
ancestors. In contrast, the Angora population showed a 
slow decay of LD, and the average r2 was higher than 0.2 
for markers separated by 350  kb, which indicates high 
inbreeding that could be due to intense artificial selection 
(Fig. 4e) and (see Additional file 2: Table S8).

Using the top 5% of FST values and θπ ratios (cutoffs: 
FST > 1.87 and log2 (θπ ratio (θπ wild/θπ Angora) ≥ 4.09)), 
we identified 464 candidate domestication regions 
that overlapped with 775 genes under selection in the 
domestic rabbit (Fig.  4f ) and (see Additional file  2: 
Tables S9, S10). Gene set enrichment analysis high-
lighted genes that were mainly involved in the nervous 
system, probably reflecting the effect of domestica-
tion on tameness and aggression [43]. In addition, 155 
regions were identified in both the within-breed and 
the across-breed signatures of selection, which over-
lapped with 354 genes (see Additional file 2: Tables S11, 
S12). Gene set enrichment analysis of these genes high-
lighted genes that were mainly involved in metabolism, 
immunity, and the nervous system.

Fig. 3  Genetic diversity of the Angora rabbit population. a Distribution of SNPs in 1-Mb windows across the genome; b Principal component 
analyses plotting the first to the fifth dimension; and c Extent of linkage disequilibrium (LD), values are mean LD r2 for all pairs of SNPs binned by 
distance. The slowest and fastest LD decays were observed for Chr15 and Chr21, respectively. Chr11 showed similar LD extent to that of the whole 
genome
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Genome‑wide association analyses
Phenotypes of six traits (LFW, DFW, CVDFW, LCW, 
RCW, and BW) and genotypes on up to 18,577,154 auto-
somal SNPs after imputation were available for the 629 
rabbits. For association testing, we used a multivariate 

linear mixed model, as implemented in our software 
GMAT (https://​github.​com/​chaon​ing/​GMAT). After 
LD-based pruning with PLINK, 391,976 independent 
SNPs were in approximate linkage equilibrium with each 
other and, thus, the genome-wide significance level was 

Fig. 4  Genetic diversity between the Angora and wild rabbit populations. a Maximum-likelihood tree; b Principal component analysis showing the 
genetic differentiation between the two populations; c Ancestral population analysis (K = 1 to 5); d Admixture plots based on different numbers of 
assumed ancestors; e Extent of LD, values are the mean LD r2 for all pairs of SNPs binned by distance. In all the panels, red indicates Angora rabbits 
and blue wild rabbits. f Genomic regions with strong selective sweep signals in Angora and wild rabbits. Distributions of π ratios (wild/Angora) 
and Z(FST) values were calculated in 50-kb windows with 10-kb steps. Genomic regions under selection during domestication are shown as green 
points located to the top-right regions that correspond to the 5% right tails of empirical log2 (πwild/πAngora) ratio distribution and the top 5% 
empirical Z(FST) distribution. The vertical and horizontal gray lines represent the top 5% value of log2 (πwild/πAngora) (4.09) and Z(FST) (1.87), 
respectively

https://github.com/chaoning/GMAT
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Fig. 5  Circle Manhattan plot showing the associations between SNPs and wool traits: diameter of fine wool (DFW), coefficient of variation of 
diameter of fine wool (CVDFW), length of fine wool (LFW) and body weight (BW), respectively (from inside to outside the circle), in the Angora 
rabbit population. The threshold lines indicate the genome-wide significance level (−log10(0.05/391,976)) after Bonferroni correction

Table 1  QTL mapping and the 95% confidence interval (95%CI) of each QTL

a QTL for DFW contained no genes, and the nearest genes in the flanking regions were annotated

Trait QTL Chr 95% CI 95% CI width Top SNP Allele 0 Allele 1 MAF P Number of 
annotated 
genesa

DFW QTL1 7 138,910,411 139,598,335 687,925 138,975,863 T C 0.053963 1.36 × 10–7 2

QTL2 11 64,944,841 64,952,273 7433 64,951,174 G C 0.071669 7.12 × 10–23 2

CVDFW QTL1 11 64,270,630 65,432,659 1,162,030 65,412,003 A T 0.079723 1.42 × 10–11 6

BW QTL1 2 8,257,045 8,923,024 665,980 8,877,739 G A 0.174952 7.33 × 10–12 4

QTL2 4 36,704,911 38,161,753 1,456,843 38,127,528 A G 0.083174 5.93 × 10–7 61

QTL3 12 148,360,582 148,642,693 282,112 148,369,145 G A 0.083174 4.61 × 10–7 3
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1.28 × 10–9 after Bonferroni correction. Significant SNPs 
that were found to be associated with DFW, CVDFW, 
LFW, and BW are in Tables S13–S16 (see Additional 
file  2: Tables S13–S16). A circle Manhattan plot of the 
significant associations between SNPs and four traits 
(DFW, CVDFW, LFW and BW) is in Fig.  5. The quan-
tile–quantile plots for each trait are in Figs. S3 and S4 
(see Additional file 1 Figs. S3, S4). In summary, six (five 
non-overlapping) QTL were identified and six independ-
ent top significant SNPs were located for the CVDFW, 
DFW, and BW traits (Table 1). No QTL were identified 
for LFW, LCW, or RCW.

Conditional GWAS was applied with significant lead 
SNPs fitted as fixed covariates, but no additional sig-
nificant SNPs were detected, which indicates that all 
the significant SNPs in each QTL were in LD with the 
most significant SNP and the causal SNP might be at or 
nearby the latter. To assist gene identification, the 95% 
confidence interval (95% CI) of each QTL was estimated, 
which showed an average width of 0.71  Mb (7.43  kb to 
1.46  Mb), with 67% of the QTL having an average CI 
width less than 1 Mb (Table 1).

Heritability estimates based on genome‑wide SNPs 
and by QTL
SNP-based heritability was estimated for the six traits 
and ranged from 7.5 to 39.1%, which indicates a low to 
medium heritability, with a mean value of 19.0% (see 
Additional file 2: Table S17). Among these six traits, the 
heritability estimate was highest for BW and lowest for 
CVDFW. The heritability explained by the detected QTL 
was analyzed by fitting the most significant SNPs located 
in these QTL as fixed effects. The QTL associated with 
the three traits explained 2.28 to 8.52% of the phenotypic 
variation (see Additional file 2: Table S18). Among these, 
DFW exhibited the strongest QTL effect, with 7.50% of 
the phenotypic variation explained by QTL2. CVDFW 
showed a low QTL effect, similar to its SNP-based 
heritability.

Identification of candidate genes within the identified QTL
The number of annotated genes covered by the QTL 
regions (based on 95% CI) ranged from 0 to 61, with a 
mean of 12 (Table 1) and (see Additional file 2: Table S19). 
Among these, three QTL regions contained less than 10 
genes. Two QTL for DFW did not overlap with any gene 
because of their small 95% CI, thus we searched for the 
upstream and downstream genes that were nearest to the 
95% CI, which were 243,754 and 279,302 bp away from 
the QTL1 interval and 47 4,777 and 37,659 bp away from 
the QTL2 interval. We focused on QTL that contained a 
small number of genes because they provided a starting 
point for functional investigations. For rabbit wool traits, 

the QTL for CVDFW on Chr11 contained six genes, 
among which the fibroblast growth factor 10 (FGF10) 
gene was most relevant. The most significant locus 
(Chr11: 65,412,003 bp, P = 1.42E×10−11) associated with 
fine fiber was detected closest to the FGF10 gene (Chr11: 
64,989,932–65,080,400), which was also the nearest gene 
to the QTL for DFW (Chr11: 64,944,841–64,952,273). 
The FGF10 gene is a member of the fibroblast growth 
factor (FGF) gene family that possesses broad mitogenic 
and cell survival activities and is well-known for its role 
in the regulation of hair morphogenesis and hair growth 
cycle in humans and mice [44, 45].

The QTL for body weight located on Chr2 and Chr12 
contained four and three genes, respectively. For several 
of these genes, associations with traits have been previ-
ously reported: FAM184B with chicken body weight [46, 
47]; the region containing the DCAF16 and NCAPG 
genes with average daily gain in cattle based on a multi-
strategy GWAS [48]; the region containing the NCAPG 
and LCORL genes is known for its association with 
human height and with body weight/height in horses and 
cattle and has also been shown to harbor a signature of 
selection in pigs and dogs [49].

Discussion
Wool traits are important in rabbits, because their fur 
is one of the most preferred natural fibers in the tex-
tile industries. A well-known breed for fiber produc-
tion is the Angora rabbit and the fibers obtained from 
its wool are usually chosen for the production of luxury 
textile materials. In addition, the rabbit was the first 
and has since long been used as a model to dissect the 
genetic architecture of human diseases [50], and also as 
a model to study hair growth, although most studies on 
hair growth have been performed on humans, sheep, and 
mice [51–54]. In this study, we focused on several wool 
characteristics, such as fiber diameter and length, that 
are essential in wool rabbit breeding, as well as impor-
tant indicators of the spinning efficiency of the wool. To 
dissect the genetic architecture of complex wool traits in 
Angora rabbits, we first investigated high-density SNPs 
that were derived in a cost-effective manner using ultra-
low coverage whole-genome sequencing, combined with 
three genotype imputation strategies, using different 
levels of sequencing coverage and sample sizes to insure 
imputation performance. Then, we performed GWAS 
and conditional GWAS with a multivariate linear mixed 
model and mapped QTL to 95% confidence intervals to 
identify candidate genes at a high resolution.

Performing genotype imputation across the whole 
genome boosts the number of detected SNPs and has 
been used widely in GWAS to provide a high-resolution 
view of associated regions, and to increase the chance of 
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directly identifying causal SNPs for QTL [55]. Obtain-
ing genotyping information by combining LCS with 
genotype imputation has several advantages due to the 
decreasing costs of both DNA library construction and 
sequencing [17, 37], especially when dense microarrays 
are lacking [11, 56]. This approach has been shown to 
result in increased performance in a number of scenarios 
with different study designs. We compared several vari-
ant imputation pipelines. Beagle was tested to determine 
whether it was suitable for LCS data resulting from the 
conventional SNP calling software Bcftools/GATK. 
STITCH and its ally BaseVar were applied in this study 
greatly outperformed the other pipelines, as expected. As 
a proof of principle, we imputed genotypes for five levels 
of LCS coverages in overlapping samples of six sizes to 
assess how sequencing depth and sample size influence 
imputation power. We found that sample size greatly 
affected imputation accuracy at an ultra-low sequencing 
coverage (< 1.0X). At a sequencing depth of 1.0X, Base-
Var + STITCH reached a high imputation accuracy with 
a GC > 98.84% and GA > 0.97 when sample size was larger 
than 300. The patterns of imputation accuracy obtained 
in this study with the different pipelines and with differ-
ent levels of sequencing depth and sample sizes are in 
line with results from previous studies [11, 26, 57, 58].

Compared to the use of SNP chips, LCS avoids the 
problem caused by the ascertainment bias of common 
arrays, captures genetic variation in an unbiased manner, 
identifies novel variants, and enhances variant discovery, 
particularly in underrepresented populations [8]. The cost 
of LCS at a sequencing depth of 1X is comparable to and 
can even be lower than that of SNP arrays. In addition, 
in spite of the decrease in unit sequencing cost, the cost 
of high-depth sequencing of a large population remains 
high. Compared to high-coverage sequencing, LCS can 
save genotyping costs per sample by a factor of more than 
10, while providing enough information, which makes it 
applicable for sequencing larger samples. Therefore, we 
strongly recommend low coverage sequencing combined 
with genotype imputation as a cost-effective and power-
ful alternative to SNP arrays and high-depth sequencing 
for more powerful genetic analyses.

Using a large sample size and a high-resolution genome 
screen, recombination events can be detected to accu-
rately identify causal variants that underlie a quantitative 
trait [6, 7]. In our study, by using whole-genome SNPs 
that were identified by LCS combined with genotype 
imputation in a population of 629 rabbits, we discov-
ered six QTL associated with growth and wool traits that 
explained from 0.42 to 7.50% of the phenotypic variation. 
After fine mapping, we focused on the FGF10 gene for 
its association with fiber growth and diameter. Several 
members of the FGF gene family, including FGF10, are 

known to be involved in the regulation of the hair growth 
cycle, mainly by promoting hair follicle (HF) telogen ana-
gen transition by providing the stimulatory signals to the 
HF stem cells and/or their progenies that reside in the HF 
bulge and secondary hair germ [44, 59, 60]. In addition, 
FGF genes may play an important role in hair morpho-
genesis. For example, FGF2 [61], FGF7 [62], FGF9 [45], 
and FGF10 [63] have been shown to contribute to differ-
ences in fiber diameter in human and mice. In addition, 
the FGF7 and FGF10 proteins efficiently and specifically 
bind to FGFR2-IIIb, which is one of several diverse pro-
tein variants with distinct binding characteristics that 
are encoded by the FGFR2 gene. Transgenic mice that 
are deficient for FGFR2-IIIb suffer from abnormally thin 
hairs that are characterized by single columns of medulla 
cells [63].

Response to strong artificial selection results in stand-
ing genetic variation and even in completely fixed muta-
tions across many genomic regions, which reflects the 
long-term directional selection history for wool traits of 
the Angora rabbit population and probably explains that 
few QTL are detected for fiber traits. The LD decay and 
quantile–quantile plots reflect the strong artificial selec-
tion in the Angora rabbit population. LD extends over 
a long distance in the Angora rabbit genome, in which 
markers separated by 300 kb have average r2 higher than 
0.2. The quantile–quantile plots showed the deviation of 
the observed P values from the expected values. In addi-
tion, the fact that few QTL were detected for the other 
fiber traits might be due to their polygenic genetic archi-
tecture, i.e., many individual mutations each with a small 
effect contributing to the total genetic variation and not 
large enough to reach the significance level when testing 
for a typical complex trait.

Conclusions
Low coverage sequencing combined with genotype 
imputation allows accurate high-density genotypes, even 
without a good reference panel. GWAS based on LCS 
data enables QTL detection and fine-mapping of genes 
associated with quantitative traits. This study provides 
a cost-effective analysis pipeline that can contribute to 
unravel the genetic architecture of complex traits and to 
increase genetic progress in livestock.
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