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Abstract 

Background  In aquaculture, the proportion of edible meat (FY = fillet yield) is of major economic importance, and 
breeding animals of superior genetic merit for this trait can improve efficiency and profitability. Achieving genetic 
gains for fillet yield is possible using a pedigree-based best linear unbiased prediction (PBLUP) model with direct 
and indirect selection. To investigate the feasibility of using genomic selection (GS) to improve FY and body weight 
(BW) in rainbow trout, the prediction accuracy of GS models was compared to that of PBLUP. In addition, a genome-
wide association study (GWAS) was conducted to identify quantitative trait loci (QTL) for the traits. All analyses were 
performed using a two-trait model with FY and BW, and variance components, heritability, and genetic correlations 
were estimated without genomic information. The data used included 14,165 fish in the pedigree, of which 2742 and 
12,890 had FY and BW phenotypic records, respectively, and 2484 had genotypes from the 57K single nucleotide 
polymorphism (SNP) array.

Results  The heritabilities were moderate, at 0.41 and 0.33 for FY and BW, respectively. Both traits were lowly but 
positively correlated (genetic correlation; r = 0.24), which suggests potential favourable correlated genetic gains. GS 
models increased prediction accuracy compared to PBLUP by up to 50% for FY and 44% for BW. Evaluations were 
found to be biased when validation was performed on future performances but not when it was performed on future 
genomic estimated breeding values.

Conclusions  The low but positive genetic correlation between fillet yield and body weight indicates that some 
improvement in fillet yield may be achieved through indirect selection for body weight. Genomic information 
increases the prediction accuracy of breeding values and is an important tool to accelerate genetic progress for fillet 
yield and growth in the current rainbow trout population. No significant QTL were found for either trait, indicating 
that both traits are polygenic, and that marker-assisted selection will not be helpful to improve these traits in this 
population.
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Background
Fillet yield is the ratio between the edible portion (meat) 
and the whole weight of the fish at harvest, and this trait 
is of primary economic importance in aquaculture. The 
price paid when fish are sold as fillet can be much higher 
than the price of whole fish; therefore, small changes in 
fillet yield can result in a significant economic impact on 
the production chain [1, 2]. In fact, a study by Sae-Lim 
et al. [3] ranked fillet yield among the six most important 
traits for genetic improvement in rainbow trout breeding 
programs. Although the benefits of improving fillet yield 
are clear, implementing a selection program for this trait 
is challenging for several reasons. First, phenotypes can-
not be recorded on selection candidates; second, even 
when phenotyping is available, it is usually at a costly and 
laborious process; and third, fillet yield is a ratio trait, 
which can be difficult to model. In spite of these chal-
lenges, studies using simulation and real data showed 
that improving fillet yield is possible by using direct or 
indirect selection and adjusting trait definitions for better 
modelling [4–6].

The recent development of high-density single nucle-
otide polymorphism (SNP) panels has added an extra 
resource in the toolbox of breeding programs. It allows 
for the prediction of more accurate breeding values and 
ultimately leads to higher genetic gains [7]. The use of 
genomic information has been widely incorporated in 
livestock populations and more recently in aquacul-
ture breeding programs for several species, for instance, 
salmon, trout, catfish, and tilapia [8–12]. In rainbow 
trout populations, genomic information has been used 
across breeding populations to study and evaluate sev-
eral traits such as growth [13], disease resistance [14–16], 
and carcass [17]. All these studies reported the benefits of 
using genomic information in aquaculture breeding pro-
grams. Furthermore, genomic information is especially 
beneficial for traits that cannot be measured on selection 
candidates or have a low heritability, such as resistance to 
disease and carcass traits [7, 18].

Gonzalez-Pena et al. [19] performed genomic analyses 
for fillet yield, carcass, and body weight, using single-trait 
models in a rainbow trout population from the National 
Center for Cool and Cold Water Aquaculture (NCC-
CWA) and found that the use of genomic information 
was beneficial to explore within-family variation and to 
obtain faster genetic gains for these traits. Our overall 
goal in the current study was to build on those results 
by using additional data and a multiple trait approach to 
investigate the prediction accuracy and bias of genomic 
predictions and further understand the usefulness of 
genomic selection for fillet yield in rainbow trout. Our 
specific objectives were to (1) evaluate the prediction 
accuracy of traditional and genomic evaluations with 

different genomic models, and (2) use a two-trait model 
with fillet yield and body weight, to estimate variance 
components, heritability, and genetic correlations.

Methods
Data and resource population
Data were collected by the experimental breeding pro-
gram of the USDA National Center for Cool and Cold 
Water Aquaculture (NCCCWA; Leetown, WV). Pheno-
types were recorded for fillet yield (FY; N = 2642) from 
2010 to 2018 and for 13-month BW, (hereafter referred 
to as body weight) (BW; N = 12,890) from 2004 to 2016 
(Table  1). For the 2018 hatch year, BW data were not 
available because animals were only measured later at 
harvest time (i.e., 14.5 vs. 13 months). The total number 
of animals with pedigree records was 14,165, from which 
2484 were genotyped using the 57K SNP Axiom trout 
genotyping array [20]. After filtering for quality control, 
34,251 informative SNPs were used in the data analysis.

A fully-pedigreed line selected for growth performance 
served as the founder population for this study. A target 
of five fish from each third- (n families = 98; hatch year 
2010), fourth- (n families = 99; hatch year 2012), and 
fifth-generation family (n = 102; hatch year 2014) of the 
‘Select’ line described in Leeds et  al. [21] were pheno-
typed for fillet yield. Briefly, fish were sampled from each 
family to represent within-family variation in growth 
performance at approximately 13  months post-hatch. 
Each family had approximately 15 fish eligible for sam-
pling. Sampling was conducted by sorting fish within 
each family by descending body weight and identifying 
every second or third fish for sampling, with the excep-
tion that fish with a body weight that was more or less 
than 3 standard deviations from the family mean were 
excluded from sampling. Fish were then assigned to one 
of the five harvest groups (i.e., one harvest group per 
week for each of 5 consecutive weeks) in each genera-
tion. The aim was to have one fish per family represented 
in each harvest group, and fish were assigned to harvest 
groups in descending order of body weight such that the 
heaviest fish were harvested in the first harvest group 
and the lightest fish were harvested in the last harvest 
group. At approximately 14.5  months post-hatch, fish 
were euthanized using a lethal dose of tricaine methane-
sulfonate (Tricaine-S, Western Chemical, Ferndale, WA), 

Table 1  Summary statistics for body weight and fillet yield

a Body weight was measured in grams and fillet yield in %

Traita Number of 
records

Mean Min Max SD

Body weight 12,890 1043 42.9 2565 346

Fillet yield 2642 50.9 34.8 59.5 2.97
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eviscerated, and stored overnight on ice. Carcasses were 
hand-filleted the following day by a trained technician. 
Filleting was conducted for families hatched in 2010 and 
2012 at West Virginia University (Davis College of Agri-
culture, Forestry and Consumer Sciences, Morgantown, 
WV); then, filleting was conducted at the NCCCWA. 
The skin was removed from all fillets from fish of families 
hatched in 2010 and 2012 and it was left on the fillet from 
fish of families hatched after 2012. All carcasses of each 
generation were filleted by a single technician. Fillet yield 
was calculated as total fillet weight/BW at harvest.

The breeding objective of the program changed from 
growth performance to fillet yield in 2014, thus the three 
generations of fillet yield data were used to estimate fam-
ily-based breeding values for families hatched in 2014. 
Based on those family breeding values, a divergent selec-
tion was applied to develop contemporary high fillet yield 
(ARS-FY-H) and low fillet yield (ARS-FY-L) lines, start-
ing from 2016. Breeding values were estimated for each 
generation using a three-trait animal model that included 
fillet yield, 10-month BW, and thermal growth coefficient 
(defined as function of growth in a growing period and 
the average water temperature in that period) [21], using 
MTDFREML [22]. The model for fillet yield included 
fixed effects for hatch year, harvest group nested within 
hatch year, and harvest BW (linear covariate) and random 
animal, full-sib family, and rearing tank effects. The latter 
two traits were included to account for the prior selec-
tion that the population was subjected to, and the effects 
included in the model are given in Leeds et al. [21]. Selec-
tion and mating decisions were made in each generation 
to maximize genetic gain while constraining inbreeding 
accumulation to ≤ 1% per generation as described in Leeds 
et al. [21]. The goal was to produce 100 ARS-FY-H and 23 
ARS-FY-L families in each generation, although the actual 
number in each year may differ due to practical and logis-
tical reasons. Whereas upward selection was practiced in 
each generation for the ARS-FY-H line, the ARS-FY-L line 
was subjected to only one generation of downward selec-
tion and, after that, mated at random to maintain genetic 
diversity within the line. To produce the first (hatch year 
2016) and second (hatch year 2018) generations of the 
ARS-FY-H nucleus families, sires and dams were selected 
based on family FY breeding values from 32 (hatch year 
2014) and 51 (hatch year 2016) parental families, result-
ing in weighted phenotypic selection differentials for FY 
of + 1.533 and + 1.324 percentage points, respectively. 
Likewise, to produce first-generation ARS-FY-L nucleus 
families, sires and dams were selected based on family FY 
breeding values (downward selection) from 31 parental 
families (hatch year 2014). To produce second-generation 
ARS-FY-L nucleus families, sires and dams were sampled 
from 22 parental families (hatch year 2016). The resulting 

weighted phenotypic selection differentials for FY in the 
ARS-FY-L line were − 1.377 and − 0.088 percentage points 
in the first and second generations, respectively. Overall, 
grow-out, tagging, and phenotyping of families hatched in 
2016 and 2018 were consistent with those described above 
for families hatched in 2014 and before.

Model and estimation of variance components
The following two-trait animal model was used in the 
analyses:

where yt is the vector of phenotypes and t refers to each 
trait (BW and FY); bt is the vector of fixed effects. The 
model for FY included harvest age as a covariable, line 
(ARS-FY-H and ARS-FY-L), and the interaction between 
harvest year and slaughter group. The model for BW 
included age as a covariable, line and hatch year; ut and ft 
are the vectors of the additive genetic and family random 
effects, and e is the vector of residuals. The X , Z1 , and Z2 
are the incidence matrices for the effects in bt , ut and ft , 
respectively. The line effect was included in the model 
because, over the years, different selection criteria were 
used to select animals, creating different lines within the 
same population.

The traditional evaluation was performed using ped-
igree-based best linear unbiased prediction (PBLUP) 
and genomic evaluations were performed using single 
step genomic BLUP (ssGBLUP) [23, 24]. In ssGBLUP, 
the inverse of the pedigree relationship matrix ( A−1 ) is 
replaced by the inverse of the relationship matrix combin-
ing pedigree and genomic relationships ( H−1 ), as in Agui-
lar et al. [23]:

where G−1 is the inverse of the genomic relationship 
matrix and A−1

22  is the inverse of the pedigree relationship 
matrix for genotyped animals. The genomic relationship 
matrix ( G ) was constructed as in VanRaden [25]:

where Z is the matrix of genotypes centered by allele fre-
quencies from the base population, and pi is the allele 
frequency of the i-th SNP, which was also from the base 
population. These allele frequencies were computed 
based on Gengler et al. [26]. If base allele frequencies can 
be accurately computed, there is no need to use meth-
ods to ensure compatibility between G and A22 [27]. In 
the unweighted ssGBLUP, D a matrix of weights for SNP 

yt = Xbt + Z1ut + Z2ft + e,

H
−1 = A

−1 +

[

0 0

0 G
−1 − A

−1

22

]

,

G =
ZDZ

′

2
∑

pi(1-pi)
,
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is equal to I , and all markers are assumed to explain the 
same proportion of genetic variance.

Variance components, heritability, and genetic correla-
tions were estimated without genomic information using 
the model described above, under PBLUP, implemented 
in the AIREMLF90 software [28].

Validation
We investigated the impact of including genomic infor-
mation in FY and BW evaluations using two datasets to 
perform a mid-parent validation for FY and two forward 
validation methods based on young, genotyped animals 
for FY and BW. The datasets and validation strategies are 
described below.

Mid‑parent validation
This practical validation strategy that directly estimates 
genetic improvement across generations is used in aqua-
culture when progeny phenotypes are available and can 
be used as a benchmark to compare with parent averages 
(PA), which are equal to the average genomic estimated 
breeding values (GEBV) of parents [19, 29]. In our study, 
parental genotypes were available for 96 of the 99 ARS-
FY-H nucleus families hatched in 2018. After removing 
half sib families, phenotypes for the fish hatched in 2018 
from 73 full-sib families were kept for validation. Pheno-
types of five animals from each family were averaged and 
compared to the parental average breeding value from 
PBLUP and ssGBLUP. In addition, instead of raw pheno-
types, phenotypes adjusted for fixed effects were used as 
a benchmark.

For the 2018 hatch year, BW records were not available 
because the animals were only measured later at harvest. 
Since harvest weight is measured later than BW (i.e., 14.5 
vs. 13 months), we could not perform the mid-parent val-
idation for BW.

The correlation of PA and average phenotypes over all 
the 73 families is reported as a measure of prediction 
accuracy, and the coefficient of the regression of PA on 
(G)EBV is reported as a measure of dispersion bias of the 
breeding values.

Forward validation
With the advent of genomic selection, and since the 
main goal of genetic evaluations is to predict future 
performance, using young, genotyped animals for vali-
dation became the standard method to validate pre-
dictions [30]. In our study, we chose 562 genotyped 
animals from the 2016 hatch year, with records for both 
BW and FY as validation animals. The validation on 
young animals was performed using two methods, one 

was based on adjusted phenotypes and the other was 
the linear regression method (LR method) as described 
by Legarra and Reverter [31].

For the validation based on adjusted phenotypes, 
the phenotypes were adjusted for the fixed effects 
calculated with PBLUP with the whole data, i.e. 
(y∗ = y − Xb− Z2f) . Then, traditional and genomic 
evaluations were computed with partial data by omit-
ting the data for animals born in hatch year 2016 and 
onwards, and finally, accuracy, bias, and dispersion 
were calculated as follows:

where û is a vector of (G)EBV, and b0 and b1 are the inter-
cept and the regression coefficients of adjusted pheno-
types on (G)EBV, respectively. The b0 and b1 coefficients 
are measures of bias and dispersion of (G)EBV, respec-
tively. The predictive ability, i.e., cor(y∗, û) , was divided 
by the square root of the heritability to make it compa-
rable across traits and validation strategies, as the predic-
tion accuracy of the models.

For the LR validation, traditional and genomic evalu-
ations were run with whole (w) and partial (p) datasets. 
In the partial dataset, phenotypes for the validation 
animals are omitted. In this validation, we can evalu-
ate the impact of including new data into subsequent 
evaluations and we can investigate the value of adding 
genomic data.

Once evaluations were run, the following four statistics 
described by Legarra and Reverter [31]. were computed 
to evaluate the models:

(1) Accuracy =
√

cov(ûw,ûp)

(1−F)σ̂2u
,

where F is the average inbreeding for the validation ani-
mals and σ̂2u is the additive genetic variance.

(2) Bias = ûp − ûw,

where ûp and ûw are the average breeding values for the 
validation animals, which are computed based on partial 
and whole data, respectively. The bias has an expected 
value of 0 if the evaluations are unbiased.

(3) Slope = bw,p = cov(ûw,ûp)

var(ûp)
.

The slope of the regression of ûw on ûp can be an indi-
cator of dispersion of (G)EBV, and ideally this slope 
would be 1 or close to 1.

(4) Consistency = cor
(

ûw, ûp
)

.

Accuracy =
cor(y∗, û)

√
h2

,

y∗ = b0 + b1û,
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The higher this correlation is, the more consistent two 
subsequent evaluations are when new data are added.

All four statistics were computed for the 2016 hatch 
year validation animals (N = 562), in both the traditional 
and genomic evaluations. The number of genotyped ani-
mals with phenotypes in the training population for the 
mid-parent validation was 1929 and for the validation on 
young animals it was 1366.

Weighted ssGBLUP (WssGBLUP) and genome‑wide 
association study (GWAS)
From the ssGBLUP evaluation, GEBV can be backsolved 
into SNP effects which can help uncover the genetic 
architecture of a trait. In our study, SNP effects were cal-
culated as in Wang et al. [32]:

where û is a vector of (G)EBV, â is a vector of SNP effects 
and the D , Z , and G−1 matrices are as previously defined.

Once SNP effects were calculated, the proportion of 
additive variance explained by windows of 20 adjacent 
SNP was calculated. The order of SNPs on the rainbow 
trout genome chromosomes was determined based 
on their position in the GenBank Assembly Accession 
GCA_002163495.1 [33]. In addition, p-values for marker 
effects were obtained using the procedure presented by 
Aguilar et al. [34] as follows:

where � is the cumulative standard normal function. 
SNPs were declared significantly associated with FY or 
BW at a 5.8 threshold (corrected by Bonferroni) on the 
− log10 scale.

When significantly associated important SNPs are 
identified, differential weights can be attributed to them 
in the genomic evaluation for potential increases in accu-
racy. Under the ssGBLUP framework, this can be done by 
using WssGBLUP over a few iterations, i.e., three to five, 
to optimize the weights applied in the construction of G 
[32] by maximizing the accuracy of predictions. In our 
study, we applied the nonlinear A weights in the WssG-
BLUP model, as described by VanRaden [25] and Legarra 
et al. [35], as follows:

where CT is a constant that determines the departure of 
SNP effects from normality; |âi| is the absolute value of 
the SNP effect i , and sd

(

â
)

 is the standard deviation of the 
vector of SNP effects. Because CT is empirically derived, 
three values were tested in this population: 1.025, 1.125 

â = �DZ′G−1û,

pvaluei = 2

(

1−�

(∣

∣

∣

∣

∣

̂ai

SD
(

̂ai
)

∣

∣

∣

∣

∣

))

,

di = CT
|âi |
sd(â)

−2
,

and 1.25 to determine the value that led to the best pre-
diction accuracy and the least bias in the evaluation.

The two-trait model was used, and SNP effects and 
weights for G were calculated one trait at a time, and 
the validation based on adjusted phenotypes (described 
above) was applied across five iterations of WssGBLUP. 
All the analyses were performed using software from 
the BLUPF90 family of programs [28].

Results and discussion
Estimates of variance components, heritabilities, 
and genetic correlations
The estimates of variance components, heritabilities, 
and genetic correlations for FY and BW are in Table 2. 
The heritability estimate for FY was 0.41, which is 
slightly higher than previously reported estimates that 
ranged from 0.30 to 0.35 [4, 19, 36], and similar to the 
heritability estimate of residual fillet weight (0.38) that 
Vandeputte et al. [6] proposed as an alternative trait to 
improve fillet yield. The heritability estimate for BW 
(0.33) was similar to the estimates found in the litera-
ture that range from 0.26 to 0.37 [4, 21].

Estimating the genetic correlation between FY and 
BW is important to understand the relationship and 
potential impacts of selection for either of the traits. 
The correlations reported in the literature range from 
very low (0.04) to moderately positive (0.22) [4, 36]. In 
our study, the genetic correlation between FY and BW 
was moderate and positive (0.24), indicating that selec-
tion for BW could result in indirect gains for FY. It is 
important to note that different data recording prac-
tices such as measuring BW and FY at constant age 
or constant harvest weight, and the modeling strategy 
adopted, can impact the estimates of genetic param-
eters, heritabilities and genetic correlations, and also 
impact the relationship between the traits, thus affect-
ing potential correlated response to selection [36, 37].

Table 2  Estimates of variance components for fillet yield and 
body weight

σ
2
u : additive genetic variance; σ2f  : variance of the family effect; σ2e : residual 

variance; σ2p : phenotypic variance; h2 : heritability; f2 : proportion of variance 
explained by the family effect; rg: genetic correlation

Fillet yield (SE) Body weight (SE)

σ
2
u

1.99 (0.42) 17,648 (2526)

σ
2
f

0.24 (0.12) 5,679 (733)

σ
2
e

2.60 (0.23) 29,913 (1319)

σ
2
p

4.82 (0.18) 53,239 (1187)

h2 0.41 (0.07) 0.33 (0.04)

f2 0.05 (0.03) 0.11 (0.01)

rg 0.24 (0.14)
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Prediction accuracy
Overall, the results of the three validation strategies 
used in our study agreed and the ssGBLUP evalua-
tion always outperformed the traditional PBLUP. The 
results for the validation are in Tables  3, 4, and 5 for 
the mid-parent, young animals (adjusted phenotypes), 
and LR validations, respectively. For FY, the mid-parent 
validation was used to investigate the accuracy of pre-
dicting the realized phenotypes of the young animals 
from hatch year 2018. The gains in prediction accuracy 
with the genomic evaluation over the PBLUP evalua-
tion reached 50% when using raw phenotypes (from 
0.16 to 0.24), and 30% when using adjusted pheno-
types (from 0.20 to 0.26). The percentage of gain when 
using adjusted phenotypes was in line with the other 
validation methods. For instance, using the validation 
on young animals from the 2016 hatch year, the gain 
in prediction accuracy with ssGBLUP was 27% (from 
0.49 to 0.62) and with the LR method the gain was 37% 
(from 0.49 to 0.67). Often the main goal is to predict 
the genetic merit of the animals, and therefore, using 

the phenotypes adjusted by the fixed effects is a more 
appropriate benchmark [30].

Because BW phenotypes were not available for fish in 
hatch year 2018, the animals born in 2016 were used in 
the validation. For this trait, the gains in accuracy with 
ssGBLUP were higher with the LR validation (44%) than 
with adjusted phenotypes (11%). Although genomic eval-
uation outperformed traditional PBLUP for both traits in 
both validations, this discrepancy in the magnitude of the 
gains could be due to stronger selection on BW, which 
may not be as well accounted for by the LR validation. In 
LR, the denominator of the accuracy formula is used to 
consider selection; however, the formula we used is an 
approximation to the main formula [31]. The denomi-
nator of the main formula requires the additive genetic 
variance in the validation set, which may be difficult to 
compute [38].

Similar gains in prediction accuracy have been reported 
for a variety of traits in aquaculture species, for instance, 
Atlantic salmon [8], rainbow trout [15, 16, 19], tilapia [11, 
12], and channel catfish [10]. One example for which the 

Table 3  Results for the validation on mid-parent (G)EBV and average progeny phenotypes for fillet yield

Body weight data (BW) were not collected from the year-class 2018 progeny that were phenotyped for FY

N: number of families in the validation sample

cor: correlation between average progeny phenotypes and (GEBV); b0: bias; b1: inflation

Model N Fillet yield

Raw phenotypes Adjusted phenotypes

cor b0 b1 cor b0 b1

BLUP 73 0.16 52.72 0.59 0.20 0.85 0.63

ssGBLUP 73 0.24 52.61 0.55 0.26 0.91 0.52

Table 4  Results for the validation with adjusted phenotypes

N: number of progeny with phenotype data for both traits in the validation panel (year-class of 2016)

Accuracy: [correlation between adjusted phenotypes and (GEBV)]/sqrt(h2); b0: bias; b1: inflation

Model N Fillet yield Body weight

Accuracy b0 b1 Accuracy b0 b1

BLUP 562 0.49 0.05 1.04 0.35 39.36 0.97

ssGBLUP 562 0.62 0.33 0.96 0.39 242.13 0.74

Table 5  Results for the LR validation

N: number of progeny with phenotype

Model N Fillet yield Body weight

Accuracy Bias Slope Consistency Accuracy Bias Slope Consistency

BLUP 562 0.49 − 0.06 1.03 0.63 0.32 − 7.88 0.92 0.52

ssGBLUP 562 0.67 − 0.09 0.99 0.79 0.46 − 12.61 0.90 0.68
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reported gain in prediction accuracy was substantially 
greater (100% improvement over PBLUP) was for resist-
ance to bacterial cold-water disease (BCWD) in rainbow 
trout [9]. We believe that, in that example, the presence 
of two to three major QTL for BCWD in this rainbow 
trout population [9] has been a major contributor to the 
enhanced improvement in the estimated accuracy of 
the genomic prediction compared to PBLUP prediction. 
These and many other studies demonstrate the benefit of 
incorporating genomic information into routine evalu-
ations for aquaculture breeding programs. In addition, 
these benefits are further highlighted for traits with a low 
heritability or that cannot be measured on selection can-
didates, such as fillet yield and disease resistance. In addi-
tion, a recent simulation study predicted improvement 
in genetic merit prediction accuracy for carcass yield in 
rainbow trout by using genomic selection coupled with 
selection for an indirect morphological indicator [39].

Our study provides the first estimates of validation 
accuracy from genomic evaluation models for fillet yield 
in aquaculture using mid-parent validation [19, 29]. This 
is important because the ultimate practical test for selec-
tive breeding is the net genetic gain and actual improve-
ment in performance in the next generation of the 
breeding program.

Bias and dispersion of breeding values
Bias and inflation results were not as consistent across 
validation methods. For the mid-parent validation (FY 
only), some bias (0.85 and 0.91) and over-dispersion 
(0.63 and 0.52) were present in both the traditional and 
genomic evaluations even with adjusted phenotypes 
(Table  3). For the forward validation methods, with 
adjusted phenotypes and the LR method (Tables 4 and 5), 
bias was generally small for FY (− 0.09 to 0.33) but over-
all larger for BW (− 12.61 to 242.13). Large differences 
in the absolute values of bias are likely due to the scale 
of the phenotypes for the traits, making the comparison 
between traits more difficult. Representing these results 
as a proportion of the genetic standard deviation (SDa) 
for each trait shows that the bias for FY was more severe 
(from 6 to 23% of SDa) than for BW (up to 2% of SDa).

The b1 coefficient ranged from 0.96 to 1.04 for FY and 
from 0.74 to 0.97 for BW, indicating small under- and 
over-dispersion of the estimates of breeding values for 
the forward validation methods.

In our study, we constructed G using base allele fre-
quencies because these are preferable when available 
[27], since they ensure compatibility between G and A22 . 
In addition, genotyping in this population covered many 
samples within the same family (i.e., around 5 fish per 
family in each year-class); therefore, many genotyped 
fish represented the variability within the family, and 

few represented the variability across families. This cre-
ates stratification, and the estimation of allele frequen-
cies based on the current population can be relatively 
poor in such a scenario. Although base allele frequen-
cies were used, dispersion bias was still observed when 
validating on future performances. To further explore the 
potential sources of biases in our evaluations, we could 
analyze different aspects of the population structure. For 
instance, although selection for FY is recent in this popu-
lation, it has been selected for growth performance for 
five generations prior to the FY selection that started in 
2014 [19, 21]. This prior selection could lead to selective 
genotyping of the animals with superior genetic merit 
for growth in the recent generations, which can be dif-
ficult to account for and may lead to biased predictions 
[40]. Another source of bias in the evaluations could be 
due to the different fixed effects combinations (results 
not shown) included in the model. Bermann et  al. [38] 
showed that validation based on future performances 
(i.e., adjusted phenotypes) is more sensitive to model 
specification than that based on future GEBV (i.e., LR 
method).

As pointed out by Legarra and Reverter [41], even 
when prediction accuracy is higher, bias and inflation of 
breeding values could lead to less than optimal selection 
of animals. Although it may be less important for spe-
cies with discrete generations, measures to mitigate these 
biases should be put in place, and an evaluation with a 
higher prediction accuracy and lower bias and inflation 
should be preferred.

Consistency of evaluations
In addition to accuracy, bias, and inflation, the LR 
method provides a measure of consistency between eval-
uations. This consistency is based on the correlation of 
the breeding values of validation animals using the whole 
data with those using the partial datasets, and a higher 
correlation means that the partial data predicts well the 
whole data. In our study, ssGBLUP was more consistent 
compared to PBLUP for FY (0.79 vs 0.63) and for BW 
(0.68 to 0.52), as shown in Table 5. This result is expected 
because as the genomic evaluation is more accurate, the 
breeding values tend to change less when more data is 
added in subsequent evaluations.

Weighted ssGBLUP (WssGBLUP)
Weighted ssGBLUP results for FY and BW are in Tables 6 
and 7, respectively. Generally, using different weights 
for SNPs by WssGBLUP did not yield improvements in 
prediction accuracy for the studied traits, and prediction 
accuracy was similar to that with ssGBLUP. However, 
when CT was set to 1.125 there was a marginal increase 
in accuracy from 0.62 to 0.63, on iterations 4 and 5 for 
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FY (Table  6). In spite of similar accuracies, there were 
differences in bias and in the inflation of breeding val-
ues. Overall, the use of weights resulted in an increase in 
bias, for instance, when CT was set to 1.125 for FY, b0 
ranged from − 0.44 to − 0.60 (iterations 1 to 5), whereas 
for BW, when CT was set to 1.25, b0 ranged from 44.22 
to 59 (iteration 1 to 5), both representing an increase in 
bias. Small changes in inflation could also be observed 
based on CT values and iterations of WssGBLUP for 
both traits. Although in some cases, accuracy was slightly 
increased or inflation slightly reduced, such marginal 
changes would not considerably improve the predictions. 
For polygenic traits, such as FY and BW in our study, 
weighting SNPs differently is not expected to increase 
prediction accuracy. However, for a trait such as resist-
ance to BCWD in rainbow trout that is influenced by two 
or three major QTL it was shown that WssGBLUP and 
BayesB consistently generated higher prediction accuracy 
[9, 42]. Some studies have shown minor improvements in 
prediction accuracy with WssGBLUP when SNPs close 
to a major QTL are given bigger weights [43] or when 
selected sequence variants are added to the SNP panel 
[44].

Genome‑wide association study (GWAS)
Figures  1 and 2 show the Manhattan plots for FY and 
BW with the p-values. Based on the p-values calculated 
from ssGBLUP and a Bonferroni threshold of 5.8, none 

of the SNPs were declared significantly associated with 
the traits. In addition, Figs. 3 and 4 show the proportion 
of additive genetic variance explained by windows of 20 
adjacent SNPs. For FY, one window on trout chromo-
some Omy9 explained up to 1.02% of the genetic variance 
(Fig. 3), and for BW, three windows on Omy6 explained 
up to 0.6% of the genetic variance. Given that no SNP 
were declared significant based on the p-values and that 
the proportion of variance explained was small for both 
traits, the polygenic nature of both FY and BW is confir
med.

Other studies have investigated the genetic architec-
ture of FY in rainbow trout. For example, Gonzalez-
Pena et al. [19], using a single-trait model, found similar 
results, with windows explaining up to 1.5% of variance 
for FY on Omy9 and one window on Omy5 explain-
ing 0.95% of the variance of BW. As in our study, the 
authors concluded that both traits are polygenic and 
can benefit from genomic selection using all available 
markers. However, a more recent study by Salem et al. 
[45] found two windows of 50 SNPs explaining 12.71% 
and 10.49% of the genetic variance for FY on Omy 14 
and 16, respectively, using the same sample as in Gon-
zalez-Pena et  al. [19] but a different 50K SNP array 
to genotype the fish. Their array was developed using 
SNPs that had differential allelic frequencies between 
high and low growth families from the same studied 

Table 6  Results for WssGBLUP for fillet yield for different weighting strategies for the SNPs

a CT values tested, CT is a constant that represents the deviation from normality in the calculation of weights for the SNPs

b0: bias; b1: inflation

Validation is done with adjusted phenotypes

Iteration 1.025a 1.125 1.25

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Accuracy 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.63 0.63 0.62 0.62 0.62 0.62 0.62

b0 − 0.44 − 0.51 − 0.52 − 0.52 − 0.52 − 0.44 − 0.57 − 0.60 − 0.60 − 0.60 − 0.44 − 0.46 − 0.46 − 0.46 − 0.46

b1 1.07 1.03 1.03 1.03 1.03 1.07 1.00 0.99 0.99 0.99 1.07 1.06 1.06 1.06 1.06

Table 7  Results for WssGBLUP for body weight for different weighting strategies for the SNPs

a CT values tested. CT is a constant that represents the deviation from normality in the calculation of weights for the SNP markers

b0: bias; b1: inflation

Validation are done with adjusted phenotype

Iterations 1.025a 1.125 1.25

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Accuracy 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

b0 44.22 45.34 45.36 45.36 45.36 44.22 49.57 50.24 50.45 50.53 44.22 54.29 57.77 58.92 59.00

b1 0.83 0.83 0.83 0.83 0.83 0.83 0.80 0.80 0.80 0.80 0.83 0.77 0.76 0.75 0.75
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population. The SNP array that was used by Gonzalez-
Pena et al. [19] and in our study was based on SNPs that 
were shown to be polymorphic in a wide range of rain-
bow trout populations [20]. In addition, we specifically 
examined the QTL regions reported in Salem et al. [45] 
and found that they are equally represented compared 
to the rest of the genome in the SNP array used in our 
study but are highly enriched with SNPs from the array 
used by Salem et  al. [45] (data not shown). Therefore, 

this discrepancy in the reported QTL may be caused by 
allelic ascertainment bias and differential enrichment 
for certain genome loci between the SNP arrays used in 
each study.

Conclusions
The low but positive genetic correlation between fillet 
yield and body weight indicates that some improvement 
in fillet yield may be achieved through indirect selec-
tion for body weight. Genomic information increases 

Fig. 1  Manhattan plot for FY with − log10 p-values

Fig. 2  Manhattan plot for BW with − log10 p-values
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the prediction accuracy of breeding values and is an 
important tool to accelerate genetic progress for fillet 
yield and growth in the current rainbow trout popu-
lation. No major SNPs were found to be significantly 
associated with the studied traits, which suggests that 
using all the SNPs available in the panel for genomic 
evaluations is a better strategy. Weighting SNPs dif-
ferently provides only a marginal increase in predic-
tion accuracy compared to the use of the unweighted 

single-step model. This indicates the existence of many 
loci with small effects on these traits in the genome. 
Past selection for growth rate, selective genotyping, and 
the relatively small number of genotyped animals in the 
current populations are possible sources of bias in the 
evaluation for fillet yield and body weight.
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