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Abstract 

Background  Longitudinal records of temperament can be used for assessing behavioral plasticity, such as aptness to 
learn, memorize, or change behavioral responses based on affective state. In this study, we evaluated the phenotypic 
and genomic background of North American Angus cow temperament measured throughout their lifetime around 
the weaning season, including the development of a new indicator trait termed docility-based learning and behavio-
ral plasticity. The analyses included 273,695 and 153,898 records for yearling (YT) and cow at weaning (CT) tempera-
ment, respectively, 723,248 animals in the pedigree, and 8784 genotyped animals. Both YT and CT were measured 
when the animal was loading into/exiting the chute. Moreover, CT was measured around the time in which the cow 
was separated from her calf. A random regression model fitting a first-order Legendre orthogonal polynomial was 
used to model the covariance structure of temperament and to assess the learning and behavioral plasticity (i.e., slope 
of the regression) of individual cows. This study provides, for the first time, a longitudinal perspective of the genetic 
and genomic mechanisms underlying temperament, learning, and behavioral plasticity in beef cattle.

Results  CT measured across years is heritable (0.38–0.53). Positive and strong genetic correlations (0.91–1.00) were 
observed among all CT age-group pairs and between CT and YT (0.84). Over 90% of the candidate genes identified 
overlapped among CT age-groups and the estimated effect of genomic markers located within important candidate 
genes changed over time. A small but significant genetic component was observed for learning and behavioral plas-
ticity (heritability = 0.02 ± 0.002). Various candidate genes were identified, revealing the polygenic nature of the traits 
evaluated. The pathways and candidate genes identified are associated with steroid and glucocorticoid hormones, 
development delay, cognitive development, and behavioral changes in cattle and other species.

Conclusions  Cow temperament is highly heritable and repeatable. The changes in temperament can be genetically 
improved by selecting animals with favorable learning and behavioral plasticity (i.e., habituation). Furthermore, the 
environment explains a large part of the variation in learning and behavioral plasticity, leading to opportunities to also 
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improve the overall temperament by refining management practices. Moreover, behavioral plasticity offers opportu-
nities to improve the long-term animal and handler welfare through habituation.

Background
The increased interest in prolonging the lifespan of cat-
tle hinges on a concern for longitudinal performance [1]. 
One way to enhance the long-term animal resilience in 
the herd is by improving temperament and stress-cop-
ing ability during handling, and consequently, providing 
economic benefits to the industry [2]. Likewise, handler 
welfare would be improved because fearful cattle are 
associated with an increased risk of handler injury [3]. In 
dairy cattle, temperamental cows tend to be frequently 
culled due to accidents as well as metabolic and digestive 
disorders compared to calmer cows [4].

Cattle temperament can be improved through manage-
ment [3] and genetic and genomic selection, since mod-
erate-to-high heritability estimates have been reported in 
the literature [5–7]. Phenotypic studies indicate that ani-
mals can get calmer with repeated positive interactions 
[3, 5, 8]. Parham et al. [3] concluded that producers may 
avoid early-in-life culling because the cows can habitu-
ate or become sensitized to handling, and consequently, 
change their behavioral responses over time. Habituation 
can be defined as decreased responsiveness to a stimulus 
as a result of repeated exposure, and sensitization is its 
antagonistic term (i.e., an increased responsiveness to a 
stimulus [9]). Habituation is often associated with adap-
tation [9]. Genomic studies in honeybees and humans 
indicate that certain genes can exert differential influence 
on behavioral response over time, suggesting that the 
expression of those genes can be regulated by adverse cir-
cumstances [10, 11].

Cognition comprises the ability to acquire, process, 
and use information, and relies on mechanisms includ-
ing perception, learning and memory, and individual rec-
ognition [12]. Successful cognition should be apparent 
in adaptive behavioral responses, such as learning and 
behavioral plasticity. Studies have shown that cattle have 
the ability to learn and memorize their experiences and 
environments [3, 9, 13–16]. For instance, calves were able 
to discriminate locations based on probabilities of being 
rewarded or punished [17]. Besides, a hole-board test 
including 15 bottles (i.e., 11 empty and four baited bot-
tles containing milk) assessed the memorization pattern 
of dairy calves over time based on the ratio of rewards by 
all visits and the number of bottle feeding locations vis-
ited [14]. Selection for learning and behavioral plastic-
ity in livestock may provide an opportunity to improve 
long-term welfare and resilience for the animals and han-
dler [13]. Furthermore, it can potentially promote better 

engagement and habituation of animals when handled by 
humans or when interacting with technology on modern 
farms.

A wide range (from 0.02 to 0.99) of heritability esti-
mates have been reported for cognitive performance 
across many species, including humans, chimpanzee, 
rhesus macaque, domestic pig, rat, mouse, zebra finch, 
honey bees, guppy, and jungle fowl [18–22]. Similar to 
the genetic architecture of behavioral traits in livestock 
species [5, 6, 23, 24], learning and behavioral plasticity in 
humans follows a polygenic inheritance pattern [18, 20, 
25].

To the best of our knowledge, no studies have evalu-
ated the genomic factors that control temperament over 
time in cattle and the ability to learn and remember the 
experiences of previous handling as evidenced by rapid 
habituation. Our overarching goal was to characterize 
the changes in temperament (i.e., indicator trait of behav-
ior) of North American Angus cattle across their lifetime 
from a genetic and genomic perspective. The specific 
objectives of this study were to (i) estimate (co)variance 
components for temperament over time, including her-
itability for cow-at-weaning temperament (CT) meas-
ured from 2 to 15 years of age and the genetic correlation 
among age-groups; (ii) perform a genome-wide associa-
tion study (GWAS) of age-group cow temperament score 
(CT), followed by gene annotation analyses; (iii) inves-
tigate the changes in the effect of important genomic 
regions on cow temperament over time; (iv) evaluate if 
there is a heritable component on learning and behavio-
ral plasticity as indicated by habituation in Angus cattle 
(measured by the slope of a random regression model 
based on a first order Legendre orthogonal polynomial); 
and, (v) identify genomic regions, candidate genes, and 
biological pathways influencing learning and behavioral 
plasticity in Angus cattle through single-step GWAS and 
functional annotation of candidate genes.

Methods
Data
All the datasets used were provided by Angus Genetics 
Inc. (AGI; Saint Joseph, MO, USA). For the initial investi-
gation of this study, we considered two distinct datasets: 
yearling (YT) and cow temperament measured at wean-
ing (CT). Temperament was subjectively scored by the 
handler on a 1-to-6 scale during handling in the chute. 
Score definitions are in Table 1, where score 1 represents 
a docile and score 6 represents a very aggressive animal, 
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as described in Alvarenga et al. [5]. These scores and ter-
minology represent the animal response to being handled 
and constrained in confined facilities. For the statistical 
genetic analyses, we clustered the scores 4, 5, and 6 into a 
single category due to their low incidence [5, 23].

Yearling temperament was recorded on calves (males 
and females) from 320 to 440 days of age when animals 
were loaded into or left the chute. This dataset was pre-
viously described by Alvarenga et al. [5]. The phenotypic 
dataset was edited to keep a minimum of three records 
and variation (i.e., at least two different scores of YT) 
per contemporary group (CG) (described below). In 
total, 269,248 (153,387 males and 115,861 females) ani-
mals born between 1995 and 2018 with YT records were 
included in this study. The distribution of scores for YT is 
in Table 1.

Cow temperament measured at weaning was recorded 
on females around the weaning of their calves. The meas-
urement was recorded on cows exiting the chute within 
a maximum interval of 45 days from the weaning event. 
CT was repeatedly measured across the cows’ lifetime. A 
data quality control for CT records included a minimum 
of three records and variation (i.e., at least two different 
scores of CT) per CG and a minimum interval between 
consecutive records of 268  days in the animal’s lifetime 
(threshold provided by AGI). We would not expect a 
cow to wean two calves within an interval smaller than 
268 days, which is an extreme lower-bound value. After 
the quality control, 153,898 CT records for 93,531 cows 
born between 1978 and 2017 were used for this study. 
Data were collected from a minimum age of 760 days to a 
maximum of 5412 (~ 15 years) days (Fig. 1a). The records 

Table 1  Temperament description and frequency of records for yearling temperament (YT) and cow temperament measured at 
weaning (CT) scores after the phenotypic quality control

This table represents the description and scoring guidelines reported in the Angus Journal Report (October 2007; [27]) and Beef Improvement Federation [28]

YT: yearling temperament, number of animals per score category; CT: cow at weaning temperament, number of records per score category

The percentage of animals/records with that scoring is given between parentheses

Score Description YT CT

1 “Docile- gentle and easily handled; stands and moves slowly during processing; exits chute calmly” 188,805 (70.12%) 82,739 (53.76%)

2 “Restless- quieter but may be stubborn during processing; may try to back out of chute; some flicking of 
tail; exits chute promptly”

63,189 (23.47%) 56,394 (36.64%)

3 “Nervous- typical temperament is manageable, but nervous and impatient; displays a moderate amount of 
struggling, movement, and tail flicking; repeated pushing; exits chute briskly”

14,985 (5.57%) 12,925 (8.40%)

4 “Flighty (wild)- jumpy and out of control, quivers, and struggles violently; may bellow and froth at the 
mouth; displays continuous tail flicking; defecates and urinates during processing; may jump when 
penned individually; exhibits long flight distance and exits chute wildly”

1928 (0.72%) 1325 (0.86%)

5 “Aggressive- like score 4, but added aggressive behavior, fearfulness, extreme agitation, and continuous 
movement, which may include jumping and bellowing while in the chute; exits chute frantically and may 
exhibit attack behavior when handled alone”

256 (0.10%) 452 (0.29%)

6 “Very aggressive- thrashes about or attacks wildly when confined in small, tight places; pronounced attack 
behavior”

85 (0.03%) 63 (0.04%)

Fig. 1  Distribution of the age in days for the cow at weaning temperament records (a) and the number of repeated records per cow (b). Vertical 
dashed-red lines are the thresholds used to cluster the records into nine age groups
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were clustered into nine age groups to facilitate the longi-
tudinal statistical analyses. The vertical dashed-red lines 
in Fig. 1a represent the age group threshold, and detailed 
descriptive values are in Table 2. The number of records 
per animal ranged from one to 11 (Fig. 1b), with an aver-
age (standard deviation) of 1.7 (1.17) records and 30,586 
animals with more than two records. The distribution of 
the scores for CT after quality control is in Table 1 while 
the distribution of scores per age-group interval is in 
Table 2. Phenotypic means across age-groups were statis-
tically compared using the t.test function implemented in 
the R statistical software [26].

There were 15,431 animals with measurements for 
both YT and CT. Furthermore, 31,679 calves recorded 
for YT had dams (21,656 dams) with CT measured dur-
ing their weaning event. The pedigree dataset traced back 
four generations for the phenotyped animals, resulting in 
723,248 individuals in the pedigree file.

Statistical models
Models
The statistical model used for YT was previously defined 
by Alvarenga et al. [5]. In summary, it included concep-
tion type (i.e., embryo transferred or naturally con-
ceived), age of dam (in years, categorical effect), and age 
of the animal at the measurement (i.e., linear covariate) 
as systematic effects; and, CG, animal additive genetic, 
and residual as random effects. CG was defined as a 
concatenation of birth month-year, birth herd, weaning 
month-year, weaning herd, creep-fed or not, tempera-
ment month-year, temperament herd, yearling group age 
(i.e., three groups based on their deviations from yearling 
age-interval: younger, yearling, or older), sex, and if for 
the animal ultrasound information was available or not 
(binary variable; zero for missing information [5]).

Several models including systematic effects and CG 
for CT (defined below) were tested to determine the 
optimal model. As a result, the optimal model included 
conception type (i.e., embryo transferred or naturally 
conceived—to capture potential preferential treatments 
of embryo transfer calves), age in days as a linear covar-
iate, and herd-season-year at the trait scoring day as 
systematic effects; and CG, direct additive genetic, per-
manent environment, and residual as random effects. 
The CG was defined as weaning herd and month-year 
(i.e., herd and date when the cow was weaned in as a 
calf ); if the cow received creep-feeding during the 
growing period; yearling herd, month-year, and age 
group (i.e., effects when the cow had around 1-year of 
age); if for the animal ultrasound information was avail-
able; and the herd and month-year at CT scoring. The 
completeness of information for both weaning and 
yearling variables was not required when doing data 
editing. In other words, animals could have unknown 
information for either of those variables to build the 
CG. The early-in-life management conditions of the 
cow (e.g., weaning, feeding system, yearling, and ultra-
sound measurements) were included in the CG when 
available because it can account for previous experi-
ences that the animal had, which could potentially alter 
their behavior later in life. For instance, animals that 
are more frequently handled might have, on average, 
calmer behavior when exiting the chute than animals 
that are handled less frequently. CG was defined based 
on the statistical significance of the factors and our pre-
vious study on yearling temperament [5]. The statistical 
genetic analyses of this study comprised two steps: (1) 
pedigree-based (co)variance components estimations, 
and (2) single-step (ss)GWAS.

Table 2  Age group description and their frequencies and score distribution for yearling (YT, < 2  years) and cow at weaning (CT) 
temperament datasets

G: age group; N: number of records; Age: average age in days; Mean (SD): mean (standard deviation) of the scores

G N Age Temperament scores (%) Mean (SD)

1 2 3 4 5 6

< 2 269,248 375 70.12 23.47 5.57 0.72 0.10 0.03 1.37 (0.64)

3 47,839 760 56.00 35.53 7.49 0.73 0.22 0.03 1.54 (0.69)

4 33,579 1317 54.91 35.83 8.17 0.80 0.24 0.05 1.56 (0.71)

5 23,435 1682 53.71 36.48 8.60 0.85 0.32 0.04 1.58 (0.72)

6 16,817 2048 52.63 36.84 9.18 0.95 0.35 0.05 1.60 (0.73)

7 11,696 2414 51.84 37.59 8.90 1.15 0.46 0.07 1.61 (0.74)

8 8275 2778 50.10 39.70 8.65 1.11 0.37 0.06 1.62 (0.73)

9 5223 3144 49.21 39.71 9.78 1.00 0.31 0.00 1.63 (0.72)

10 3378 3511 47.51 39.93 10.89 1.01 0.56 0.09 1.67 (0.76)

> 10 3656 4128 46.17 41.52 10.94 1.04 0.33 0.00 1.68 (0.73)
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Methods
Threshold Bayesian methods (fitting a cumulative pro-
bit function) based on the Gibbs sampler and Markov 
chain Monte Carlo (MCMC) algorithm were used. (Co)
variance components, breeding value prediction (EBV), 
and the proportion of the total additive genetic variance 
explained by single nucleotide polymorphisms (SNPs) 
were retrieved using the thrgibbs1f90 software [29]. 
Convergence of the components was verified using the 
Geweke, Heidelberger and Welch method, and visual cri-
teria using the Bayesian Output Analysis package (boa 
[30]) implemented in the R software [26]. As an out-
come of the threshold random regression model (RRM, 
described in more details in the next section), genomic 
estimated breeding values (GEBV) were obtained on the 
liability scale (not directly meaningful in the biological 
context compared to the original scale of the trait) and 
for the coefficients (i.e., intercept and slope-learning and 
behavioral plasticity). First, a transformation of the GEBV 
was performed from the liability to the probability scale 
to facilitate the interpretability of the GEBV as follows:

where GEBVp is the GEBV on the probability of being 
docile; normalCDF is the normal cumulative density 
function; t is the threshold for which we calculated the 
cumulative probability, in this case, of being docile and its 
threshold was 0; and ûj is the average GEBV for the j age 
group. To evaluate the SNP effects at each age group and 
potentially identify candidate regions controlling CT at 
specific ages, a second transformation of the GEBV was 
performed: from coefficients (i.e., intercept and slope) to 
GEBV for each age-group per animal:

where û∗ is a matrix containing n rows (number of ani-
mals) and j columns (age-groups); T is a matrix of 
independent covariates for the first-order Legendre 
orthogonal polynomial; and û is a vector of GEBV for the 
intercept and slope coefficients.

For the (co)variance components, a run with 500,000 
samples, 250,000 burn-in, and thinning interval of 50 
was performed. For the ssGWAS, 10,000 iterations, 

GEBVp = 100 ∗ normalCDF
(
t − ûj

)
,

û∗ = Tû,

5000 burn-in, and thinning interval of 5 was considered 
because the variance components were fixed based on 
previous analyses.

(Co)variance components estimation
We performed two (co)variance components analyses to 
answer different research questions, which are summa-
rized in Table  3. First, we performed a random regres-
sion model (RRM) for CT (i.e., three to more than 10 age 
groups; Table 2; CT_RRM) fitting a Legendre orthogonal 
polynomial of first order. The main goal was to evaluate 
the covariance structure among temperament records 
across the years (age dependent) on cows and explore a 
learning and behavioral plasticity component as reflected 
by habituation to repeated handling (discussed below). 
CG, additive genetic, and permanent environmental 
effects were fitted as functions of age. The model used for 
CT_RRM was defined as follows:

where l is the vector of CT on the liability scale; b is 
the vector of systematic effects (i.e., conception type) 
and coefficients of fixed regressions for age (in days) 
within herd-year-season at the trait scoring; q is the 
vector of random regression coefficients for the CG, 
q ∼ N(0,Rq ⊗ I) ; u is the vector of random regres-
sion coefficients for the direct additive genetic effects, 
u ∼ N(0,Gu ⊗ A) ; p is the vector of random regression 
coefficients for the permanent environmental effects, 
p ∼ N(0,Rp ⊗ I) ; e is the random vector of residuals, 
e ∼ N(0, Iσ 2

e ) . First-order Legendre orthogonal polyno-
mials were used because we also aimed at evaluating a 
learning and behavioral plasticity component that would 
be feasible to interpret by considering the intercept and 
slope of the regression. A linear slope is an easily inter-
pretable coefficient to evaluate changes overtime. X , Xq , 
Z , and W are the incidence matrices for b , q , u , and p ; 
Rq , Gu , and Rp are the CG, additive genetic, and perma-
nent environmental variance component matrices; I and 
A are the identity and pedigree-based additive relation-
ship matrices, respectively. Residuals were assumed to be 
homogeneous.

l = Xb+ Xqq + Zu +Wp+ e,

Table 3  Summary of the (co)variance analyses performed in this study

CT: cow temperament measured at weaning; YT: yearling temperament

Abbreviation Methodology Objective

CT_RRM Single-trait random regres-
sion (CT dataset)

Evaluate the genetic covariance structure of temperament across cows’ lifetime and explore a potential 
learning and behavioral plasticity component reflected by habituation

YT_CT_MT Two-trait model (YT vs. CT) Explore the genetic covariance structure between yearling and cow at weaning temperament (based on 
a repeatability model)
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The (co)variance components for RRM were presented 
in two forms: coefficients (i.e., slope and intercept, in 
which the slope is termed as learning and behavioral 
plasticity) and over time (i.e., nine age groups). Heritabil-
ity and repeatability estimates over time were calculated 
as:

where h2j  and repj are the heritability and repeatability 
estimated for the j age group. The CG, direct additive 
genetic, and permanent environmental variance compo-
nents for the j age group are represented by σ̂2cgj , σ̂

2
uj , and 

σ̂
2
pej

 , respectively, and they were calculated from the pos-
terior mean of the (co)variance components estimated 
for the random regression coefficients of the CG, additive 
genetic, and permanent environment effects as:

where φ , � and θ are the contemporary group, addi-
tive genetic, and permanent environmental (co)variance 
matrices for the age groups; and T is a matrix of inde-
pendent covariates for the first-order Legendre orthogo-
nal polynomial representing the different age groups. 
Then, we fitted a bivariate model (YT and CT), in which 
for CT we used a repeatability model instead of a RRM as 
previously described. The models fitted were:

where lYT and lCT are the vectors of YT and CT on the 
liability scale; b is the vector of systematic effects, includ-
ing age (as a covariate for both models), conception type 
(YT and CT models), and age of dam (years, YT); q is the 
vector of random CG; u is the vector of random direct 
additive genetic effects; p is the vector of permanent 
environmental effects; e is the vector of residual random 
effects; and X , Xq , Z , and W are the incidences matrices 
for b , q , u , and p , respectively.

h2j =

σ̂
2
uj

σ̂
2
uj + σ̂

2
CGj

+ σ̂
2
pej

+ σ̂
2
e

,

and repj =
σ̂
2
uj + σ̂

2
pej

σ̂
2
uj + σ̂

2
CGj

+ σ̂
2
pej

+ σ̂
2
e

,

φ = TRqT
′

,

� = TGuT
′

,

and θ = TRpT
′

,

lYT = Xb+ Xqq + Zu + e,

lCT = Xb+ Xqq + Zu +Wp+ e,

Single‑step genome‑wide association studies
In total, 8784 genotyped animals were used for the 
ssGWAS for the CT based on the RRM. Of the 8784 
genotyped animals, 5751 had their own CT records, 
522 and 1795 were sires and dams of animals with CT 
phenotypes, respectively, and 716 were grandparents 
and/or great-grandparents of cows with CT records. 
These animals were genotyped with various SNP arrays 
as part of ongoing commercial genotyping activities for 
genetic evaluation purposes, resulting in a SNP set of 
54,609 SNPs, as described in detail by Alvarenga et al. 
[5]. The genomic coordinates were based on the ARS-
UCD1.2 bovine genome assembly [31, 32]. Genome-
wide association results for YT were retrieved from 
Alvarenga et al. [5].

Genomic quality control procedures were applied 
using the preGSf90 software [33] and removed geno-
typed individuals with a call rate lower than 90% and 
pedigree errors. SNP genotypes with a call rate lower 
than 90%, a minor allele frequency (MAF) lower than 
0.01, a deviation of the heterozygous genotype from 
Hardy Weinberg equilibrium higher than 0.15, and 
non-autosomal chromosomes were also removed. In 
total, 8748 genotyped animals and 41,376 SNPs were 
kept for further analyses.

The ssGWAS [34] method was used, in which the 
pedigree-based matrix tracking back four generations 
from the animals with phenotype information ( A , 
282,170 animals) and SNP-based relationship matrix 
( G ) were combined into the H matrix [34–37]. The 
GEBV were obtained using the thrgibbsf190 software 
[29] and previously calculated variance components. 
The GEBV were back-solved to the SNP effects. In brief, 
the back-solving process can be described as:

where ûc is the vector of SNP solutions for the c th ran-
dom regression coefficient (intercept or slope); M is the 
matrix of genotypes coded as − 1, 0, and 1, representing 
aa, Aa, and AA, respectively, and ĜEBVc is the vector 
of GEBV for the c th random regression coefficient from 
all genotyped animals. The SNP solutions for both coef-
ficients of the same SNP k were combined into a vector 
and used to estimate the SNP effects for all age groups 
as ŜNPk = Tûk  where ŜNPk is the vector containing 
the SNP effects estimated for each age group of the k th 
SNP, T is a matrix of covariates for the first-order Leg-
endre orthogonal polynomial, and ûk  is the vector of SNP 
solutions for both random regression coefficients related 
to the k th SNP. After obtaining the SNP effects for each 
coefficient, sliding windows of five SNPs were created 
(as done in Alvarenga et al. [5]) and the effects of those 

ûc = M′
⌊MM′

⌋
−1

ĜEBVc ,
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SNPs were summed up. The variance explained by each 
genomic window was calculated as proposed by Strandén 
and Garrick [38].

Quantitative trait loci (QTL) curated in the Cattle QTL 
Database (Cattle QTLdb [39] www.​anima​lgeno​me.​org; 
accessed date: 17 March 2022) and located within the 
selected genomic windows were identified. Gene annota-
tion information was retrieved from Ensembl using the 
biomaRt R package [26, 40]. Functional annotation was 
performed in terms of Gene Ontology (GO) biological 
processes (GO_BP [41]) and metabolic pathways of the 
Kyoto Encyclopedia of Genes and Genomes (KEGG [42]) 
available in the DAVID database (david.ncifcrf.gov/tools.
jsp [43]; access date: 19 March 2022).

Results
Phenotypic description of yearling and cow temperament 
measured at weaning
Older animal groups had a significantly higher tempera-
ment (flightier) score than younger animal groups based 
on a test of means (Fig. 2a and Table 2). Animals younger 
than 2 years had a phenotypic mean YT of 1.38 (standard 
deviation equal to 0.64) and animals older than 10-years-
old had a mean of 1.67 (0.76; Table 2). Although the dif-
ference is small, older dams tended to raise flightier 
calves (mean equal to 1.42) compared to younger dams 
(mean equal to 1.36; Fig.  2b). Finally, the phenotypic 
Pearson correlation between CT and YT of their progeny 
was 0.36.

(Co)variance components of cow temperament measured 
at weaning
Temperament over time
On the one hand, the variance of the CG slightly 
decreased with age (circle-solid red line in Fig. 3). On the 
other hand, the additive genetic and permanent environ-
mental variances increased over time (triangle-green and 

square-yellow lines, respectively; Fig.  3). Residual vari-
ances were assumed to be homogeneous over time and 
were equal to 0.13 (0.01). Heritability and repeatability 
increased over time from 0.38 (0.02) to 0.53 (0.03) and 
from 0.56 (0.01) to 0.77 (0.01), respectively (Fig. 3). The 
(co)variance components for all age groups are in Addi-
tional file  1: Table  S1. High genetic correlations were 
observed among all pairs of age for CT, ranging from 0.91 
to 1.00 (down-diagonal Fig. 4a). The phenotypic correla-
tion decreased as the gap in age increased (from 1.00 to 
0.18; down-diagonal Fig.  4b). In the upper diagonal of 
Fig. 4, values within parentheses, are the standard devia-
tions from the posterior distribution for the correlations.

Learning and behavioral plasticity
The average CT and learning and behavioral plasticity 
components were represented by the intercept and slope 
coefficients of the random regression model based on a 

Fig. 2  Phenotypic average of temperament across age groups and their significance (a) and the phenotypic average of yearling temperament 
grouped by age of dam (b)

Fig. 3  Variance, heritability, and repeatability estimates across the 
years for cow at weaning temperament. σ2cg is the contemporary 
group variance; σ2u is the additive genetic variance; σ2pe is the 
permanent environmental variance; σ2e is the residual variance; h2 is 
the heritability; and Rep is the repeatability

http://www.animalgenome.org
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first-order Legendre orthogonal polynomial (CT_RRM), 
respectively. The coefficients and (co)variances for the 
average CT and learning and behavioral plasticity are in 
Table 4. The learning and behavioral plasticity component 
explained 3.3% of the total additive genetic variation of 
cow temperament measured at weaning. A low heritability 

estimate (0.016; Table 4) was observed for the learning and 
behavioral plasticity; however, it is significantly different 
from 0 (highest probability density: 0.012–0.020). Perma-
nent environment effects had a larger impact on learning 
and behavioral plasticity with a variance 1.6 times greater 
than the direct additive genetic variance, compared to 
average CT, in which the additive genetic variance was 2.8 
times greater than the permanent environment variance 
(Table 4).

A strong positive genetic correlation was observed 
between average CT and learning and behavioral plasticity 
(0.744), while a weak positive phenotypic correlation was 
observed between them (0.219). Figure 5a is a representa-
tion of nine bulls with more than 25 daughters with three 
learning and behavioral plasticity patterns: (i) habituation 
(positive slope), (ii) neutral (slope close to zero), and (iii) 
sensitization (negative slope). The Y-axis is the GEBV for 
the probability of the animal being docile. Figure 5b shows 
the additive genetic component for the learning and behav-
ioral plasticity of one of the sires presented in Fig. 5a and a 
sample of its daughters (i.e., daughters with at least two CT 
records; average and maximum equal to 4 and 10 records, 
respectively). Figure  5c–e represents the impact of the 
permanent environment component on the probability of 
being docile for the daughters raised in similar conditions 
(i.e., panels (c), (d) and (e) represent three different CG).

Fig. 4  Additive genetic (a) and phenotypic (b) correlations among pairs of age group for temperament measured on cows at weaning. Lower 
diagonal: correlations; upper diagonal: values between parentheses are the standard deviations for the correlations

Table 4  (Co)variance components for the average cow 
temperament measured at weaning (average CT – intercept) and 
learning and behavioral plasticity (LBP – slope)

Average CT: overall average cow at weaning temperament, the intercept of the 
random regression model; LBP: learning and behavioral plasticity, the slope of 
the random regression model
a Common residual variance for intercept and slope because homogenous 
residuals were fitted for all age groups

Component Average CT LBP

Contemporary group variance ( σ 2

CG) 0.004 (0.001) 0.005 (0.001)

Additive genetic variance ( σ 2
u) 0.396 (0.019) 0.013 (0.002)

Permanent environment variance ( σ 2
pe) 0.143 (0.013) 0.021 (0.003)

Residual variance ( σ 2
e )a 0.129 (0.008)

Heritability ( h2) 0.505 (0.018) 0.016 (0.002)

Repeatability 0.688 (0.007) 0.043 (0.004)

Genetic correlation 0.744 (0.046)

Phenotypic correlation 0.219 (0.013)
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Genome‑wide association for temperament 
across the years, average of cow temperament measured 
at weaning, and learning and behavioral plasticity
Longitudinal temperament
The intercept and slope’s SNP-window effect from 
RRM_CT were transformed to each age group’s SNP-
window effect. The effect was used instead of the vari-
ance explained because the latter cannot be linearly 
transformed using the Legendre orthogonal polynomial 
coefficients. The top 20 genomic windows were selected 

for each age group based on the absolute effect. Top 
genomic regions overlapped a lot among age groups 
[from 90 to 100%; (see Additional file  1: Table  S2)]. 
The Manhattan plot for each age group is presented in 
Additional file 2: Fig. S1). The percentage difference of 
the genomic window effect across the years is repre-
sented by the top regions for three age-groups (i.e., 3, 7, 
and > 10 years-old) in Fig. 6, in which the effect for the 
age group ‘3 years-old’ was chosen as the baseline (i.e., 
considered as 0).

Fig. 5  Genetic and permanent environment components for the probability of an animal being docile across the years. a GEBV of three sires with 
habituation (points), sensitization (square), and neutral (triangle) learning and behavioral plasticity. b GEBV of a sire (light blue line) and its daughter 
that have at least two CT records and have siblings in the same contemporary group. c–e Permanent environment impact (PE) of daughters of a 
single sire raised in same conditions (same contemporary group). EBV: probability of being docile at a genetic level; PE: impact of the permanent 
environment on the probability of being docile

Fig. 6  Percentage differences of SNP-window effect across the years for the top 20 genomic regions selected based on the effect for 3, 7, 
and > 10 years age groups. The liability effect was converted, in which increasing values mean becoming more docile. The SNP-window effect for 
age group 3-years-old was considered as the baseline for comparison
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Candidate genes surrounding the top 20 SNP-windows 
for each age group were retrieved. Thereafter, we identi-
fied the overlapping candidate genes among age groups 
(Fig.  7). One gene located on BTA10 i.e. serine palmi-
toyl transferase long chain base subunit 2 gene (SPTLC2) 
overlapped between YT (< 2  years old) and CT (from 3 
to > 10  years old). In addition, two paralogous genes 
also overlapped between YT and CT but were not cap-
tured by the Venn Diagram i.e. for the U6 gene (U6 spli-
ceosomal RNA), a paralogue being located on BTA8 for 
YT and another one on BTA10 for CT. Among CT age 

groups, 33 of the 43 genes identified overlapped among 
themselves (Fig. 7) and (see Additional file 1: Table S3). 
Seven of the 10 genes that did not overlap among the age 
groups were annotated, and they were located on BTA10 
(e.g., NREP, TRIP4, CSNK1G1, PCLAF) and BTA18 [e.g., 
BREH1, NUP90, CES5A; (see Additional file 1: Table S3)].

Learning and behavioral plasticity
Twenty-three and 26 non-overlapping SNP-windows 
explained more than 0.20% of the total additive genetic 
variance for the average CT and learning and behavioral 

Fig. 7  Venn diagram for the overlapping genes identified for the top 20 SNP-window based on absolute effect for the cow at weaning 
temperament and genes identified by Alvarenga et al. [5] for yearling temperament
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plasticity, respectively. The maximum variance explained 
by the SNP-windows were 0.51 and 0.59% for the average 
CT and learning and behavioral plasticity, respectively. 
The Manhattan plots for both average CT and learning 
and behavioral plasticity are in Fig. 8. For the average CT, 
the top genomic regions are located on BTA1, 2, 3, 7, 9, 
10, 12, 14, 16, 17, 18, 24, 26, 28 and 29, and those regions 
explained 7.46% of the total additive genetic variance. 
The genomic regions for the learning and behavioral 
plasticity are located on BTA1, 2, 3, 7, 9, 10, 14, 16, 18, 24, 
26, 27, 28, and 29, explaining 8.10% of the total genetic 
variance. There were 18 genomic regions that overlapped 
between the average CT and learning and behavioral 
plasticity, leaving BTA12, 16 and 17 as unique regions for 
the average CT, and BTA16, 24, and 27 for the learning 
and behavioral plasticity.

Seventy-three annotated genes (63 protein coding) 
were located around the genomic regions for the aver-
age CT, and 98 annotated genes for the learning and 
behavioral plasticity (90 protein coding). A complete list 
of the genes is in Additional file  1: Table  S4. Sixty-nine 

annotated genes were commonly identified for both aver-
age CT and learning and behavioral plasticity (61 protein 
coding genes), four genes were uniquely identified for the 
average CT (2 protein coding genes), and 29 genes were 
uniquely identified for the learning and behavioral plas-
ticity (29 protein coding genes). Table 5 shows the most 
relevant candidate genes based on previous associations.

Considering the genes identified for both average 
CT and learning and behavioral plasticity altogether, 
four GO biological terms were statistically significant 
(P-value < 0.05), including cortisol metabolic process, 
steroid hormone biosynthetic process, aldosterone bio-
synthetic process, and cellular response to peptide hor-
mone stimulus (see Additional file  1: Table  S5). Other 
biologically relevant terms are glucocorticoid biosyn-
thetic process (P-value < 0.10), dopamine receptor signal-
ing pathway, negative regulation of receptor activity, and 
positive neural precursor cell proliferation.

Steroid 11-beta-monooxygenase activity and corti-
costerone 18-monooxygenase activity were the two GO 
molecular functions that were statistically significant 

Fig. 8  Manhattan plot for the average cow temperament measured at weaning (a) and learning and behavioral plasticity (b) components of a 
random regression model for cow temperament measured at weaning
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[P-value < 0.05; (see Additional file  1: Table  S5)]. No 
KEGG pathway terms were significant in this analysis, 
however, cholinergic synapse, melanogenic, and cortisol 
synthesis and secretion are three biologically relevant 
terms (see Additional file 1: Table S5).

The genomic regions with a variance that explained 
more than 0.20% for the average CT and learning and 
behavioral plasticity overlapped with 739 and 799 QTL-
regions annotated for 78 and 88 traits in cattle, respec-
tively (see Additional file 1: Table S6). Some examples of 
traits in which those QTL had previously been associ-
ated are bovine tuberculosis susceptibility, calf size, calv-
ing ease, clinical mastitis, conception rate, feet and leg 
conformation, ketosis, length of productive life, milking 
speed, twinning, and stillbirth.

(Co)variance components of yearling and cow 
temperament measured at weaning
High genetic correlations were observed among all time-
points for CT, which meets one of the assumptions to 
use a repeatability model. Posterior means and stand-
ard deviations for the variance components for CT in a 
repeatability model were obtained from 10,000 samples, 
which were a subset from a run with 200,000 iterations, 
100,000 burn-in, and a thinning interval of 10. The pos-
terior means and standard deviation for the heritability 
and repeatability estimates of CT were 0.44 (0.02) and 
0.50 (0.01), respectively. The variance components are in 
Additional file 1: Table S7.

The genetic correlation between YT and CT was 
obtained using a bivariate model. The (co)variance com-
ponents are in Table 6 and Additional file 1: Table S8. The 
heritability estimates in a two-trait model were similar to 
the estimates of a single-trait model, which were 0.42 for 
YT and 0.45 for CT (see Additional file 1: Table S8). The 

genetic and phenotypic correlation between YT and CT 
were 0.84 (0.01) and 0.37 (0.02), respectively.

Discussion
Phenotypic assessment of temperament over the years
Young calves, such as at weaning stage, usually show a 
fearful response to handling due to the novelty of being 
handled coupled with greater exposure to a variety of 
potential stressors including breaking the dam-calf bond, 
change of diet, and re-grouping with unfamiliar ani-
mals, as described by Enríquez et  al. [44]. Furthermore, 
studies have shown that the average temperament score 
decreases as the frequency of handling or additional ani-
mal–human interaction increases, as long as the stock-
person uses a calm approach to handling the animals [3, 
5, 45, 46]. In other words, one would expect the average 
temperament to decrease (animals become more docile) 
as the age increases. On the one hand, experimentally-
designed datasets are often associated with frequent 
human–animal interactions. On the other hand, in a 
seedstock/commercial setting, the handling frequency 
(i.e., human–animal interactions) decreases as the ani-
mals get older. With that, temperament scores taken on 
mature animals in this dataset were collected at or near 

Table 5  Sample of the candidate genes identified for average cow temperament measured at weaning (average CT), learning and 
behavioral plasticity (LBP), and cow temperament across the years (CT)

Chr: Start–End bp Gene Gene name Trait

1:80,873,608–81,097,089 DGKG Diacylglycerol kinase gamma LBP

10:36,050,714–36,074,743 BAHD1 Bromo adjacent homology domain containing 1 LBP

10:36,139,789–36,160,950 CCDC32 Coiled-coil domain containing 32 LBP

10:36,077,444–36,079,398 CHST14 Carbohydrate sulfotransferase 14 LBP

10:45,660,900–45,811,429 CSNK1G1 Casein kinase 1 gamma 1 LBP; CT 10 and > 10 years

10:2,213,062–2,245,525 NREP Neuronal regeneration related protein CT 8 and 9 years

10:88,689,279–88,784,551 SPTLC2 Serine palmitoyltransferase long chain base subunit 2 Average CT; LBP

10:45,556,247–45,639,746 TRIP4 Thyroid hormone receptor interactor 4 LBP; CT 10 and > 10 years

14:24,946,881–25,258,596 TOX Thymocyte selection associated high mobility group box Average CT

18:25,595,310–25,641,535 ADGRG1 Adhesion G protein-coupled receptor G1 LBP

18:24,682,781–24,710,853 CES5A Carboxylesterase 5A Average CT; LBP; CT from 
7 to > 10 years

Table 6  (Co)variance components for yearling and cow at 
weaning temperament

YT: yearling temperament; CT: cow temperament measured at weaning

Components Mean SD

YT Heritability 0.42 0.01

CT Heritability 0.45 0.01

CT Repeatability 0.50 0.01

YT and CT genetic correlation 0.84 0.01

YT and CT phenotypic correlation 0.37 0.02
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the time calves were weaned which could lead to ele-
vated stress responses while handling. Consequently, in 
practical scenarios an opposite behavioral pattern could 
be observed: the average temperament scores slightly 
increased as the animals aged (Fig. 2a), suggesting a sen-
sitization across the years instead of habituation. In short, 
habituation can be defined as decreased responsiveness 
to a stimulus while sensitization is an increased respon-
siveness to a stimulus [9]. Habituation is often associated 
with adaptation [9].

We compared younger animals (YT, < 2  years-old) 
versus older than 2 years (CT, 3 years-old and older), in 
which differences can be attributed to factors related to 
the age and the recording event. First, 320 days is the min-
imum age when animals were recorded for temperament 
(YT), allowing the calves to acclimate to the challenging 
post-weaning environment [5]. Second, temperament at 
ages older than 2 years was recorded on cows around the 
weaning event. Cows differ in maternal behavior and in 
their response to weaning of their calf [47, 48], and sepa-
ration from the calf is likely to trigger different motiva-
tions and physiological and behavioral responses during 
recording of CT compared to YT, although cows had 
typically been weaned a few weeks before recording of 
CT. Cows could also change their behavior to a flightier 
behavior (e.g., scores 2 or 3; Table  2) as a consequence 
of mothering instincts, in order to be more protective of 
their progenies.

The average cow at weaning temperament score (ani-
mals older than 2  years) increased slightly with age 
(Fig.  2a). The magnitude of changes of temperament 
scores between adjacent age groups was slightly greater 
between YT to CT (increased by 12%) than within CT 
(maximum increase between adjacent years equal to 
2%), which also supports the argument that different 
lifetime events might evoke different motivational sys-
tems and capture context-specific behavioral responses. 
Furthermore, supporting these results, the phenotypic 
correlations between YT and CT were weakly positive 
[0.37; Tables 6 and (see Additional file 1: Table S8)], while 
strong phenotypic correlations were observed between 
CT scored in adjacent years and weaker correlations were 
estimated between larger age-group gaps (from 1.00 to 
0.18; Fig. 4b).

Previous negative experiences can trigger subsequent 
fearful responses to handling due to memory acquisition 
[9, 16, 17, 49]. Although the number of human–animal 
interactions is expected to cumulatively increase across 
the animals’ lifetime, the frequency of interactions per 
year can decrease (e.g., until yearling the calves are inten-
sively and routinely managed while older animals could 
be handled less than three times a year). An alternative 
hypothesis is that animals got, on average, flightier over 

time due to memorization of cumulative experiences. 
Such increased reactions to handling can impact the ani-
mal and handler welfare as well as impact the behavior 
of young replacement animals in the herd, because more 
temperamental dams also raise, on average, more tem-
peramental progeny (Fig. 2b).

Another potential justification for younger animals 
to be less flighty than older animals is selection. Direct 
genetic selection based on the official genetic evaluation 
for temperament would result in a more docile younger 
population. Based on this theory, flightier animals would 
be censured on later-in-life temperament measurements. 
However, in practice, selection is not based on a sin-
gle trait but rather on a selection index (group of traits) 
and thus, only animals with extremes breeding values for 
temperament might have been culled.

Genetic and genomic assessment of temperament 
over the years
A strong positive genetic correlation was observed 
between YT and CT (0.84, Table  6) and between pairs 
of year-groups for CT (average equal to 0.98, Fig.  4). 
Although these correlations are strong, we observed 
a similar pattern of phenotypic correlations: stronger 
within age-groups of CT than between YT and CT. Fur-
thermore, one out of the 24 genes identified for YT by 
Alvarenga et al. [5] overlapped with genes located within 
the top 20 genomic regions based on absolute effect for 
each age-group for CT (Fig. 8).

The overlapping U6 paralog gene is a noncoding RNA. 
Alvarenga et  al. [24] systematically reviewed genes that 
control behavioral indicators in mammalian livestock, 
and U6 paralogous genes had been previously associated 
with three behavioral indicators in cattle and two indica-
tors in pigs. Furthermore, a haplotype-based GWAS on 
yearling temperament in Angus cattle also identified U6 
as a candidate gene controlling yearling temperament 
[23].

The main overlapping gene between YT and CT, 
SPTLC2, is located on BTA10 and is associated with 
neurological diseases in humans [50] and re-learning 
mechanisms in rats [51]. The SPTLC2 gene plays a role 
in the de novo synthesis of sphingolipids (i.e., responsi-
ble for signal transduction) by condensing L-serine and 
palmitoyl-coenzyme A into 3-keto sphinganine, which 
can be further converted into sphingoid bases [50]. Acid 
sphingomyelinase (ASM) is a key enzyme in sphingolipid 
metabolism, and decreased activity of ASM in the dor-
sal hippocampus has been associated with efficient re-
learning in rats [51]. Interestingly, Huston et al. [51] also 
reported changes in the ASM enzymes as the rats aged.

Many genes identified for the top 20 SNP-windows 
based on the absolute value were common across age 
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groups (Fig.  7) and (see Additional file  1: Table  S3), 
which supports the strong genetic correlations 
observed between CT age groups. Although the genes 
controlling CT are similar, their effect can be time-
dependent. Oliveira et al. [52] observed an increase and 
decrease in the magnitude of the SNP effects across 
time for milk yield and somatic cell score in dairy cattle, 
respectively. In our study, the magnitude of SNP-win-
dow effect increased with age for the top 20 genomic 
regions (Fig.  6). Furthermore, studies on mental dis-
orders in humans have shown that genes become acti-
vated in response to life circumstances, consequently, 
initiating adverse behaviors [11]. In other words, we 
hypothesize that as the animal ages, behavioral-related 
genes are differentially regulated and/or their expres-
sion is altered. However, no conclusion can be drawn 
from the present study. Gene expression studies should 
be conducted on the genes identified to investigate this 
hypothesis.

In the same context, the genes that did not completely 
overlap with all age groups were identified later in life, 
and in general, they have been previously associated with 
age-related neural and mental disorders in humans and 
mice, such as memory and Alzheimer’s disease in older 
mice. The carboxylesterase 5A gene (CES5A) is located on 
BTA18, and it was identified as a candidate gene based on 
the top 20 SNP-regions for cows older than 7 years (see 
Additional file 1: Table S3). CES5A has been validated as 
a regulator of male mice fertility [53, 54]. As an expected 
role of carboxylesterase family genes, the CES5A protein 
can result in high levels of cholesterol and choline ester-
ase [55], alterations of which impact cognitive impair-
ment, especially on memory in aging rats [56–58].

The thyroid hormone receptor interactor 4 (TRIP4), 
casein kinase 1 gamma 1 (CSNK1G1), and PCNA clamp 
associated factor (PCLAF; also known as PAF and PAF15) 
genes are located on BTA10, and they were also identified 
as candidate genes controlling the expression of tempera-
ment later in life [animals older than 10 years; (see Addi-
tional file  1: Table  S3)]. TRIP4 gene has been identified 
as a candidate gene for Alzheimer’s disease susceptibility 
[59], and the CSNK1G1 gene may be a cause of syndro-
mic developmental delay and autism spectrum disorder 
[60]. Interestingly, a role for TRIP4 gene has also been 
identified in behavioral maturation in honeybees, which 
comprises the labor-division among worker bees across 
their lifetime [61]. Behavioral maturation can be seen 
in the hierarchical emergence of activities of the work-
bees over time, for example, from “2–3  weeks of adult 
life, workers perform tasks inside the hive, such as nursing 
and food storage, and as they become older, they progress 
to tasks outside, including foraging for pollen and nectar” 
[61].

The neuronal regeneration related protein gene (NREP; 
also known as C5orf13, D4S114, P311, PRO1873, PTZ17, 
or SEZ17) was identified as a candidate gene controlling 
behavioral responses at around 8 and 9  years-old (see 
Additional file  1: Table  S3), and NREP plays an impor-
tant role in the transforming growth factor beta (TGF-
β ) pathway [62]. In pigs, the NREP gene was indicated 
to improve meat production based on a gene expres-
sion study comparing Czech Large White pigs and wild 
boars [63]. Based on the same TGF-β pathway, the NREP 
gene has been identified as a rare variant in about 20% 
of suicide patients, based on a whole-exome ultra-high 
throughput sequencing analysis in brain samples of 
human suicide victims [64].

Genetic and genomic assessment of average temperament 
and learning and behavioral plasticity in cows
The Legendre orthogonal polynomial of first order was 
used to evaluate the average cow temperament meas-
ured at weaning and learning and behavioral plasticity, 
in which they are indicated by the intercept and slope 
of the random regression model, respectively. A simi-
lar approach was used in chickens, in which the authors 
showed that laying floor eggs and perching can be 
learned and there is a genetic component associated with 
it [65].

Learning and behavioral plasticity explains a low 
proportion of the total variation in cow temperament 
(3.33%). However, there is a genetic component associ-
ated with it, conveying that genetic and genomic selec-
tion could be applied to improve the magnitude of 
habituation over time, consequently, achieving the breed-
ing goal of more docile animals. Moreover, learning and 
behavioral plasticity that leads to a favorable change in 
behavior (i.e., habituation rather than sensitization) may 
have a positive impact on animal welfare, both on farms 
that rely on frequent human–animal interaction, and 
high-tech farms. There is genetic variation in the learn-
ing and behavioral plasticity spectrum from habituation 
to sensitization among individuals, as shown in Fig.  5a. 
Both outcomes likely depend on well-developed cogni-
tive abilities of learning, memory, and potentially individ-
ual human recognition, but differ in appraisal of threat. 
The top three sires in Fig.  5a (circle points) produced 
progeny that have a desirable expression of learning and 
behavioral plasticity because they habituate to handling. 
The contrasting sires (square points) produce progeny 
with an undesirable expression of learning and behavioral 
plasticity manifested by sensitization.

A wide range (from 0.02 to 0.99) of heritability esti-
mates have been reported for cognitive performance 
across many species, including humans, chimpanzee, 
rhesus macaque, domestic pig, rat, mouse, zebra finch, 
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honey bees, guppy, and jungle fowl [18–22, 61]. In this 
study, a low heritability was observed for the learning and 
behavioral plasticity component (0.02 ± 0.002; Table 4). 
Strategies such as the use of genomic information [66, 
67] and quantification of specific cognitive attributes 
(e.g., appropriate matching of threat appraisal with actual 
risk of harm) might assist and advance genetic improve-
ment for learning and behavioral plasticity. Furthermore, 
in this study most cows had only one record, which could 
compromise the estimation of the slope in the RRM, 
consequently, rendering lower heritability for the learn-
ing and behavioral plasticity. However, we have done an 
additional analysis including only animals with more 
than two records and no major differences were observed 
in the estimation of the slope heritability [learning and 
behavioral plasticity; (see Additional file  1: Tables S10 
and S11)].

The permanent environment effect explains the larger 
part of the variance of learning and behavioral plastic-
ity, indicating that the experiences that  the animal had 
throughout their life are a greater determinant of learn-
ing and behavioral plasticity between individuals. As dis-
cussed before, the environment may also induce changes 
in the expression (and importance) of certain genomic 
regions. Different rearing conditions can lead to distinct 
experiences, as seen in Fig.  5c–e. However, even within 
the same rearing conditions, animals can have individual 
experiences, and, consequently, different impacts on their 
behavioral response (shown in the animals in Fig. 5c–e).

A moderate-to-high genetic correlation was observed 
between the average CT and learning and behavioral 
plasticity. Accordingly, many of the annotated candi-
date genes (68%) identified overlapped between both 
components. The learning and behavioral plasticity had 
more genes uniquely identified [29 genes: e.g., (BTA1) 
DGKG; (BTA10) BAHD1, CCDC32, CHST14, CSNK1G1, 
FUT8, TRIP4; (BTA16) KISS2, PIK3C2; (BTA18) ADGR1, 
ADGR3, ADGR5; (BTA24) IMPA2] compared to the 
average CT (four genes: TOX, SMUD3, U6, 5S_rRNA).

For the average CT, two of the four uniquely identified 
genes were associated with mental disorders in humans 
and behavioral traits in livestock species. The thymocyte 
selection associated high mobility group box gene (TOX) 
has an important role in regulating neural stem cell pro-
liferation in neural tissues [68], and differential expres-
sion was seen between patients with schizophrenia and 
control patients (accuracy of 86% [69]). Another gene 
previously described, U6, is a paralog gene associated 
with adrenaline levels, feeding behavior, maternal behav-
ioral, suckling reflex, and temperament (including Angus 
yearling temperament) in cattle and pigs [5, 23, 24].

The cognitive-related candidate genes were previously 
associated with development delay, impaired learning 

and behavioral plasticity, and other mental and neuronal 
disorders in humans. The diacylglycerol kinase gamma 
gene (DGKG) was reported to be negatively regulated 
by the triiodothyronine hormone in mice inactivated 
for astrocyte-specific Dio2, which resulted in mood and 
behavioral disorders, such as anxiety-depressive behav-
ior [70]. Similarly, BAHD1 has also been suggested to 
regulate brain cells and, consequently, to be linked to 
anxiety-like behavior [71]. Comparing BAHD1-knockout 
and control mouse groups, the authors identified many 
differentially expressed genes in the brain suggesting a 
role for BAHD1 in transcriptional regulation in neural 
tissue [71]. Interestingly, 52% of the annotated cognitive-
related genes are from the same family of some differen-
tially expressed genes found in BAHD1-knockout mice, 
including the adhesion G protein-coupled receptor G1 
(ADGRG1), coiled-coil domain-containing (CCDC fam-
ily; including CCDC102A), carbohydrate sulfotransferase 
11 (CHST family), casein kinase 1 gamma (CSNK1G 
family), and thyroid hormone receptor interactor (TRIP 
family) genes.

Three adhesion G protein-coupled receptor G 
(ADGRG) family genes had been identified as cognitive-
specific candidates (see Additional file 1: Table S4), which 
have crucial neurodevelopment functions [72]. Further-
more, ADGRG1 knockdown mice were associated with 
depression-like behavior, executive dysfunction, and poor 
response to neurological treatment (e.g., antidepressant 
[73]). The carbohydrate sulfotransferase 14 (CHST14), 
casein kinase 1 gamma (CSNK1G1), and thyroid hormone 
receptor interactor (TRIP4) gene families were previously 
associated with cognitive performance in mice and hon-
eybees [60, 61, 74]. The CSNK1G1 and TRIP4 gene func-
tions and associations were described above as they were 
implicated in CT of cows of more than 10 years of age.

Knockdown mice for the CHST14 gene were linked to 
spatial learning and memory impairment with the gene 
action located in the hippocampus [74]. Furthermore, 
the CHST14 and CCDC32 genes have been identified in 
a genome-wide-gene-by-environment interaction as a 
carrier for high risk of suicide, primarily driven by post-
traumatic stress in woman [75]. The majority of the genes 
identified in this study sustain their function on behavior 
and cognitive performance across adult life. However, the 
CHST14 and CCDC32 genes support the hypothesis that 
genomic regions can change their effect and/or impact 
over time due to specific experiences, as shown in Fig. 8. 
Further validation studies on this longitudinal behavior 
should be carried out.

In general, the adrenal glands release two major hor-
mones observed during stress responses: cortisol or cor-
ticosterone and aldosterone. Physiological stress-driven 
events activate the hypothalamic–pituitary–adrenal 
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(HPA) axis signaling the adrenal glands. Cortisol is the 
primary steroid hormone to cope with stressors in some 
mammals [76]. However, concomitantly with the HPA, 
other systems are also activated, for example, the sym-
pathetic-adrenomedullary system leading to increased 
secretion of aldosterone [77]. Excessive stressors can 
impair many essential mechanisms, including personal-
ity development and behavior [76]. For instance, chronic 
excess of cortisol and aldosterone concentrations can 
lead to cognitive disorders, such as suppressed memory 
retrieval [77, 78]. Pathways and mediators for these ster-
oid hormones, cortisol and aldosterone, were enriched 
in this study, such as cortisol metabolic, aldosterone and 
glucocorticoid biosynthetic, and cellular response to pep-
tide hormone stimulus (see Additional file 1: Table S5).

Implications and next steps
The covariance structure among CT age groups was 
obtained from RRM fitting Legendre orthogonal polyno-
mial of first order, in which we assumed homogeneous 
residual variances across age groups. This assumption 
was made due to computational and software limitations, 
but future studies should model the phenotypic varia-
tion across the years considering heterogeneous residual 
variance. Furthermore, the model used considered a con-
stant permanent environment impact on the phenotype, 
which, for behavioral traits, may not be true. Throughout 
the animals’ life they could have a negative followed by a 
positive experience, resulting in a null permanent envi-
ronmental effect because these events cancelled each 
other out. Therefore, it would be advantageous to evalu-
ate correlations among ages fitting a cumulative perma-
nent environment model for a longitudinal behavioral 
study [79]. Furthermore, given that either phenotypic or 
genetic selection might be applied based on docility in 
combination with other economically important traits 
early in life, animals with extreme temperament might be 
prematurely culled and therefore, might have less pheno-
typic records on later age-groups (censored data). There-
fore, models considering the censured nature of the data 
should be evaluated to account for potential pre-selec-
tion bias.

The first-order Legendre orthogonal polynomial pro-
vided the opportunity to evaluate learning and behavioral 
plasticity in cows over the years, which can be an indi-
cator trait to improve the animal and handler-welfare in 
the long-term, as well as selection of animals that would 
habituate to the emerging technology on farms assuming 
that habituation to handling predicts habituation to other 
management related stimuli. Another reason for the first-
order Legendre orthogonal polynomial fitted was data 
limitation (i.e., average repeated records per animal equal 
to two). Therefore, continuing to record docility scores 

at yearling and on older animals will be essential. Other 
Legendre polynomial orders could be tested in future 
analyses (when more records per cow are available) to 
identify the optimal behavioral pattern across a cow’s 
lifetime.

Learning and behavioral plasticity was defined by 
the data available; in other words, no new data record-
ing other than already being collected by farmers was 
used. However, low heritability was observed provid-
ing opportunities for the identification of other optimal 
indicators with higher heritability within the scope of 
easy implementation. Furthermore, as a consequence of 
the high genetic correlation between overall tempera-
ment (i.e., intercept) and learning and behavioral plas-
ticity (i.e., slope; Table  4), the current selection strategy 
on temperament results in indirect selection for learning 
and behavioral plasticity. The current genetic selection 
for YT would also indirectly improve the docility of cows 
at different ages. In addition, the inclusion of additional 
temperament records collected later in life into the YT 
genomic evaluations might increase the accuracy of the 
breeding values.

This is the first study evaluating the changes of 
genomic-region effect on cattle temperament across 
the animal’s life. There is variation in genomic region 
effect over the years for temperament (Fig. 6), and genes 
associated with aging-related-diseases were located in 
those regions. This information is key for understand-
ing behavioral changes in a cow’s life, as well as provid-
ing opportunities to identify environmental stimulators 
associated with those alterations. Further longitudinal 
gene expression studies are key to understanding their 
effect on temperament, the epigenomic regions involved, 
and to pinpoint environmental events regulating their 
expression.

Conclusions
Temperament is moderately-to-highly heritable 
throughout the animals’ life, suggesting that an 
improvement in the herd-temperament score would be 
observed as a consequence of genetic or genomic selec-
tion. There is also a genetic component associated with 
learning and behavioral plasticity as expressed by habit-
uation, although heritability is very low. Yearling and 
cow at weaning temperament, and among age groups 
for cow at weaning temperament are highly genetically 
correlated. We identified several potential candidate 
genes associated with learning and behavioral plasticity 
although they explain a small proportion of the genetic 
variance. In addition, we suggest that the impact of the 
genes on behavior might change over time due to gene-
environment-interactions. The present study resulted 
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in a better understanding of the genetic and genomic 
mechanisms underlying temperament across the life 
of beef cows. Moreover, we presented an indicator of 
learning and behavioral plasticity that offers opportu-
nities to improve the long-term animal welfare. Future 
farms will need cattle that can habituate readily in 
spite of receiving less human contact than currently, 
and therefore, this area of research needs to be further 
explored.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12711-​023-​00777-3.

 Additional file 1: Table S1. Variance components over time for cow at 
weaning temperament using a random regression model. Table S2. Num-
ber of overlapping genomic regions among the top 20 windows with the 
highest module effect for cow at weaning temperament. Table S3. Genes 
within the top genomic regions for cow at weaning temperament across 
the age groups. Table S4. Genes identified for the average cow at wean-
ing temperament and learning and behavioral plasticity for cow at wean-
ing temperament. Table S5. Functional annotation for genes controlling 
average of cow at weaning temperament and learning and behavioral 
plasticity. Table S6. Quantitative trait loci that overlap with the genomic 
regions for the average of cow at weaning temperament (inter) and 
learning and behavioral plasticity (slope). Table S7. Variance components 
for cow at weaning temperament using a repeatability model. Table S8. 
(Co)variance components for yearling and cow at weaning temperament 
using a two-trait model. Table S9. (Co)variance components for yearling 
and cow at weaning temperament as a single-trait repeatability model. 
Table S10. (Co)variance components for average cow at weaning temper-
ament (AverCT) and learning and behavioral plasticity (LBP) of a dataset 
containing animals with more than two records. Table S11. Variance 
components over time for cow at weaning temperament using a random 
regression model and data of animals with at least two records. 

Additional file 2: Figure S1. Manhattan plot for each age group of 
cows at weaning temperament (CT) considering the absolute effect of 
SNP-window.

Acknowledgements
The authors acknowledge the American Angus Association and Angus Genet-
ics Inc. staff for all the support regarding data availability and computing 
resources, and all the Angus farmers and technician for the data collection. 
Furthermore, the authors are grateful for all the technical assistance from Prof. 
Dr. Fabyano Fonseca e Silva (in memoriam, Federal University of Vicosa, Brazil), 
which was fundamental for the development of this project.

Author contributions
AA and LFB conceived the study; AA performed the data analyses and 
prepared the original draft and the first version of the paper; AA, HRO, SPM, 
KR, AG, and LFB provided technical support for the analyses; AA, HRO, ST, SPM, 
KR, AG, and LFB contributed to the interpretation and discussion of the results, 
revised and edited the manuscript; LFB supervised and trained the first author. 
All authors read and approved the final manuscript.

Funding
This project was partially funded by the American Angus Association and 
Angus Genetics Inc. (Saint Joseph, MO, USA).

Availability of data and materials
The data supporting the results of this article are included within the article 
and in its supplementary files. The raw data cannot be made available, as it 
is property of the American Angus cattle producers, and this information is 
commercially sensitive.

Declarations

Ethics approval and consent to participate
The datasets used were obtained from pre-existing databases (American 
Angus Association and Angus Genetics Inc., Saint Joseph, MO, USA). Therefore, 
Animal Care and Use Committee approval was not required for this study.

Consent for publication
Not applicable.

Competing interests
KR, AG, and SM were employees of Angus Genetics Inc.–American Angus 
Association (Saint Joseph, MO, USA). The authors declare that they have no 
competing interests.

Author details
1 Department of Animal Sciences, Purdue University, West Lafayette, IN, USA. 
2 Lactanet, Guelph, ON, Canada. 3 Animal and Veterinary Sciences Department, 
Scotland’s Rural College, Edinburgh, UK. 4 American Angus Association, Angus 
Genetics Inc., Saint Joseph, MO, USA. 5 AGBU, a joint venture of NSW Depart-
ment of Primary Industries and University of New England, Armidale 2351, 
Australia. 

Received: 21 June 2022   Accepted: 4 January 2023

References
	1.	 Oliveira HR, Brito LF, Miller SP, Schenkel FS. Using random regression mod-

els to genetically evaluate functional longevity traits in North American 
Angus cattle. Animals (Basel). 2020;10:2410.

	2.	 Hine BC, Bell AM, Niemeyer DDO, Duff CJ, Butcher NM, Dominik S, et al. 
Immune competence traits assessed during the stress of weaning are 
heritable and favorably genetically correlated with temperament traits in 
Angus cattle. J Anim Sci. 2019;97:4053–65.

	3.	 Parham JT, Tanner AE, Barkley K, Pullen L, Wahlberg ML, Swecker WS, et al. 
Temperamental cattle acclimate more substantially to repeated handling. 
Appl Anim Behav Sci. 2019;212:36–43.

	4.	 Neja W, Sawa A, Jankowska M, Bogucki M, Krezel-Czopek S. Effect of the 
temperament of dairy cows on lifetime production efficiency. Arch Anim 
Breed. 2015;58:193–7.

	5.	 Alvarenga AB, Oliveira HR, Miller SP, Silva FF, Brito LF. Genetic modeling 
and genomic analyses of yearling temperament in American Angus 
cattle and its relationship with productive efficiency and resilience traits. 
Front Genet. 2022;13: 794625.

	6.	 Costilla R, Kemper KE, Byrne EM, Porto-Neto LR, Carvalheiro R, Purfield DC, 
et al. Genetic control of temperament traits across species: Association of 
autism spectrum disorder risk genes with cattle temperament. Genet Sel 
Evol. 2020;52:51.

	7.	 Chang Y, Brito LF, Alvarenga AB, Wang Y. Incorporating temperament 
traits in dairy cattle breeding programs: challenges and opportunities in 
the phenomics era. Anim Front. 2020;10:29–36.

	8.	 Grandin T, Shivley C. How farm animals react and perceive stressful 
situations such as handling, restraint, and transport. Animals (Basel). 
2015;5:1233–51.

	9.	 Blumstein DT. Habituation and sensitization: new thoughts about old 
ideas. Anim Behav. 2016;120:255–62.

	10.	 Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE. Influence 
of gene action across different time scales on behavior. Science. 
2002;296:741–4.

	11.	 Siegel DJ. Toward an interpersonal neurobiology of the developing mind: 
attachment relationships, “mindsight”, and neural integration. Infant Ment 
Health J. 2001;22:67–94.

	12.	 Reichert MS, Quinn JL. Cognition in contests: mechanisms, ecology, and 
evolution. Trends Ecol Evol. 2017;32:773–85.

	13.	 Meagher RK, Strazhnik E, von Keyserlingk MAG, Weary DM. Assessing the 
motivation to learn in cattle. Sci Rep. 2020;10:6847.

https://doi.org/10.1186/s12711-023-00777-3
https://doi.org/10.1186/s12711-023-00777-3


Page 18 of 19Alvarenga et al. Genetics Selection Evolution            (2023) 55:3 

	14.	 Lecorps B, Woodroffe RE, Von KMAG, Weary DM. Assessing cognitive per-
formance in dairy calves using a modified hole board test. Anim Cogn. 
2022;25:1365–70.

	15.	 Launchbaugh K, Provenza F. Learning and memory in grazing livestock 
application to diet selection. Rangelands. 1991;13:242–4.

	16.	 Ede T, Lecorps B, von Keyserlingk MAG, Weary DM. Calf aversion to hot-
iron disbudding. Sci Rep. 2019;9:5344.

	17.	 Lecorps B, Ludwig BR, von Keyserlingk MAG, Weary DM. Pain-induced 
pessimism and anhedonia: evidence from a novel probability-based 
judgment bias test. Front Behav Neurosci. 2019;13:54.

	18.	 Rijsdijk FV, Vernon PA, Boomsma DI. Application of hierarchical genetic 
models to raven and WAIS subtests: a Dutch twin study. Behav Genet. 
2002;32:199–210.

	19.	 Alarcon M, Knopik VS, Defries JC. Covariation of mathematics achieve-
ment and Maricela Alarco. J Sch Psychol. 2000;38:63–77.

	20.	 Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE, et al. 
Genome-wide association study of cognitive functions and educational 
attainment in UK Biobank. Mol Psychiatry. 2016;21:758–67.

	21.	 Croston R, Branch CL, Kozlovsky DY, Dukas R, Pravosudov VV. Heritability 
and the evolution of cognitive traits. Behav Ecol. 2015;26:1447–59.

	22.	 Sorato E, Zidar J, Garnham L, Wilson A, Løvlie H. Heritabilities and co-
variation among cognitive traits in red junglefowl. Philos Trans R Soc 
Lond B Biol Sci. 2018;373:20170285.

	23.	 Araujo AC, Carneiro PLS, Alvarenga AB, Oliveira HR, Miller SP, Retallick K, 
et al. Haplotype-based single-step GWAS for yearling temperament in 
American Angus cattle. Genes (Basel). 2022;13:17.

	24.	 Alvarenga AB, Oliveira HR, Chen SY, Miller SP, Marchant-Forde JN, 
Grigoletto L, et al. A systematic review of genomic regions and candidate 
genes underlying behavioral traits in farmed mammals and their link with 
human disorders. Animals (Basel). 2021;11:715.

	25.	 Davis OSP, Butcher LM, Docherty SJ, Meaburn EL, Curtis CJC, Simpson MA, 
et al. A three-stage genome-wide association study of general cognitive 
ability: hunting the small effects. Behav Genet. 2010;40:759–67.

	26.	 R Core Team. R: A language and environment for statistical computing. 
Vienna: R Foundation for Statistical Computing; 2019.

	27.	 Northcutt S, Bowman B. By the numbers: Docility genetic evaluation 
research. 2007. https://​www.​angus.​org/​nce/​docum​ents/​bythe​numbe​
rsdoc​ility.​pdf Accessed 1 February 2022.

	28.	 Beef Improvement Federation. Docility - Chute scoring. 2022. https://​
guide​lines.​beefi​mprov​ement.​org/​index.​php/​Docil​ity/ Accessed 15 Oct 
2022.

	29.	 Tsuruta S, Misztal I. THRGIBBSF90 for estimation of variance components 
with threshold and linear models. In Proceedings of the 8th World Con-
gress on Genetics Applied to Livestock Production: 13–18 August2006; 
Belo Horizonte. 2006.

	30.	 Smith BJ. boa: An R Package for MCMC output convergence assessment 
and posterior inference. J Stat Softw. 2007;21:1–37.

	31.	 Medrano JF. The new bovine reference assembly and its value for 
genomic research. Proc Assoc Advmt Anim Breed Genet. 2017;22:161–6.

	32.	 Rosen BD, Bickhart DM, Schnabel RD, Koren S, Elsik CG, Vazire A, et al. 
Modernizing the bovine reference genome assembly. In Proceedings of 
the 11th World Congress on Genetics Applied to Livestock Production: 
11–16 February 2018; Auckland. 2018.

	33.	 Aguilar I, Misztal I, Tsuruta S, Legarra A, Wang H. PREGSF90 – POSTGSF90: 
Computational tools for the implementation of single-step genomic 
selection and genome-wide association with ungenotyped individuals in 
BLUPF90 programs. In Proceedings of the 10th World Congress of Genet-
ics Applied to Livestock Production: 17–22 August 2014; Vancouver. 2014.

	34.	 Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide associa-
tion mapping including phenotypes from relatives without genotypes. 
Genet Res. 2012;94:73–83.

	35.	 Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: 
a unified approach to utilize phenotypic, full pedigree, and genomic 
information for genetic evaluation of Holstein final score. J Dairy Sci. 
2010;93:743–52.

	36.	 Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evalu-
ation including phenotypic, full pedigree, and genomic information. J 
Dairy Sci. 2009;92:4648–55.

	37.	 Christensen OF, Lund MS. Genomic prediction when some animals are 
not genotyped. Genet Sel Evol. 2010;42:2.

	38.	 Strandén I, Garrick DJ. Technical note: Derivation of equivalent comput-
ing algorithms for genomic predictions and reliabilities of animal merit. J 
Dairy Sci. 2009;92:2971–5.

	39.	 Hu ZL, Park CA, Reecy JM. Building a livestock genetic and genomic 
information knowledgebase through integrative developments of animal 
QTLdb and CorrDB. Nucleic Acids Res. 2019;47:D701–10.

	40.	 Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the 
integration of genomic datasets with the R/Bioconductor package 
biomaRt. Nat Protoc. 2009;4:1184–91.

	41.	 Gene Ontology Consortium, Blake JA, Dolan M, Drabkin H, Hill DP, Ni 
L, et al. Gene ontology annotations and resources. Nucleic Acids Res. 
2013;41:e530–5.

	42.	 Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28:27–30.

	43.	 Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: 
database for annotation, visualization, and integrated discovery. Genome 
Biol. 2003;4:P3.

	44.	 Enríquez D, Hötzel MJ, Ungerfeld R. Minimising the stress of weaning of 
beef calves: a review. Acta Vet Scand. 2011;53:28.

	45.	 Curley KO Jr, Paschal JC, Welsh TH, Randel RD. Technical note: Exit veloc-
ity as a measure of cattle temperament is repeatable and associated 
with serum concentration of cortisol in Brahman bulls. J Anim Sci. 
2006;84:3100–3.

	46.	 Karamfilov S. Study on the temperament of cows of the Aberdeen Angus 
cattle breed. Czech J Anim Sci. 2022;67:8–14.

	47.	 Ungerfeld R, Hötzel MJ, Quintans G. Changes in behaviour, milk produc-
tion and bodyweight in beef cows subjected to two-step or abrupt 
weaning. Anim Prod Sci. 2015;55:1281–8.

	48.	 Haley DB, Bailey DW, Stookey JM. The effects of weaning beef 
calves in two stages on their behavior and growth rate. J Anim Sci. 
2005;83:2205–14.

	49.	 Petherick JC, Holroyd RG, Doogan VJ, Venus BK. Productivity, carcass and 
meat quality of lot-fed Bos indicus cross steers grouped according to 
temperament. Aust J Exp Agric. 2002;42:389–98.

	50.	 Wu J, Ma S, Sandhoff R, Ming Y, Hotz-Wagenblatt A, Timmerman V, et al. 
Loss of neurological disease HSAN-I-associated gene SPTLC2 impairs 
CD8+ T cell responses to infection by inhibiting T cell metabolic fitness. 
Immunity. 2019;50:1218-1231.e5.

	51.	 Huston JP, Kornhuber J, Mühle C, Japtok L, Komorowski M, Mattern C, 
et al. A sphingolipid mechanism for behavioral extinction. J Neurochem. 
2016;137:589–603.

	52.	 Oliveira HR, Lourenco DAL, Masuda Y, Misztal I, Tsuruta S, Jamrozik 
J, et al. Single-step genome-wide association for longitudinal traits 
of Canadian Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci. 
2019;102:9995–10011.

	53.	 Ru YF, Xue HM, Ni ZM, Xia D, Zhou YC, Zhang YL. An epididymis specific 
carboxyl esterase CES5A is required for sperm capacitation and male 
fertility in the rat. Asian J Androl. 2015;17:292–7.

	54.	 Robertson MJ, Kent K, Tharp N, Nozawa K, Dean L, Mathew M, et al. 
Large-scale discovery of male reproductive tract-specific genes through 
analysis of RNA-seq datasets. BMC Biol. 2020;18:103.

	55.	 Zhang L, Liu Q, Zhou Y, Zhang Y. Baculo-expression and enzymatic char-
acterization of CES7 esterase. Acta Biochim Biophys Sin. 2009;41:731–6.

	56.	 Teather LA, Wurtman RJ. Dietary cytidine (5′)-diphosphocholine sup-
plementation protects against development of memory deficits in aging 
rats. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:711–7.

	57.	 Pacelli C, Coluccia A, Grattagliano I, Cocco T, Petrosillo G, Paradies G, et al. 
Dietary choline deprivation impairs rat brain mitochondrial function. J 
Nutr. 2010;140:1072–9.

	58.	 Kosari S, Badoer E, Nguyen JCD, Killcross AS, Jenkins TA. Effect of western 
and high fat diets on memory and cholinergic measures in the rat. Behav 
Brain Res. 2012;235:98–103.

	59.	 Ruiz A, Heilmann S, Becker T, Hernández I, Wagner H, Thelen M, et al. 
Follow-up of loci from the International Genomics of Alzheimer’s Disease 
Project identifies TRIP4 as a novel susceptibility gene. Transl Psychiatry. 
2014;4: e358.

	60.	 Gold NB, Li D, Chassevent A, Kaiser FJ, Parenti I, Strom TM, et al. Het-
erozygous de novo variants in CSNK1G1 are associated with syndro-
mic developmental delay and autism spectrum disorder. Clin Genet. 
2020;98:571–6.

https://www.angus.org/nce/documents/bythenumbersdocility.pdf
https://www.angus.org/nce/documents/bythenumbersdocility.pdf
https://guidelines.beefimprovement.org/index.php/Docility/
https://guidelines.beefimprovement.org/index.php/Docility/


Page 19 of 19Alvarenga et al. Genetics Selection Evolution            (2023) 55:3 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	61.	 Wheeler MM, Ament SA, Rodriguez-Zas SL, Robinson GE. Brain gene 
expression changes elicited by peripheral vitellogenin knockdown in the 
honey bee. Insect Mol Biol. 2013;22:562–73.

	62.	 Paliwal S, Shi J, Dhru U, Zhou Y, Schuger L. P311 binds to the latency asso-
ciated protein and downregulates the expression of TGF-b1 and TGF-b2. 
Biochem Biophys Res Commun. 2004;315:1104–9.

	63.	 Knoll A, Nesvadbová M, Urban T. The expression pattern, polymorphisms 
and association analyses of the porcine NREP gene. J Anim Breed Genet. 
2022;139:62–70.

	64.	 Tombácz D, Maróti Z, Kalmár T, Csabai Z, Balázs Z. High-coverage whole-
exome sequencing identifies candidate genes for suicide in victims with 
major depressive disorder. Sci Rep. 2017;7:7106.

	65.	 Wolc A, Settar P, Fulton JE, Arango J, Rowland K, Lubritz D, et al. Herit-
ability of perching behavior and its genetic relationship with incidence of 
floor eggs in Rhode Island Red chickens. Genet Sel Evol. 2021;53:38.

	66.	 Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

	67.	 Guarini AR, Lourenco DAL, Brito LF, Sargolzaei M, Baes CF, Miglior F, et al. 
Comparison of genomic predictions for lowly heritable traits using multi-
step and single-step genomic best linear unbiased predictor in Holstein 
cattle. J Dairy Sci. 2018;101:8076–86.

	68.	 Artegiani B, de Jesus Domingues AM, Bragado Alonso S, Brandl E, Mas-
salini S, Dahl A, et al. Tox: a multifunctional transcription factor and novel 
regulator of mammalian corticogenesis. EMBO J. 2015;34:896–910.

	69.	 Gilabert-Juan J, López-Campos G, Sebastiá-Ortega N, Guara-Ciurana S, 
Ruso-Julve F, Prieto C, et al. Time dependent expression of the blood 
biomarkers EIF2D and TOX in patients with schizophrenia. Brain Behav 
Immun. 2019;80:909–15.

	70.	 Bocco BMLC, Werneck-de-Castro JP, Oliveira KC, Fernandes GW, Fonseca 
TL, Nascimento BPP, et al. Type 2 deiodinase disruption in astrocytes 
results in anxiety-depressive-like behavior in male mice. Endocrinology. 
2016;157:3682–95.

	71.	 Pourpre R, Naudon L, Meziane H, Lakisic G, Jouneau L, Varet H, et al. 
BAHD1 haploinsufficiency results in anxiety-like phenotypes in male 
mice. PLoS One. 2020;15:e0232789.

	72.	 Folts CJ, Giera S, Li T, Piao X. Adhesion G protein-coupled recep-
tors as drug targets for neurological diseases. Trends Pharmacol Sci. 
2019;40:278–93.

	73.	 Belzeaux R, Gorgievski V, Fiori LM, Lopez JP, Grenier J, Lin R, et al. GPR56/
ADGRG1 is associated with response to antidepressant treatment. Nat 
Commun. 2020;11:1–10.

	74.	 Li Q, Wu X, Na X, Ge B, Wu Q, Guo X, et al. Impaired cognitive function 
and altered hippocampal synaptic plasticity in mice lacking dermatan 
sulfotransferase Chst14/D4st1. Front Mol Neurosci. 2019;12:26.

	75.	 Wendt FR, Pathak GA, Levey DF, Nuñez YZ, Overstreet C, Tyrrell C, et al. 
Sex-stratified gene-by-environment genome-wide interaction study of 
trauma, posttraumatic-stress, and suicidality. Neurobiol Stress. 2021;14: 
100309.

	76.	 Kyrou I, Tsigos C. Stress hormones: physiological stress and regulation of 
metabolism. Curr Opin Pharmacol. 2009;9:787–93.

	77.	 Kubzansky LD, Adler GK. Aldosterone: a forgotten mediator of the 
relationship between psychological stress and heart disease. Neurosci 
Biobehav Rev. 2010;34:80–6.

	78.	 Ackermann S, Hartmann F, Papassotiropoulos A, Quervain DJF, Rasch 
B. Associations between basal cortisol levels and memory retrieval in 
healthy young individuals. J Cogn Neurosci. 2013;25:1896–907.

	79.	 Schaeffer LR. Cumulative permanent environmental effects for repeated 
records animal models. J Anim Breed Genet. 2011;128:95–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Unraveling the phenotypic and genomic background of behavioral plasticity and temperament in North American Angus cattle
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Data
	Statistical models
	Models
	Methods
	(Co)variance components estimation
	Single-step genome-wide association studies


	Results
	Phenotypic description of yearling and cow temperament measured at weaning
	(Co)variance components of cow temperament measured at weaning
	Temperament over time
	Learning and behavioral plasticity

	Genome-wide association for temperament across the years, average of cow temperament measured at weaning, and learning and behavioral plasticity
	Longitudinal temperament
	Learning and behavioral plasticity

	(Co)variance components of yearling and cow temperament measured at weaning

	Discussion
	Phenotypic assessment of temperament over the years
	Genetic and genomic assessment of temperament over the years
	Genetic and genomic assessment of average temperament and learning and behavioral plasticity in cows
	Implications and next steps

	Conclusions
	Acknowledgements
	References


