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Abstract 

Background: By entering the era of mega-scale genomics, we are facing many computational issues with standard 
genomic evaluation models due to their dense data structure and cubic computational complexity. Several scalable 
approaches have been proposed to address this challenge, such as the Algorithm for Proven and Young (APY). In APY, 
genotyped animals are partitioned into core and non-core subsets, which induces a sparser inverse of the genomic 
relationship matrix. This partitioning is often done at random. While APY is a good approximation of the full model, 
random partitioning can make results unstable, possibly affecting accuracy or even reranking animals. Here we pre-
sent a stable optimisation of the core subset by choosing animals with the most informative genotype data.

Methods: We derived a novel algorithm for optimising the core subset based on a conditional genomic relation-
ship matrix or a conditional single nucleotide polymorphism (SNP) genotype matrix. We compared the accuracy of 
genomic predictions with different core subsets for simulated and real pig data sets. The core subsets were con-
structed (1) at random, (2) based on the diagonal of the genomic relationship matrix, (3) at random with weights 
from (2), or (4) based on the novel conditional algorithm. To understand the different core subset constructions, we 
visualise the population structure of the genotyped animals with linear Principal Component Analysis and non-linear 
Uniform Manifold Approximation and Projection.

Results: All core subset constructions performed equally well when the number of core animals captured most of 
the variation in the genomic relationships, both in simulated and real data sets. When the number of core animals was 
not sufficiently large, there was substantial variability in the results with the random construction but no variability 
with the conditional construction. Visualisation of the population structure and chosen core animals showed that 
the conditional construction spreads core animals across the whole domain of genotyped animals in a repeatable 
manner.

Conclusions: Our results confirm that the size of the core subset in APY is critical. Furthermore, the results show that 
the core subset can be optimised with the conditional algorithm that achieves an optimal and repeatable spread of 
core animals across the domain of genotyped animals.
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Background
Estimating breeding values is a key operation in iden-
tifying the best animals. Estimated breeding values 
(EBV) are usually obtained with best linear unbiased 

prediction (BLUP), where genetic covariances between 
animals enable sharing of information between rela-
tives and this improves the accuracy of estimation. Tra-
ditionally pedigree data have been used to construct a 
matrix of expected genetic covariances, A (the pedigree 
relationship matrix). With the advent of genome-wide 
single nucleotide polymorphism (SNP) markers, the 
realised genetic covariance matrix based on SNP geno-
types, G (the genomic relationship matrix), replaced 
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the pedigree-based A . This change gave us the so-called 
genomic BLUP (GBLUP) and genomic EBV (GEBV). 
An essential part of estimating GEBV via Henderson’s 
mixed model equations is the inversion of G [1]. Matrix 
inversion has a cubic computational cost and becomes 
a limiting step with more than ∼150,000 genotyped ani-
mals [2]. A similar computational bottleneck occurred 
when inverting A with pedigree BLUP. This bottleneck 
was removed with a recursive algorithm of setting up 
the sparse inverse of A directly from pedigree data [3, 
4]. Unfortunately, such an algorithm is not available for 
G because genome-wide SNP genotypes do not have a 
recursive data structure and the inverse of G is dense. 
This is an issue because the number of genotyped ani-
mals is increasing rapidly in many populations. The most 
remarkable case is in the US Holstein dairy cattle, where 
already 5 million animals have been genotyped (The 
Council of Dairy Cattle Breeding, https:// www. uscdcb. 
com).

Several approaches have been proposed to solve large 
(single-step) GBLUP. For example, using the equivalent 
model with marker effects [5, 6], leveraging the matrix inver-
sion lemma [7], using dimensionality reduction [7, 8], or 
inducing sparsity in the inverse through the approximation 
of genomic relationships [9–11]. The Algorithm for Proven 
and Young (APY) induces sparsity in the inverse through the 
approximation of genomic relationships by leveraging the 
limited dimensionality of genomic information in popula-
tions with a small effective population size [12]. This approx-
imation is achieved by splitting genotyped animals into core 
and non-core subsets. The core animals are assumed to be 
all dependent on each other and hence we construct the full 
inverse for these animals. The non-core animals are assumed 
to be conditionally independent given the core animals, 
hence the part of the inverse for these animals is diagonal, 
while the part of the inverse between the core and non-core 
animals is dense. With APY, direct inversion is needed only 
for the core subset. Effectively, GEBV of the non-core ani-
mals are modelled as a function of the GEBV of the core ani-
mals. During model fitting, phenotype information “flows” 
between both subsets of animals, hence both subsets con-
tribute to the estimation. While APY is an approximation, 
it has been shown to be accurate and scalable for various 
populations of dairy and beef cattle [13, 14], pigs [15, 16], and 
sheep [17, 18].

There are two crucial decisions in APY. First, how many 
animals should form the core subset. Second, which ani-
mals should form the core subset. Empirical testing suggests 
that the optimal number of core animals is connected to the 
effective population size and the dimensionality of genomic 
information [12]. As such, the optimal number of core ani-
mals can be gauged by the number of eigenvectors that 
explain a large percentage of variation in SNP genotypes (or 

equivalently in G ) [19]. For example, by setting the number 
of core animals to the number of eigenvectors that captured 
more than 98% of the variation in G , the GEBV were com-
parable to those obtained with the full G . Empirical testing 
also suggests that a random choice of core animals gives sat-
isfactory accuracy of GEBV [20]. However, a random choice 
is not desired in routine genetic evaluations because it could 
result in small changes in GEBV, possibly reranking animals, 
even with the same data. A recent study suggested that such 
changes are a natural part of genetic evaluations when the 
data is updated [21]. Still, genetic evaluations should return 
the same GEBV with the same data. An extensive study 
on size and definitions of core subsets in a pig dataset [22] 
showed that their definition matters for small core sizes. 
Therefore, there is a need for methods that construct an 
optimal core subset that maximises accuracy of GEBV and 
ensures stable results between different model runs.

The aim of this paper is to present and evaluate alterna-
tive core subset constructions for APY. First, we propose 
a novel algorithm for optimising the core subset based on 
the conditional genomic relationship matrix or the con-
ditional SNP genotype matrix. We termed this method 
as the conditional core subset algorithm, or simply con-
ditional algorithm. Second, we compared the conditional 
core subset construction with other core subset con-
structions using a simulated cattle dataset and a real pig 
dataset.

Methods
We analysed how different core subset sizes and different 
core subset constructions affect the accuracy of GEBV 
with APY. Specifically, we compared core subset con-
struction (1) at random; (2) based on the diagonal of the 
genomic relationship matrix; (3) at random with weights 
from (2); or (4) based on the conditional algorithm. We 
compared the different core subset constructions with 
the number of core animals set to the number of largest 
eigenvalues that captured 10, 30, 50, 70, 90, 95, 98, and 
99% of the variation in G . To demonstrate the functional-
ity of different core subset constructions, we used a small 
simulated cattle dataset. To demonstrate their practical 
utility, we used a large real pig dataset. In the following, 
we first describe the simulated and real datasets as well 
as the models fitted to each dataset. We then describe 
different core subset constructions for APY, including 
the derivation of the conditional algorithm. Finally, we 
describe the validation of GEBV and data visualisation.

Simulated cattle data
We simulated a simple breeding programme using the 
AlphaSimR R package [23]. The simulated genome con-
sisted of 10 chromosomes with 1100 segregating sites per 
chromosome (11,000 in total), from which we randomly 
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assigned 100 sites (1000 in total) as additive quantitative 
trait loci (QTL), and 1000 sites (10,000 in total) as SNP 
markers. There was no overlap between QTL and SNPs. 
The historical effective population size followed cattle 
estimates [24], with a mutation rate of 2.5× 10−8 , and 
a recombination rate of 1.0× 10−8 . Phenotypes were 
assumed to have a heritability of 0.30. From the ini-
tial founder population of 3000 animals, we randomly 
selected 1500 females and 50 males to serve as parents 
of the first generation. In each succeeding generation, 
3000 animals with equal female to male sex ratio were 
obtained from mating 1500 females and 50 males, with 
a fixed number of two offspring per female. Females 
were replaced at a rate of 50%, meaning that the 750 best 
young females out of 1500 and the 750 best old females 
out of 1500 were dams of the next generation. This dam 
selection was based on their phenotype value. On the 
male side, the best 45 young males out of 1500 and the 
best 5 old males out of 45 were sires of the next genera-
tion. This sire selection was based on their true genetic 
value (mimicking accurate selection). SNP genotypes 
were collected for all animals in generations 15 to 20, 
resulting in 15,000 genotyped and phenotyped animals in 
our study. The 3000 genotyped animals from generation 
20 served as a validation subset.

Simulated cattle data analysis
We analysed the simulated phenotype data and SNP gen-
otype data with GBLUP:

where y is a vector of phenotypes, 1 is a vector of 1s, µ 
is the overall mean, Za is a design matrix connecting 
phenotypes to animal breeding values a , and e is a vec-
tor of residuals. We assumed that a ∼ N

(

0,Gσ 2
a

)

 and 
e ∼ N

(

0, Iσ 2
e

)

 , where G is the genomic relationship 
matrix, σ 2

a = 1.00 is the variance of breeding values, and 
σ 2
e = 2.33 is the variance of residuals.

Real pig data
Phenotypic data for a moderately heritable trait measured 
from 1999 to 2021 on 42,868 pigs (33,544 purebred—L1, 
114 crossbred—F1 (L1 × L2), and 9210 backcross—BC1 
(L1 × F1) and BC2 (L1 × BC1)) were provided by PIC 
(a Genus company, Hendersonville, TN, USA). Data on 
purebred L2 were not available in this study. SNP geno-
types were available for 42,707 SNPs after quality con-
trol. The number of genotyped pigs was 49,788 (37,598 
purebred—L1, 486 crossbred—F1, and 11,704 back-
cross—BC1 and BC2). The validation subset included 
478 phenotyped and genotyped youngest animals (L1 
and BC2) born in 2021, with their phenotypes removed 
from the analysis.

y = 1µ+ Zaa + e,

Real pig data analysis
We analysed the real phenotype data and SNP genotype 
data with GBLUP:

where y is a vector of phenotypes, X is a design matrix 
connecting phenotype to contemporary group fixed 
effects b , Za is a design matrix connecting phenotypes 
to animal breeding values a , Zl is a design matrix con-
necting phenotypes to shared litter effect l , and e is a 
vector of residuals. We assumed that a ∼ N

(

0,Gσ 2
a

)

 , 
c ∼ N

(

0, Iσ 2
l

)

 , and e ∼ N
(

0, Iσ 2
e

)

 , where G is the 
genomic relationship matrix, σ 2

a  is the variance of breed-
ing values, σ 2

l  is the variance of litter effects, and σ 2
e  is the 

variance of residuals.

Genomic relationship matrix and APY inverse
For both simulated and real datasets, the 
genomic relationship matrix was calculated as 
G = WW⊤/2

∑nm
j=1

pj(1− pj) , where W is a centred 
matrix of SNP genotypes (coded as 0 for the reference 
homozygote, 1 for the heterozygote, and 2 for the alter-
native homozygote), pj is the observed frequency of 
the alternative allele for SNP j, and nm is the number of 
SNPs [25]. To ensure G is positive definite, G was blended 
with 0.01I , where I is the identity matrix. The final G was 
either inverted directly or with APY.

The APY partitions G into:

where c and n correspond to the core and non-core sub-
sets. The APY inverse [9] is then:

where Mnn is a diagonal matrix with non-zero elements 
given by Mnn,ii = gii − gicG

−1
cc gci in which gii is the ith 

diagonal element of Gnn and gci = g⊤ic is the ith column 
of Gcn (or the ith row of Gnc ). This formulation induces a 
sparse inverse that approximates the full inverse. Here we 
only need the direct inverse of the core matrix Gcc and 
the diagonal matrix Mnn.

We defined the core and non-core subsets by splitting 
the genotyped animals. The number of core animals was 
the same across all evaluated core subset constructions. 
We matched the number of core animals with the num-
ber of eigenvectors that captured 10, 30, 50, 70, 90, 95, 98, 
and 99% of variation in G [19]. The remaining genotyped 
animals then formed the non-core subset.

Instead of eigenvalue decomposition of G (n× n) , we 
used an equivalent singular value decomposition (SVD) 

y = Xb+ Zaa + Zll + e,

G =

[

Gcc Gcn

Gnc Gnn

]

,

G−1

APY
=

[

G−1
cc 0

0 0

]

+

[

−G−1
cc Gcn

I

]

M−1
nn

[

−GncG
−1
cc I

]

,
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of W (n× nm) , because SVD has a O(n2mn) computa-
tional cost, while eigenvalue decomposition has a O(n3) 
computational cost. The SVD is given by W = UDV⊤ , 
where D is a diagonal matrix of singular values that cor-
respond to the square root of the non-zero eigenvalues 
of W⊤W and WW⊤ . The columns of U are left singular 
vectors that correspond to the eigenvectors of WW⊤ , 
such that U⊤U = I . The columns of V are right singular 
vectors that correspond to the eigenvectors of W⊤W , 
such that V⊤V = I . The eigenvalue decomposition of G 
is then obtained as G = WW⊤/v = UD2U⊤/v , where 
v = 2

∑nm
j=1

pj(1− pj) . The SVD of W was computed with 
the base R function svd [26] for the simulated data and 
a Fortran program using LAPACK subroutine DGESVD 
[27] for the real pig data.

Core subset constructions
A guiding principle in APY is to construct a core subset 
in such a way that the APY inverse approximates the full 
inverse G−1 well. This can be achieved by a sufficiently large 
core subset. Furthermore, for a given size of a core subset, 
we want to cover as much variation in the SNP genotype 
matrix (and hence in G ) as possible. To achieve this, we used 
four different core subset constructions. The first construc-
tion (random), used randomly sampled genotyped animals 
to form the core. This construction is the most common in 
current APY applications and has hence served as a base-
line. The second construction (diagonal), chose core ani-
mals based on the diagonal elements in G [17]. The principle 
behind this construction is that animals with large diagonal 
elements in G deviate substantially from the centroid of SNP 
genotypes and therefore sample variation in SNP genotypes 
well. An alternative view of this principle is to recognise that 
the trace of a matrix is equal to the sum of its eigenvalues. 
Hence, selecting animals with the largest diagonal elements 
in G maximises the amount of captured variation. How-
ever, this construction can oversample individuals from the 
most inbred families, while we would like to cover as many 
families as possible for a given core subset size. The third 
construction (weighted), was a combination of the first two 
approaches, where the core animals were randomly sampled, 
but with a weight based on the corresponding diagonal ele-
ment in G . The weighted construction attempted to alleviate 
the potential oversampling issue with the diagonal construc-
tion. We used the R function sample_n [28] with option 
weight for weighted sampling. For the random approaches 
(random and weighted), sampling was replicated five times 
to manifest potential variability in GEBV with a random core 
subset. The fourth construction (conditional), was based on 
a conditional algorithm inspired by sequential sampling, e.g. 
[29, 30], which we describe in the following.

The principle behind the conditional algorithm is to spread 
core animals across the domain of genotyped animals or 

equivalently the domain of collected SNP genotype data. 
This is achieved by choosing animals far away from each 
other in the covariance sense. The algorithm initiates the 
core subset with the animal that deviates the most from the 
centroid of SNP genotypes. Then, it sequentially finds ani-
mals that deviate the most from the core animal(s). By grow-
ing the core subset, the algorithm optimally samples the 
domain.

Before we introduce the algorithm, we will show how 
to find animals that are far away from each other in the 
covariance sense. We start with the joint covariance 
matrix C = WW⊤ , where the variance for animal i is the 
squared norm of the i-th row of W , or equally the i-th 
diagonal element of WW⊤ . For simplicity the scaling con-
stant is omitted, so G = C/v . Let w denote the vector 
corresponding to the i-th row of W (SNP genotypes of 
the animal i). Let e denote a “selector” vector of 0s and a 
single 1 at position i, so that w = e⊤W , Ci,i = e⊤Ce , and 
Ci,. = e⊤C . To find animals that are far away from each 
other in the covariance sense we use the conditional 
covariance matrix Ccond , where we condition on core 
animals. Specifically, large diagonals of Ccond indicate 
animals whose SNP genotypes are not well represented 
by the SNP genotypes of core animals. We implemented 
the algorithm by expanding the core subset one animal 
at a time. Hence, we require the conditional covariance 
matrix given animal i, which is:

Since ww⊤ is the squared norm ( ||w||2 ) of the row vector 
w , we introduce a normalised vector a , where a = w

|w|
 , 

a⊤a = w⊤
(

ww⊤
)−1

w , and aa⊤ = 1 . By using a , we can 
shorten the expression for the conditional covariance to:

By adding and subtracting Wa⊤aW⊤ we can factorise the 
conditional covariance as:

We can calculate the conditional SNP genotype matrix 
(conditional on the SNP genotypes of animal i) as:

Therefore, the conditional covariance matrix given ani-
mal i is:

Ccond = C− Ce
(

e⊤Ce
)−1

e⊤C

= WW⊤ −WW⊤e
(

e⊤WW⊤e
)−1

e⊤WW⊤

= WW⊤ −Ww⊤
(

ww⊤
)−1

wW⊤
.

Ccond = WW⊤ −Wa⊤aW⊤
.

Ccond = WW⊤ −Wa⊤aW⊤ −Wa⊤aW⊤ +Wa⊤aW⊤

= WW⊤ −Wa⊤aW⊤ −Wa⊤aW⊤ +Wa⊤aa⊤aW⊤

= (W −Wa⊤a)(W −Wa⊤a)⊤.

Wcond = W −Wa⊤a.
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The conditional algorithm (Algorithm  1) starts with a 
desired size of the core subset, nc , an empty vector to 
store core animals, k , and the joint covariance matrix, 
C0 = WW⊤ . The algorithm iterates for nc rounds by 
sequentially choosing core animals based on their con-
ditional variance. In the i-th round, it expands the core 
subset with an animal that has the largest conditional 
variance in Ci−1 , that is, conditional on the (i − 1) previ-
ously chosen core animals. Then it updates Ci−1 to Ci by 
conditioning on the currently chosen core animal. In the 
next round, the updated conditional covariance matrix Ci 
is used to choose the next core animal, and so on.

Ccond = WcondW
⊤

cond .

Forming and repeatedly updating a large covariance 
matrix can be demanding in terms of computation and 
storage. The conditional algorithm can work with the 
SNP genotype matrix instead of the covariance matrix 
by using the expression for the conditional SNP genotype 
matrix, Wcond (Algorithm 2). In line 2 of this algorithm, 
we show the expression diag(Wi−1W

⊤

i−1
) , which forms 

the covariance matrix and extracts its diagonal. We can 
speedup this step by calculating only the diagonal (con-
ditional variance) by squaring and summing every row of 
Wi−1.

The above presented algorithm does not guaran-
tee a globally optimal core subset. Namely, a differ-
ent starting core animal will lead sequential updates to 
a different core subset. Achieving global optimality is 
demanding. To partially address the optimality issue, 
we have extended the algorithm to choose core animals 
that sequentially minimise conditional variances of other 
animals. That is, choosing a core animal that captures 
as much variation in SNP genotypes of other animals as 
possible. This principle follows closely the principle of 
APY approximation. We have derived two versions of the 
extension by sequentially minimising the maximum or 
average conditional variance of other animals. To imple-
ment the extended algorithm, we have to replace line 2 

of Algorithm 2 with line 4 and run this updated line for 
every animal. Unfortunately, the addition of this inner 
loop makes the extended algorithm impractically slow 
and we have not tested it further.

Analyses
We compared the different core subset constructions 
using the correlation between GEBV obtained with the 
full inverse and GEBV obtained with the APY inverse. 
Furthermore, for the simulated data we assessed the 
accuracy for validation animals as the correlation 
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between their GEBV and true breeding values (TBV). For 
the real pig dataset, we assessed the accuracy for valida-
tion animals as the correlation between their GEBV and 
phenotypes adjusted for the fixed effects in the model. 
We consider the accuracy with the full G inverse as the 
baseline. Furthermore, we assessed the dispersion bias for 
validation animals as the regression of their phenotypes 
adjusted for the fixed effects on their GEBV. In this sense, 
a regression coefficient smaller or greater than 1 indicates 
the GEBV are either inflated or deflated, respectively.

To gain insight into where the chosen core animals are 
positioned with regards to each other, we have visual-
ised the population structure of genotyped animals with 
dimension reduction techniques. We used the classi-
cal linear Principal Component Analysis (PCA) and the 
novel non-linear Uniform Manifold Approximation and 
Projection (UMAP; [31]). We obtained UMAP using the 
umap R package [32] with default parameters.

Computations
The simulated cattle data was analysed within the R envi-
ronment [26], including the construction of genomic 
relationship matrices and their inverses by direct or APY 
inversion, and by calling the BLUPF90 software [33] to 
solve the mixed model equations. Due to the size, the 
mixed model equations corresponding to the real pig 

dataset were solved by a preconditioned conjugate gra-
dient algorithm as implemented in the BLUP90IOD2 
software [34] with the convergence criterion set to 10−12 
and executed on The University of Edinburgh High-Per-
formance Computing environment (Edinburgh Compute 
and Data Facility; http:// www. ecdf. ed. ac. uk). For the sim-
ulated and real data sets, we assumed that the variance 
components were known and not estimated. All figures 
were produced using ggplot2 [35] and VennDiagram 
[36] R packages. The code for the simulation, as well as 
for core subset construction and genetic evaluation, is 
available from https:// github. com/ Highl ander Lab/ ipocr 
nic_ Optim isedC ore4A PY and https:// doi. org/ 10. 5281/ 
zenodo. 71813 23.

Results
The quality of the APY approximation depends on the 
size of the core subset. For a given core subset size we 
can optimise its construction to ensure stability of GEBV. 
We show this by calculating the correlations between the 
GEBV obtained with the full inverse and GEBV obtained 
with the APY inverses, as well as the respective valida-
tion accuracies. By plotting the population structure with 
PCA and UMAP, we show how the conditional algorithm 
spreads core animals far away from each other in the 
covariance sense. Instability of the random construction 

Fig. 1 Correlations between GEBVFull and GEBVAPY for all animals and only validation animals in simulation. Genomic estimated breeding values 
(GEBV) were based on the full inverse (Full) or the Algorithm for Proven and Young inverse (APY) of the genomic relationship matrix ( G ). For APY, 
the core subset was constructed at random (Random), based on the highest diagonal in G (Diagonal), a combination of Random and Diagonal 
(Weighted), or the conditional algorithm (Conditional). Random and weighted constructions show five samples

http://www.ecdf.ed.ac.uk
https://github.com/HighlanderLab/ipocrnic_OptimisedCore4APY
https://github.com/HighlanderLab/ipocrnic_OptimisedCore4APY
https://doi.org/10.5281/zenodo.7181323
https://doi.org/10.5281/zenodo.7181323
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is illustrated by Venn diagrams of overlapping core ani-
mals between replicates. We present these results sepa-
rately for the simulated cattle dataset and the real pig 
dataset.

Simulated cattle data
For the simulated dataset, the number of core animals 
was 10, 50, 135, 326, 968, 1516, 2386, and 3129. These 
core subset sizes corresponded to the number of largest 
eigenvalues that captured 10, 30, 50, 70, 90, 95, 98, and 
99% of the variation in G.

Figure  1 shows correlations between GEBV obtained 
with the full inverse and GEBV obtained with the APY 
inverse, calculated either for the whole genotyped or 
validation population. The correlations increased with 
increasing core subset for all four core subset construc-
tions. The conditional construction had generally the 
highest correlation. Other constructions had comparable 
correlations. The correlation calculated for the validation 
population was more sensitive to core subset size than 
the correlation for the whole population. The correlations 
were greater than 0.99 when the number of core animals 
corresponded to the number of largest eigenvalues that 
captured 98% of the variation in G . There was consid-
erable variation in correlation between replicates with 

the random and weighted constructions, although this 
variation decreased as the core subset increased. With 
a large core subset (2386 core animals), the correlations 
between five consecutive replicates of 3000 validation 
animals were all equal to 0.99, for random and weighted 
constructions.

Figure 2 presents the accuracy of GEBV for validation 
animals as a function of the percentage of captured vari-
ation in G . The accuracy with the full inverse was 0.74, 
which represents the baseline. The accuracy with the APY 
inverse increased from 0.10 to 0.75 as the core subset 
increased. There were only minimal differences between 
the four core subset constructions in accuracy trends, but 
we note the variation in accuracy with random construc-
tions and that conditional construction generally had the 
largest correlation. The accuracy reached or even mar-
ginally surpassed (for about 0.001), the accuracy obtained 
with the full inverse, when the number of core animals 
corresponded to the number of largest eigenvalues that 
captured 98% of the variation in G.

To understand how the different core subset construc-
tions may affect selection decisions, we compared the top 
3% (45/1500) of young males selected based on the GEBV 
from the full inverse or the APY inverse. These selected 
young males were used as sires of the next generation so 

Fig. 2 Accuracy for validation animals in simulation. Accuracy is the correlation between genomic estimated breeding values (GEBV) and true 
breeding values (TBV) from simulation. GEBV were based on the full inverse (Full) and the Algorithm for Proven and Young (APY) inverse of the 
genomic relationship matrix ( G ). For APY, the core subset was constructed at random (Random), based on the highest diagonal in G (Diagonal), 
a combination of Random and Diagonal (Weighted), or the conditional algorithm (Conditional). Random and weighted constructions show five 
samples
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their ranking is important. When the core subset cor-
responded to the number of largest eigenvalues that 
captured 98% of the variation in G , very similar animals 
were selected using GEBV calculated with the full inverse 
compared to the APY inverse. Specifically, compared to 
the 45 young males selected based on the GEBV from the 
full inverse, the random construction selected 38±2 of 
the same young males, the diagonal construction selected 
37 of the same young males, the weighted construction 
selected 39±1 of the same young males, and the condi-
tional construction selected 39 of the same young males. 
Therefore, random construction had somewhat more 
ranking variation than weighted construction. There is 
no variation in diagonal and conditional constructions by 
design.

Compared to the random construction, the conditional 
construction could be more time consuming because 
the conditional algorithm sequentially updates a large 
SNP genotype matrix, W . To reduce computation time, 
we also ran the conditional algorithm on a reduced rank 
SNP genotype matrix obtained via Wr = UrDr , where 
UrDr correspond to the first r principal components of 
W that captured 99% of the variation in G , that is 3130 
of the 15,000 principal components. Using the reduced 
rank SNP genotype matrix Wr (with conditional con-
struction) produced very similar accuracies of the GEBV 

as using the full SNP genotype matrix W (see Additional 
file  1). However, there were some differences between 
the chosen core animals when using Wr or W , which 
increased proportionally with the number of core ani-
mals. For example, with 10 core animals the overlap was 
90% (9/10), with 135 it was 86% (116/135), but with 2386 
it was only 71% (1696/2386). Lastly, note that the time 
required to choose core animals using reduced rank 
Wr , to obtain the APY inverse in R, to read the inverse 
and solve the mixed model equations in BLUPF90, was 
reduced by more than half compared to using the full W.

Figure 3 shows PCA and UMAP for the 15,000 animals 
in simulation, with data points coloured by generation. 
While both methods captured general homogeneity of 
the simulated population, UMAP also revealed fine-scale 
population structure and clearly highlighted a change 
in variation between generations (see Additional file  2). 
Namely, the projected points moved closer as the gen-
eration number increased. This trend suggests loss of 
genetic variation due to selection and the creation of dis-
tinct clusters of paternal half-sib families. For example, 
the 50 clusters identified by UMAP in the validation set 
(generation 20) correspond to exactly 50 paternal half-sib 
families (Figs. 3 and 4 and see Additional file 2).

With a clear population structure of paternal half-sib 
families in the validation population, we investigated how 

Fig. 3 Visualisation of PCA and UMAP for genotyped animals in simulation. Projection of genomic relationships into the first two dimensions was 
done with Principal Components Analysis (PCA) or with Uniform Manifold Approximation and Projection (UMAP). The percentage of variation 
captured by each principal component is shown in parentheses. Colours represent five different generations of genotyped animals in simulation
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Fig. 4 Spread of core animals in the last generation of simulation. Visualisation of the Uniform Manifold Approximation and Projection (UMAP) 
for animals (gray dots) in the last generation of simulation representing 50 paternal half-sib families. Overlaid are 50 core animals chosen by the 
conditional algorithm (blue crosses)

Fig. 5 Spread of core animals with different core subset constructions in simulation. Ten core animals, from each of the four core subset 
constructions, are plotted on the Uniform Manifold Approximation and Projection (UMAP). Core animals were either selected at random (Random), 
based on the highest diagonal in G (Diagonal), a combination of Random and Diagonal (Weighted), or the conditional algorithm (Conditional). 
Random and Weighted show core animals from five samples (1–5), Diagonal and Conditional from one sample (1), while non-core animals are 
shown as zero (0)
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the conditional algorithm spreads core animals. In Fig. 4, 
we visualise UMAP for the validation population and 
mark chosen core animals. With just a few exceptions, 
the conditional algorithm spread the core animals across 
the validation population by selecting a core animal from 
each half-sib family. By comparison, the random con-
struction would randomly spread core animals across the 
validation population, each time differently.

Figure  5 shows UMAP for the 15,000 animals in sim-
ulation and 10 core animals from the four core subset 
constructions. Random constructions show core animals 
from five samples to indicate variability. This figure again 
demonstrates how the core animals are spread across a 
population and how these core animals differ between 
independent constructions. For example, no core animals 
overlapped across all five samples, and on average only ∼
15% of core animals overlapped between pairs of repli-
cates. By design, there is no such variability in the diag-
onal and conditional constructions—core animals are 
always the same for a given core subset size and a given 
set of genotyped animals. Note that some chosen core 
animals are not displayed since they have been placed 
outside the chosen axis limits.

Real pig data
For the real pig dataset, the number of core animals was 
8, 60, 184, 485, 1658, 2926, 5546, and 8348. These core 
subset sizes corresponded to the number of largest eigen-
values that captured 10, 30, 50, 70, 90, 95, 98, and 99% of 

the variation in G . Note that there is a difference between 
the explained variation in G used to define the number of 
core animals and the “realised” variation in G explained 
by those core animals. The first definition quantifies 
the percentage of variation in G captured by a particu-
lar number of largest eigenvalues. The second definition 
quantifies how much variation in G is actually captured 
by a core subset with a particular number of animals. All 
the results presented here are based on the first defini-
tion. Alternatively, the realised variation can be obtained 
by dividing the trace of Gcc by the trace of G . For smaller 
core sizes, there were no meaningful differences between 
the realised variation for the core subset constructions 
(see Additional file  3). For larger core sizes, the diago-
nal core subset construction captured 1 to 2% more 
variation in G compared to the other methods, which is 
expected. The realised variation by the core subsets was 
much lower than the explained variation by the largest 
eigenvalues.

The Venn diagram in Fig.  6 shows the number of 
shared core animals between the four core subset con-
structions. The total number of core animals is 5546, 
which corresponded to the number of largest eigenval-
ues that captured 98% of the variation in G . Most core 
animals were shared between the diagonal and condi-
tional constructions (34%, 1873/5546), while less than 
1% (29/5546) were shared across all four core subset con-
structions. The random construction produced the most 
unique core subset, with 73% (4045/5546) of core animals 
not shared with any other construction. For the random 
and weighted constructions, the results were consistent 
across all replicates, but we show only a single replicate 
for clarity. Furthermore, the Venn diagram in Additional 
file 4 shows the number of shared core animals between 
five replicates of the random construction. In particular, 
there were no core animals shared across all five repli-
cates, but at least 392 were shared between pairs of rep-
licates. A similar result was observed for the simulated 
data (not shown).

Figure  7 shows that correlations between GEBV 
obtained with the full and APY inverse in real data were 
almost a linear function of the percentage of variation 
captured with the APY approximation. All core subset 
constructions performed similarly well when the core 
subset was large, with correlations greater than 0.99 
when the number of core animals corresponded to the 
number of largest eigenvalues that captured 98% of the 
variation in G . The difference between the four construc-
tions was greater in the validation subset than in the 
whole genotyped population. The diagonal construction 
produced lower correlations than the other construc-
tions for the full genotyped population, but not for the 

Fig. 6 Venn diagram of core animals from the different core subset 
constructions in pigs. The Venn diagram shows overlap for 5546 core 
animals between the four core subset constructions. Core animals 
were selected at random (Random), based on the highest diagonal 
in G matrix (Diagonal), a combination of Random and Diagonal 
(Weighted), or the conditional algorithm (Conditional). For Random 
and Weighted only a single replicate is shown
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Fig. 7 Correlations between GEBVFull and GEBVAPY for all pigs and just validation pigs. Genomic estimated breeding values (GEBV) were based 
on the full inverse (Full) or the Algorithm for Proven and Young inverse (APY) of the genomic relationship matrix ( G ). For APY, the core subset was 
constructed at random (Random), based on the highest diagonal in G (Diagonal), a combination of Random and Diagonal (Weighted), or the 
conditional algorithm (Conditional). Random and weighted constructions show five samples

Fig. 8 Predictive ability for the validation set in pigs. Accuracy is the correlation between genomic estimated breeding values (GEBV) and 
phenotypes adjusted for the fixed effects ( y − Xb ). The GEBV were based on the full inverse (Full) or the Algorithm for Proven and Young (APY) 
inverse of the genomic relationship matrix ( G ). For APY, the core subset was constructed at random (Random), based on the highest diagonal in G 
(Diagonal), a combination of Random and Diagonal (Weighted), or the conditional algorithm (Conditional). Random and weighted constructions 
show five samples
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validation subset. There was a large degree of variability 
between the five replicates for the random and weighted 
constructions when the number of core animals was low, 
especially for the validation subset. The conditional con-
struction often had the highest correlation, particularly 
in the validation subset, but not always.

Figure  8 shows the accuracy of GEBV for validation 
animals relative to the percentage of variation captured 
in G . For example, the accuracy of GEBV obtained with 
the full inverse was 0.31, and when the number of core 
animals corresponded to the number of largest eigenval-
ues that captured 90% of the variation in G , the accuracy 
of the random construction was 0.28 (0.27 to 0.30), the 
diagonal construction was 0.29, the weighted construc-
tion was 0.27 (0.26 to 0.29) and the conditional con-
struction was 0.29. Again, the conditional construction 
generally had the highest accuracy. The accuracy of the 
random construction was higher than that of the con-
ditional construction when the number of core animals 
corresponded to the number of largest eigenvalues that 
captured more than 95% of the variation in G , but note 
that the plotted difference is more pronounced by the 
rounding of accuracies to two decimal digits. The differ-
ence between the two constructions was always less than 
0.005. The accuracy of the diagonal construction margin-
ally surpassed the full inverse when the number of core 
animals corresponded to the number of largest eigenval-
ues that captured 99% of the variation in G . In this sense, 

the conditional construction achieved the same satisfac-
tory accuracy as the random construction when the num-
ber of core animals was large, but also achieved notable 
improvements over the random construction when the 
number of core animals was smaller. This improvement 
can be demonstrated by comparing the accuracy from 
the conditional construction with the large variability in 
accuracy from the random and weighted constructions 
for a small number of core animals.

In addition to accuracy, we also assessed the disper-
sion bias for validation animals as shown in Additional 
file 5. In terms of dispersion bias (regression coefficients), 
there were no differences between the core subset con-
structions. In general, all four core subset constructions, 
as well as the full inverse, exhibited similar inflation 
(overestimation) of the GEBV. In addition, we analysed 
the number of rounds to achieve convergence (see Addi-
tional file  6). The random and conditional core subset 
constructions needed fewer rounds to achieve conver-
gence compared to the diagonal core subset construc-
tion. In general, we did not observe any major differences 
in the convergence patterns between different core sub-
set constructions.

We visualised the structure of the pig population with 
PCA and UMAP as shown in Additional file  7. PCA 
showed clear clusters of crossbreed animals (F1, BC1, 
and BC2) and purebred animals (L1). As expected, the 
backcross animals were positioned between the purebred 

Fig. 9 Visualisation of UMAP for genotyped pigs and an example of the optimised core subset for 60 pigs. Animals chosen by the conditional 
algorithm (Conditional) are plotted on the Uniform Manifold Approximation and Projection (UMAP). Colours represent purebred (L1), crossbred (F1), 
and backcross (BC1, BC2) pigs
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and F1 animals. UMAP also showed clusters of animals, 
but while PCA showed L1 as a homogeneous population 
in first two dimensions, UMAP revealed additional struc-
ture within the L1 animals in the first two dimensions. 
Closer inspection of the data revealed that this additional 
structure corresponds to a time trend within a breeding 
programme (not shown).

Figure  9 illustrates how the conditional algorithm 
spreads animals, with an example of 60 core animals to 
facilitate visualisation. In this example, the conditional 
algorithm chose 14 BC1, 13 BC2, 1 F1, and 32 L1 ani-
mals. For comparison, one random sample chose 11 BC1, 
5 BC2, 2 F1, and 42 L1 animals.

Discussion
The results show that core subset construction can be 
optimised and that such optimisation delivers accu-
rate and stable GEBV. Our results raise five points for 
discussion: (i) the overall performance of APY and the 
need for optimising the core subset; (ii) towards optimal 
core subset construction; (iii) expanding the core subset 
with new genotype data; (iv) limitations; and (v) other 
opportunities.

The overall performance of APY and the need 
for optimising the core subset
Our results confirm that the size of the core subset is 
critical in APY and that robust results can be obtained 
with a sufficiently large core subset. The results also show 
that given the size of the core subset, the proposed con-
ditional algorithm achieves an optimal and repeatable 
spread of core animals across the domain of genotyped 
animals. We observed a similar increase in accuracy 
when increasing the core subset size for the simulated 
and real datasets. However, there was more variability 
in accuracy with the random construction for the real 
dataset than for the simulated dataset. Furthermore, the 
difference between core subset constructions was more 
apparent in the real dataset, especially with a small core 
subset. This was most likely because the real dataset has 
a more complex structure than the simulated dataset, 
which again justifies the need for optimisation. Although 
the relationship between the size of the core subset and 
the accuracy of GEBV is well described [19, 20, 22, 37], 
construction of the core subset is somewhat neglected, 
with the random construction being the most common. 
The proposed conditional construction addresses this 
situation. While the conditional construction requires 
more computation time than the random construction, 
this additional time could be justified in several cases, 
specifically when the genotyped population has a com-
plex structure, such as for multiple breeds or crossbred 
animals.

Ostersen et  al. [15] and Bradford et  al. [20] provided 
early indications that the choice of animals for the core 
subset is important in specific cases. For example, in the 
case where genotyped animals had an incomplete pedi-
gree (with a variable number of generations), spreading 
the core animals across multiple generations maximised 
accuracy [15, 20]. Our results show that complex popu-
lation structures, like for multiple breeds or crossbred 
animals, necessitate some optimisation of the core sub-
set. Mäntysaari et  al. [7] mentioned this issue in their 
genetic evaluation involving 41 breeds, but did not pro-
vide a recommendation on how to optimise the core 
subset. Vandenplas et  al. [38] simulated a three-way 
crossbreeding program, and observed that the best accu-
racy was achieved when the core animals were randomly 
chosen within each breed and crossbred population. This 
simulation was later corroborated with real data [16]. 
Vandenplas et al. [38] also suggested that statistically or 
numerically more “stable” core subsets might be needed 
for populations with a complex population structure, 
even if this increases computing cost. Their approach 
with the QR decomposition of the SNP genotype matrix 
chose a core subset that improved convergence, but it did 
not improve accuracy. Nilforooshan and Lee [17] used 
the diagonal construction based on G as well as based 
on A . They found that the diagonal construction based 
on G gave a similar correlation between GEBV from the 
full inverse and APY inverse, when the core subset was 
sufficiently large, but not for smaller core subsets. We 
observed similar results with the real dataset. Recently, 
Cesarani et  al. [39] used APY in a large-scale genomic 
evaluation including five breeds. They observed changes 
in the prediction accuracy with different choices of core 
animals. They concluded that the random choice of core 
animals impacts prediction accuracy because breeds 
with less genotyped animals are not well represented. To 
address this undersampling, they proposed increasing 
the core subset size and balancing the core subset size 
per breed. In their case, this leads to the core (total num-
ber of genotyped animals) including 15k (3.4M) Holstein, 
15k (400k) Jersey, 5k (9k) Ayshire, 5k (47k) Brown Swiss, 
and 5k (5k) Guernsey animals. Nevertheless their within-
breed core subsets were still random. The conditional 
algorithm could optimise such a core subset because it 
works with SNP genotypes that capture both between- 
and within-breed variation.

Towards optimal core subset construction
To our knowledge, there have been no previous attempts 
to statistically optimise the APY core subset, except from 
the perspective of ensuring better convergence [38]. All 
other attempts largely modified the random approach by 
adding additional criteria, like spreading random choice 
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within generations, groups of animals (e.g., bulls, cows, 
most inbred, popularity, etc.), or breeds [2, 15, 17, 20, 
22, 38]. Our conditional core subset construction follows 
ideas from sequential sampling, e.g. [29, 30], in which 
sampling is based on the variance of SNP genotypes for 
each individual (diagonal of the G ) conditional on the 
current core subset. This results in a subset of core ani-
mals which are spread across the domain of genotyped 
animals and equivalently across the domain of collected 
SNP genotype data.

UMAP was used to gain insight into the spread of core 
animals across each population. On the one hand, for 
the simulated dataset, UMAP clearly distinguished each 
generation and each half-sib family (within generation). 
It also revealed that the conditional construction com-
monly chose one core animal per half-sib family. On the 
other hand, the random construction samples core ani-
mals at random and can sub-optimally cover the domain 
of genotyped animals. For the real dataset, UMAP clearly 
revealed the population structure across breeds and time 
as well as between family variation. Visualisation of the 
core animals chosen by the conditional construction 
showed how these animals were optimally spread across 
the domain of genotyped animals with extensive popula-
tion structure. Of note, UMAP on the real data produced 
some very distant outliers, which we have omitted to 
improve visualisation (see Additional file 8).

The results show how the conditional construction mit-
igates fluctuations in accuracy present with the random 
construction on smaller core subsets. Venn diagrams 
(Fig. 6 and Additional file 4) showed striking differences 
between different core subset constructions, but even 
more importantly between replicates of the random con-
struction. For example, in our simulated and real data-
sets, the random construction had no overlap in core 
animals across five replicates. As expected, fluctuations 
in accuracy were larger with smaller core subsets and 
smaller with larger core subsets. While large core subsets 
are the norm and easy to accommodate on modern com-
puting infrastructure, the conditional algorithm can be 
useful to reduce even the smallest fluctuations in accu-
racy. For example, in the simulation we saw variation in 
selected sires even when the core subset captured most 
of the variation in G.

It is important to point out that the conditional algo-
rithm does not always provide the globally optimal core 
subset. This was clearly seen in the results, where some-
times other core subset constructions had marginally 

higher accuracy. The conditional algorithm starts with 
one core animal and then sequentially grows the core 
subset in a repeatable manner by choosing an animal 
whose SNP genotypes are least captured by the current 
core subset (that is, the animal has the largest conditional 
variance). However, a different start can produce a differ-
ent core subset. For consistency, we always started with 
the animal with the largest diagonal value in G , hence the 
algorithm started on the farthest edge of the domain of 
genotyped animals. Alternatively, we could have started 
with the animal closest to the centroid of SNP genotypes, 
hence the algorithm would have started in the centre of 
the domain. While achieving global optimality is difficult, 
we attempted to improve the optimisation by sequen-
tially choosing core animals that would maximise the 
captured variation across the domain (that is, minimising 
the conditional variance in the next iteration). However, 
such an algorithm was impractically slow. Further work 
is required to develop more optimal algorithms for core 
subset construction.

Expanding the core subset with new genotype data
Optimising expansion of the APY core subset with the 
arrival of new genotype data has not been addressed in 
the literature although several empirical studies have 
been done [40–42]. When new genotype data arrive, we 
can either construct a new core subset or expand the 
existing core subset. The proposed conditional algorithm 
can expand an existing core subset because it works with 
the original or a conditional SNP genotype matrix. To 
expand the core subset with new genotype data we have 
to (1) condition the SNP genotype matrix of new animals 
on the old core subset, (2) combine the conditional SNP 
genotype matrices of old core and new animals, and (3) 
run the conditional algorithm on the the combined con-
ditional SNP genotype matrix. Conditioning the SNP 
genotype matrix of new animals on the old core subset 
can be done efficiently with Algorithm 3, where we com-
bine the SNP genotype matrices of core and new animals 
and sequentially condition the combined SNP genotype 
matrix on each core animal (line 5). We provide an imple-
mentation of this algorithm in our code (https:// github. 
com/ Highl ander Lab/ ipocr nic_ Optim isedC ore4A PY and 
https:// doi. org/ 10. 5281/ zenodo. 71813 23). We have found 
that the same core subset is obtained by either running 
a combined optimisation (Algorithm 2 on the combined 
SNP genotype matrix) or expanding the core subset 
(Algorithm 3).

https://github.com/HighlanderLab/ipocrnic_OptimisedCore4APY
https://github.com/HighlanderLab/ipocrnic_OptimisedCore4APY
https://doi.org/10.5281/zenodo.7181323
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The described approach to expand the core subset 
assumes that the same allele frequencies are used in cen-
tering the SNP genotype matrix of old and new animals. 
Ideally, we would use the combined allele frequencies of 
old and new animals. However, the old core subset was 
selected based on old allele frequencies. Hence, the same 
allele frequencies must be used for new animals too. 
This is not ideal since some routine genetic evaluations 
continually update allele frequencies, although changes 
between genetic evaluations are likely small, even in 
breeding programmes. Some genetic evaluations use 
base population allele frequencies, which are expected to 
change even less.

Garcia et  al. [41] tested the stability of APY-based indi-
rect predictions when large numbers of genotyped animals 
are added to the dataset. They concluded that provided the 
number of core animals is sufficiently large, APY-based indi-
rect predictions are stable, irrespective of the core subset def-
inition and the number of new genotypes. Similarly, Hidalgo 
et al. [42] examined the impact of adding new data with or 
without updating the core subset. They found that only slight 
changes in GEBV occurred when the core was updated, 
compared to using a fixed core for the same period of time. 
Therefore, in line with the recommendations in Misztal et al. 
[21], Hidalgo et  al. [42] recommend using the same core 
subset for a longer period of time (for example, 1 year), and 
update it when a significant amount of new data is generated. 
This update can be optimised with the conditional algorithm 
proposed in this paper.

Limitations
The main limitation of the conditional core subset con-
struction is that it is more time consuming compared to the 
random construction. We see two options here. The first 
option is to work with a reduced rank SNP genotype matrix. 
In terms of the simulated data set, we showed that iterat-
ing over the reduced rank SNP genotype matrix halved the 
computation time with no loss in accuracy, although the core 

subset was somewhat different. Therefore, while iterating 
over a reduced rank SNP genotype matrix saves computa-
tion time, it potentially adds another complexity, particularly 
when we also have to consider expansion with new data. The 
second option is to select groups of animals using the “selec-
tor” vector e instead of selecting just one animal at a time. 
This change will likely produce a sub-optimal result and 
more research is needed on balancing computation time ver-
sus accuracy and stability of the APY approximation.

Other opportunities
This study provides opportunities for further research in 
relation to at least four other study areas. First, the idea of 
using the conditional variance for choosing core animals 
in APY is identical to choosing animals for high-density 
genotyping or sequencing given a pedigree or low-den-
sity genomic relationship matrix [43]. Second, choosing 
core individuals that capture most of the genetic diversity 
is relevant also to designing and managing genebanks [44, 
45]. Third, the conditional algorithm could be relevant to 
choosing a diverse subset for phenotyping where phe-
notyping is limited due to costs or other constraints [46, 
47]. Fourth, inducing sparsity in dense inverse covariance 
(precision) matrices is an important topic in all areas 
that use Gaussian processes [48, 49]. Recently, Nearest 
Neighbour Gaussian Process (NNGP) has gained popu-
larity for large-scale applications in spatial statistics [50]. 
In genetics, NNGP could define a core subset for each 
animal, which is similar to Application 2 of Faux et  al. 
[51] and ancestral regression of Cantet et al. [52] (where 
the core subset represents parents and grand-parents). 
Extension of these concepts could further optimise APY 
for multi-breed applications. For example, linking the 
non-core animals of one breed to the core animals of that 
breed, or to limit linking across too many generations in 
order to limit the contribution of older animals to recent 
generations.
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Conclusions
In summary, we have confirmed that the accuracy of 
genomic evaluation with APY depends on the size of 
the core subset. For a given size of the core subset we 
can optimise the core subset with the proposed condi-
tional algorithm. This algorithm achieves an optimal and 
repeatable spread of core animals across the domain of 
genotyped animals.
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