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Abstract 

Background In broiler breeding, genotype-by-environment interaction is known to result in a genetic correlation 
between body weight measured in bio-secure and commercial environments that is substantially less than 1. Thus, 
measuring body weights on sibs of selection candidates in a commercial environment and genotyping them could 
increase genetic progress. Using real data, the aim of this study was to evaluate which genotyping strategy and which 
proportion of sibs placed in the commercial environment should be genotyped to optimize a sib-testing breeding 
program in broilers. Phenotypic body weight and genomic information were collected on all sibs raised in a commer-
cial environment, which allowed to retrospectively analyze different sampling strategies and genotyping proportions.

Results Accuracies of genomic estimated breeding values (GEBV) obtained with the different genotyping strategies 
were assessed by computing their correlation with GEBV obtained when all sibs in the commercial environment were 
genotyped. Results showed that, compared to random sampling (RND), genotyping sibs with extreme phenotypes 
(EXT) resulted in higher GEBV accuracy across all genotyping proportions, especially for genotyping proportions of 
12.5% or 25%, which resulted in correlations of 0.91 vs 0.88 for 12.5% and 0.94 vs 0.91 for 25% genotyped. Including 
pedigree on birds with phenotype in the commercial environment that were not genotyped increased accuracy at 
lower genotyping proportions, especially for the RND strategy (correlations of 0.88 vs 0.65 at 12.5% and 0.91 vs 0.80 
at 25%), and a smaller but still substantial increase in accuracy for the EXT strategy (0.91 vs 0.79 for 12.5% and 0.94 vs 
0.88 for 25% genotyped). Dispersion bias was virtually absent for RND if 25% or more birds were genotyped. However, 
GEBV were considerably inflated for EXT, especially when the proportion genotyped was low, which was further exac-
erbated if the pedigree of non-genotyped sibs was excluded.

Conclusions When less than 75% of all animals placed in a commercial environment are genotyped, it is recom-
mended to use the EXT strategy, because it yields the highest accuracy. However, caution should be taken when 
interpreting the resulting GEBV because they will be over-dispersed. When 75% or more of the animals are geno-
typed, random sampling is recommended because it yields virtually no bias of GEBV and results in similar accuracies 
as the EXT strategy.

Background
Broiler poultry breeding companies keep and select their 
genetic pure lines in a bio-secure environment to reduce 
the risk of diseases. However, this environment can differ 
substantially from the environment in which commercial 
broilers perform, resulting in genotype-by-environment 
(GxE) interactions. Commercial environments are less 
sanitary and thus, compared to a bio-secure environ-
ment, they can pose different challenges, which affect 
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both the performance and livability of the birds. Geno-
type-by-environment interactions cause differences in 
the expression of phenotypes under distinct environ-
ments [1–4] and thereby lead to reranking of individuals. 
Using phenotypes recorded in commercial environments 
on family members of selection candidates and using 
these for their genetic evaluation has already been proven 
to increase genetic gains in economically relevant traits 
in cattle and pig breeding programs [5–7]. Thus, it is 
important for a breeding program to quantify the mag-
nitude of the GxE interactions for economically relevant 
traits. If the genetic correlation between a trait measured 
in a bio-secure and in a commercial environment is lower 
than 0.8, efforts should be made to record this trait on 
families in both environments [7]. It has been reported 
that the genetic correlation between body weight of the 
same purebred broiler line recorded in a bio-secure and 
in a commercial-like environment ranges from 0.46 to 
0.69 [8, 9].

Increasing the number of individuals placed in the 
commercial environment will improve the accuracy 
of the estimated breeding values (EBV) for a commer-
cial trait and thereby improve the genetic progress [6, 
7]. However, there are often restrictions on the number 
of individuals that can be placed in a commercial envi-
ronment because of the structure of a broiler breeding 
program; only a limited number of birds can be hatched 
per hen in a selection flock, which is a group of eligible 
selection candidates within a selection round, and only a 
limited number of hens can be assigned to each rooster, 
which restricts family sizes. Due to biosecurity rules, 
birds that are placed in a commercial environment can-
not return to a bio-secure environment and can, there-
fore, not be considered as selection candidates within 
the nucleus of the breeding program. Thus, although 
placing a high percentage of birds generated by a selec-
tion flock in a commercial environment will improve 
the accuracy of the EBV for the commercial trait, it can 
negatively affect selection intensity. It is therefore impor-
tant to assess what proportion of birds should be tested 
in the commercial environment to obtain the best bal-
ance between accuracy and selection intensity such that 
genetic gain is optimized.

In a simulation study, Chu et al. [10] found that, with 
genomic selection, taking selection intensity, inbreed-
ing, and accuracy into account, the proportion of birds 
to phenotype in a commercial environment to maximize 
genetic gain for body weight in a commercial environ-
ment was 30%. Their results were based on genetic cor-
relations of 0.5 and 0.7 between body weight measured 
in a bio-secure and in a commercial environment. Chu 
et  al. [8] showed the benefit of using genomic versus 

pedigree-based prediction when a trait is measured in 
two environments, which comes from genomic predic-
tion resulting in higher accuracies of EBV because it 
takes the Mendelian sampling term into account when 
calculating the relationship between individuals [11, 12]. 
In our scenario, this is especially useful, as the commer-
cial body weight trait is not recorded on the selection 
candidates. To balance costs and benefits of genotyping 
individuals, a breeding company needs to find an optimal 
genotyping strategy that minimizes costs and maximizes 
accuracy of EBV, while limiting bias of the EBV used in 
the breeding program.

Several simulation studies on other species have shown 
that randomly selecting individuals to be genotyped 
resulted in higher accuracy and lower bias of genomic 
EBV (GEBV) for selection candidates compared to 
strategies where individuals were selected for genotyp-
ing based on having the best phenotypes for the traits 
of interest or having the highest family selection index 
[13–15]. Other simulations studies found that genotyp-
ing based on extreme, i.e. both highest and lowest, family 
selection indexes or phenotypes resulted in the highest 
accuracies of GEBV for selection candidates [14–18]. 
Using real data, the main objectives of this study were: (1) 
to evaluate which genotype sampling strategy should be 
used and (2) which proportion of the birds placed in the 
commercial environment should be genotyped to opti-
mize a broiler breeder sib test scheme.

Methods
Phenotypes and genotypes
Data were provided by the poultry breeding company 
Cobb-Vantress, Inc. (Siloam Springs, Arkansas, USA) 
and included performance records collected on 24 
selection flocks of pure-line broiler chickens that were 
raised either in a bio-secure environment (Env B) or in 
a commercial environment (Env C). The birds included 
in this study were offspring from 519 sires to 2368 
dams. About 30% of the birds that hatched within a 
selection flock were placed in Env C, as recommended 
by Chu et  al. [10]. All these birds were either full- or 
half-sibs of the remaining 70% birds, which were 
placed in Env B as selection candidates. For both Env 
B  (BWB) and Env C  (BWC), body weight was recorded 
at 42 days of age for the first six selection flocks and at 
35  days of age for the next 18 selection flocks. In Env 
B, phenotypes were also recorded on white meat per-
centage (WMPct), leg quarter percentage (LegQPct), 
body weight gain (Gain), and feed efficiency (FE). Qual-
ity control of the data consisted of removing birds with 
unknown gender and phenotypes that deviated more 
than three standard deviations from the average of their 
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contemporary group, which resulted in less than 1% of 
the data being removed. In addition to gender, the con-
temporary group of a bird was defined as the interac-
tion between the mating age group of its parents, its 
own mating age group, and the hatch week it was born. 
For  BWB, there were 476 contemporary groups with on 
average 187 birds per group, and for  BWC there were 
96, with on average 417 birds per group. Genotypes 
from a 60  K single nucleotide polymorphism (SNP) 
panel were collected on all the birds in Env C but only 
on selection candidates in Env B that were selected 
based on a selection index. The numbers of birds with 
phenotypes and genotypes that remained for analyses 
for each trait are in Table 1. All chicks placed in Env B 
had a known pedigree.

Only SNPs that fulfilled the following criteria were 
retained: a call rate higher than 0.90 and a minor allele 

frequency higher than 0.05. After quality control, 
45,993 SNPs remained for analyses. All genotyped birds 
had a call rate > 0.95, due to quality control criteria for 
sample delivery.

Genotyping strategies for Env C
Since all chicks in Env C were genotyped, we were able 
to retrospectively evaluate different genotyping strate-
gies and proportions. Three strategies were used to select 
chicks in Env C for genotyping:

1. Genotyping of randomly selected birds (RND).
2. Genotyping of randomly selected birds within sire 

families (SIRE).
3. Genotyping of birds with extreme phenotypes, i.e. 

those with the highest and lowest body weight (EXT).

For each genotyping strategy, results were evaluated 
for four proportions of birds genotyped: 12.5, 25, 50, and 
75%. In the SIRE strategy these proportions were applied 
within each sire family, while in the EXT scenario using 
a genotyping proportion of e.g. 25% involved genotyping 
the 12.5% highest and the 12.5% lowest body weight ani-
mals. The number of genotyped birds always remained 
the same in Env B. Because birds were randomly sam-
pled in the RND and SIRE strategies, in these strategies 
the body weights of the genotyped individuals are still 
expected to follow a normal distribution, as illustrated in 
Fig. 1.

Table 1 Number of birds with phenotypes and genotypes for 
each trait

Phenotypes (n) Genotype (n)

Body weight in a bio-secure environ-
ment

87,381 26,867

Body weight in a commercial environ-
ment

34,863 34,816

Feed efficiency 30,430 15,992

Breast meat/ leg quarter yield 7606 7594

Fig. 1 Illustration of the full distribution of body weights measured in the commercial environment (denoted in light Blue), and the distribution of 
body weights of birds sampled by the Random and Sire genotyping sampling strategy (denoted in Dark Blue)
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For the EXT scenario, half of the genotyped birds were 
the top ranking and the other half were the bottom rank-
ing birds based on phenotype for body weight. Thus, in 
the EXT scenario, birds from the tail ends of the distri-
bution of body weight were genotyped, as illustrated in 
Fig. 2. The average number of genotyped birds used for 
each proportion genotyped over the last six selection 
flocks is shown in Table 2.

For the RND and EXT genotyping strategies, analyses 
with and without pedigree information on non-geno-
typed birds were carried out to reflect scenarios in which 
the chicks placed in Env C are hatched in a selection 
hatchery, in which case their pedigree would be known, 
or in a commercial hatchery, in which case their pedi-
gree would not be known. The SIRE sampling strategy 
requires that the pedigree of the chicks is known and, 
therefore, analysis for this strategy was done with avail-
ability of pedigree information only.

Statistical analyses
Models
A multivariate pedigree-based model was used to esti-
mate variance and covariance components for all six 
traits, using the full dataset. When only a proportion of 
the animals is selectively genotyped, it is recommended 
to use a pedigree-based animal model to estimate the 
variance components because it yields less biased vari-
ance components than a single-step model that includes 

genomic information [19, 20]. For  BWB and  BWC, a 
random permanent maternal environmental effect was 
added to the model because early body weight is affected 
by maternal effects, for example through egg size [21, 22]. 
The model for  BWB and  BWC was:

And the model for Gain, FE, WMPct% and LegQ% was:

where X , Z, and W are incidence matrices; b is a vec-
tor of the fixed effects of contemporary group, and a , c
, and e are vectors of direct additive genetic, permanent 
maternal environmental, and residual effects, respec-
tively. These random effects were assumed to be nor-
mally distributed a ∼ N (0,A ⊗Ga ), c ∼ N (0, Id ⊗ C ), 
and e ∼ N (0, I⊗ R) , where A is the pedigree relationship 
matrix, Id and I are identity matrices, Ga is the additive 

y = Xb+ Za +Wc+ e,

y = Xb+ Za + e,

Fig. 2 Illustration of the extreme phenotype genotyping sampling strategy in which birds from the tail ends of the normal distribution for body 
weight measured in the commercial environment are genotyped (denoted in Dark Blue)

Table 2 Average number of genotyped birds in Env C for the 
different proportions of birds genotyped over the six selection 
flocks

Proportion genotyped in Env C

12.5% 25% 50% 75% 100%

Number of genotyped birds 3460 6936 13,886 20,834 27,793
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genetic covariance matrix among traits, C is the perma-
nent maternal environmental covariance matrix, and R is 
the residual covariance matrix. This model has been used 
in several other studies [9, 23, 24] for body weight meas-
ured at similar ages as used here. Variance components 
were estimated by the AIREML procedure in the DMUAI 
module of the DMU software [25]. Standard errors (SE) 
of the estimates of heritability and genetic correlations 
were approximated using Taylor series expansions, as 
described in [25, 26].

Resulting estimates of variance components were 
subsequently used in a single step genomic best linear 
unbiased prediction (ssGBLUP) model, implemented 
with the BLUPF90 software [27], which combines pedi-
gree and genomic information to predict GEBV [28–
30]. The models used for ssGBLUP were identical to 
those used to estimate genetic parameters, except that 
the inverse of the pedigree relationship matrix ( A−1 ) 
was replaced by the inverse of the combined relation-
ship matrix ( H−1 ) [28, 30], which was constructed by 
combining A−1 , the inverse of the pedigree-based rela-
tionship matrix of the genotyped animals ( A−1

22
 ), and 

the inverse of the genomic relationship matrix G−1 . To 
do so, a blended G was used and was defined as:

where G0 is the genomic relationship matrix based on 
method 1 of VanRaden [31]. In addition, inbreeding was 
accounted for in G∗ , by matching the relationship matrix 
G to the relationship matrix A22 . This was done as:

where ρ is the adjustment factor proposed by Vitezica 
et al. [32].

Thereafter the matrix H−1 was constructed as:

As G∗−1 becomes more of a computational bur-
den when the number of genotypes increases, it was 
decided to calculate the inverse of the G∗ matrix by 
using the algorithm for proven and young (APY) [33], 
using all parents of the animals with phenotypes in the 
dataset, and all selection candidates up to three genera-
tions in the past as core animals (c) and the rest as non-
core animals (n). Thus, G∗ was partitioned as:

G = 0.95G0 + 0.05A22,

G
∗
=

(

1−
ρ

2

)

G+ 11
′ρ,

H−1
= A−1

+

[

0 0

0 G∗−1
− A−1

22

]

.

G∗
=

[

Gcc Gcn

Gnc Gnn

]

,

where  Gcc , Gnc , Gcn as well as the diagonal elements 
of Gnn were computed and used to construct the APY 
inverse [33].

The number of core and non-core animals for each 
genotyping proportion are in Table  3. Initial analyses 
showed that the GEBV obtained with APY were vir-
tually the same as those obtained using the full G*−1 
matrix.

Validation
Validation was done using the LR method [34] to evalu-
ate the differences in GEBV accuracies and dispersion 
bias. This validation method assumes that GEBV com-
puted using full data are more accurate than those based 
on partial data, where “full” refers to a given dataset and 
“partial” simply means that only a part of the full data is 
used. Each of the last six selection flocks (19 to 24) was 
used in turn as validation population and the data from 
the 18 selection flocks that immediately preceded the val-
idation flock was used as training data. Thus, when selec-
tion flock 19 was used for validation, data from selection 
flocks 1 to 18 were included in the analysis, and when 
selection flock 20 was used as validation, data from selec-
tion flocks 2 to 19 were included in the analysis, and so 
on. The reduction in accuracy of each genotyping strat-
egy was then measured as the correlation ( rf−r ) of GEBV 
from birds in the validation selection flock obtained in 
this genotyping strategy with their GEBV obtained from 
the full data. Values of rf−r close to 1 suggest that the cor-
responding genotyping strategy achieved similar GEBV 
and, therefore, similar accuracies, as obtained when using 
the full data. The full dataset contained the genotypes 
of all birds raised in Env C and the reduced dataset only 
contained a proportion of the genotyped birds raised in 
Env C based on each genotyping strategy. All selection 
candidates in Env B had genotypes and the number of 
animals with genotypes was the same for all strategies as 
in the full data. Dispersion bias of GEBV for the selection 
candidates under each genotyping strategy was evaluated 

Table 3 Average number of core and non-core animals per 
selection round for each scenario

Proportions genotyped in Env C

12.5% 25% 50% 75%

Average number 
of core animals

6482 7251 8777 10,300

Average number 
of non-core 
animals

17,412 20,119 25,544 30,967
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by the slope of the regression of the GEBV from the full 
data on the GEBV of the reduced data for each sampling 
strategy. All results are presented as averages across the 
six validation selection flocks. The SE for the correlations 
and regression coefficients between the full and reduced 
data across the six validation selection flocks were cal-
culated as the standard deviation of the six estimates 
divided by the square root of 6.

Results and discussion
Genetic parameters
Estimates of heritabilities for all traits and of the genetic 
correlations between the traits are in Table  4. The esti-
mate of heritability was slightly lower for  BWB than for 
 BWC. Estimates of both the additive genetic and resid-
ual variance were larger for  BWc, but the difference in 
residual variance estimates was proportionally smaller. 
The heritability estimates for  BWB and  BWC confirmed 
those reported by Chu et  al. [8], who found heritabili-
ties of 0.31 to 0.37 for body weight recorded in Env B 
and Env C for older generations of the populations used 
here. The estimate of the genetic correlation of  BWB with 
 BWC was 0.59, which indicates presence of GxE interac-
tion. This result is in agreement with those of Kapell et al. 
[9] and Chu et al. [8], who reported a genetic correlation 
of 0.46 to 0.69 between body weight measured on a bio-
secure and on a commercial farm. Estimates of genetic 
correlations of the two dissection traits, WMPct and 
LegQPct, were lower with  BWC than with  BWB, which 
is as expected because  BWC is measured in a different 
environment. Estimates of the genetic correlation of feed 
efficiency were close to zero with both  BWB and  BWC, 
because FE was corrected for body weight. Since the esti-
mate of the genetic correlation between  BWB and  BWC 
was considerably less than 1 (0.59) and the estimate of the 
heritability for  BWC was moderately high (0.37), setting 

Table 4 Estimates of heritabilities and standard errors (SE) (in bold on the diagonal) and of genetic correlations (below the diagonal) 
and their standard errors (above the diagonal)

Bold characters refer to the esstimates of heritabilities and their standard errors (SE)

BWB body weight recorded in Env B; BWC body weight recorded in Env C; WMPct white meat percentage; LegQPct leg quarter percentage; FE feed efficiency; and Gain: 
bodyweight gain

BWB BWC WMPct LegQPct FE Gain

BWB 0.34 (0.02) 0.04 0.05 0.05 0.04 0.04

BWC 0.59 0.37 (0.03) 0.05 0.05 0.05 0.05

WMPct 0.25 0.04 0.61 (0.03) 0.05 0.05 0.05

LegQPct − 0.06 0.02 − 0.39 0.60 (0.03) 0.05 0.05

FE 0.02 0.03 − 0.26 0.08 0.24 (0.01) 0.05

Gain 0.30 0.11 0.02 0.01 0.18 0.22 (0.01)

Table 5 Correlations ( rf−r ) of EBV for  BWC of birds from the six 
validation selection flocks obtained from the reduced data with 
EBV obtained from the full data and their standard error (SE) for 
different genotyping strategies and proportions genotyped 
and with or without availability of pedigree on non-genotyped 
animals in the commercial environment

RNDPed pedigree available on all birds in Env C, genotypes are sampled 
randomly; RNDNoPed pedigree is only available on genotyped birds, genotypes 
are sampled randomly; SIRE pedigree available on all birds, genotypes are 
sampled randomly within sire family; EXTPed pedigree available on all birds, 
genotypes are sampled based on extreme phenotypes; EXTNoPed pedigree is 
only available on genotyped birds, genotypes are sampled based on extreme 
phenotypes

Genotyping strategy Proportion of genotyped 
animals in Env C (%)

rf−r SE

Pedigree only 0.00 0.83 0.004

RNDPed 12.50 0.88 0.003

RNDNoPed 12.50 0.65 0.013

SIRE 12.50 0.88 0.002

EXTPed 12.50 0.91 0.003

EXTNoPed 12.50 0.79 0.012

RNDPed 25 0.91 0.003

RNDNoPed 25 0.80 0.007

SIRE 25 0.91 0.003

EXTPed 25 0.94 0.002

EXTNoPed 25 0.88 0.004

RNDPed 50 0.95 0.002

RNDNoPed 50 0.89 0.004

SIRE 50 0.95 0.003

EXTPed 50 0.97 0.001

EXTNoPed 50 0.94 0.002

RNDPed 75 0.98 0.001

RNDNoPed 75 0.95 0.002

SIRE 75 0.98 0.001

EXTPed 75 0.99 0.000

EXTNoPed 75 0.97 0.001
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up a sib test scheme is expected to increase genetic gain 
in body weight in a commercial environment [7, 10].

Accuracy
The correlation of the EBV of the validation selection 
flocks for  BWC when using pedigree only and GEBV 
obtained with all genotypes included was 0.83 (Table 5).

Thus, in addition to having pedigree information, geno-
typing birds with phenotypes in the commercial envi-
ronment is beneficial in a sib test scheme for broilers, as 
already reported by Chu et al. [8] for similar data. For all 
genotyping strategies, rf−r increased as the number of 
genotyped birds increased, which is in agreement with 
previous simulation studies [11, 14, 15, 18, 35, 36]. For 
a given genotyping proportion, rf−r was highest for the 
EXT strategy, which suggests that this strategy achieved 
the highest accuracy. Previous simulation studies also 
found that accuracies were higher when individuals with 
extreme phenotypes, i.e. the highest and lowest, were 
genotyped instead of genotyping only individuals with 
the highest family index or highest performance [14–18, 
37]. Genotyping of animals with extreme phenotypes is 
more informative for prediction of Mendelian deviations 
from the mid parent mean [37], which is especially useful 
when the trait of interest is not recorded on the selection 
candidates. In addition, Boligon et  al. [16] showed that 
genotyping animals with extreme phenotypic deviations 
for an indicator trait that has a genetic correlation of 0.5 
with the trait of interest, provided the highest accuracy of 
GEBV for the trait of interest in the next generation. This 
suggests that it may be useful to also genotype animals 
with low  BWB, in addition to the selection candidates, to 
further increase the accuracy of EBV for selection candi-
dates for  BWC. However, since genotyping is costly and 
birds that are not yet genotyped for the purpose of the 
breeding program are not selection candidates, this strat-
egy may not be justified in practice.

The results in Table  5 demonstrate that there is lit-
tle difference between the  RNDPed and SIRE strategies, 
as both show a very high accuracy when 50% or more of 
the birds are genotyped. When more than 50% of birds 
are genotyped, both the  RNDPed and SIRE strategies rep-
resent a random and unbiased amount of phenotypic 
variation across the population and provide a good rep-
resentation of the families, whereas selective genotyping 
based on the best family index or phenotype, will result in 
lower family representation or phenotypic variation and, 
therefore, in lower accuracies. This is consistent with pre-
vious simulation studies that showed that random selec-
tive genotyping results in higher accuracies than selective 
genotyping based on family index or phenotypes [13–18]. 
For all strategies, sampling 75% of all birds led to GEBV 

that were very similar to those based on the full data ( rf−r

=0.95–0.99). The  RNDPed, SIRE and  EXTPed strategies 
achieve high accuracies compared to the full data even 
when 50% of the birds are genotyped (0.95, 0.95 vs 0.97, 
respectively). Thus, genotyping 100% of the birds might 
not be necessary and reducing the number of genotyped 
animals can help minimize costs of the breeding pro-
gram. The results also suggest that accuracy considerably 
increased when pedigree information is available for the 
non-genotyped birds, especially when sampling propor-
tions are small, i.e. with 12.5% genotyped, rf−r increased 
from 0.65 to 0.88 for RND and from 0.79 to 0.91 for EXT, 
and from 0.80 to 0.97 for RND and from 0.88 to 0.94 for 
EXT with 25% genotyped. However, with 75% genotyped, 
the drop in accuracy due to the lack of pedigree infor-
mation was small for both  RNDNoPed and  EXTNoPed ( rf−r 
of 0.95 vs 0.97). Thus, hatching chicks in a commercial 
hatchery in a sib scheme test as mimicked by  RNDNoPed 
and  EXTNoPed is a valid option, provided the proportion 
of birds genotyped is sufficiently high (i.e. 50% or more).

It should also be noted that the estimates of rf−r for 
all but one trait (WMPct, LegQPct, FE, and Gain) were 
not affected by the number of birds genotyped in Env 
C (results not shown). This is because the number of 
records for these traits was the same across all strate-
gies and proportions of birds genotyped in Env C. These 
results suggest that, regardless of the genotyping strategy 
or the proportion of birds genotyped, the accuracy of 
GEBV for traits measured in the bio-secure environment 
is not affected by the genotyping strategy or the propor-
tion of birds being genotyped in Env C.

Dispersion bias
Although prediction bias does not lead to reranking of 
animals with single trait selection, it will affect selec-
tion decisions and index weighting by deflating or inflat-
ing EBV across generations. This makes interpretation 
of genetic trends unreliable and comparisons between 
animals across generations difficult [38, 39]. Thus, bias 
of EBV should be minimized as much as possible. If the 
regression slope is smaller than 1 (β < 1), GEBV are over-
dispersed and response to selection is overestimated. 
If regression slopes are greater than 1 (β > 1), GEBV are 
under-dispersed and response to selection is underes-
timated. The dispersion bias of  BWC, computed under 
the assumption that the GEBV based on the full data are 
unbiased, is shown in Table  6. When the proportion of 
genotyped animals is low, the GEBV are clearly over dis-
persed, i.e. β < 1.

Since for both the  RNDped and SIRE strategies geno-
typed animals were sampled randomly, while pedigree 
was considered to be available for all birds in Env C, we 
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would expect to see no dispersion bias for those strat-
egies. Nevertheless, for those strategies β did decrease 
with decreasing proportion genotyped, with a lowest 
value of 0.88 if no genotypes were available at all for 
Env C. This may suggest that in spite of the adjustment 
of the genomic relationship matrix to match the pedi-
gree relationship matrix, there were still some incon-
sistencies between both matrices. The dispersion bias 
was largest with the EXT strategy compared to the 
RND and SIRE strategies across all genotyping propor-
tions and with or without pedigree information. Many 
simulation studies have reported large biases when 
only genotyping animals with extreme phenotypes [15, 
18], especially when the proportion of genotyped ani-
mals is low. When the number of genotyped animals 
increases, the dispersion bias gradually disappeared, 
i.e. β approached 1. The latter agrees with observations 

from several other studies [11, 15, 35], and can be 
explained by the fact that, with a larger proportion ani-
mals genotyped, they provide a better representation 
of the entire population. Dispersion bias in a breeding 
program due to a limited number of genotyped ani-
mals is partly overcome by including all non-genotyped 
animals in ssGBLUP [28–30]. Our results show the 
benefit of including the pedigree of the ungenotyped 
animals, especially when the EXT strategy was used. 
The  EXTNoPed strategy showed greater dispersion bias 
than the  EXTPed strategy for almost all genotyping pro-
portions: 0.47 vs 0.75 at 12.5%, 0.58 vs 0.78 at 25%, and 
0.76 vs 0.86 at 50%. In contrast, a notable difference in 
bias was only observed for  RNDPed and  RNDNoPed at 
12.5% (0.81 vs 0.90). No difference in dispersion bias 
was detected between the RND and SIRE strategies, 
and bias was virtually absent for both strategies when 
25% or more birds were genotyped. Thus, a random 
genotyping strategy does not have to aim for all sires 
to be represented, which is in agreement with results 
of several simulation studies that have shown that bias 
was smaller with random genotyping compared to 
selective genotyping [14–17, 37]. Finally, violation of 
the assumption that is made here, i.e. that there is no 
dispersion bias in GEBV calculated with the full data, 
may affect the interpretation of our results. As dis-
cussed above, the patterns observed in our results align 
well with our expectations and with  results of other 
studies, suggesting that indeed there was no or very lit-
tle bias present in the full data GEBV.

Conclusions
For a broiler sib test scheme in a commercial environ-
ment that results in siblings being removed from the 
breeding program, we recommend the following geno-
typing strategies when the correlation between body 
weights measured in the bio-secure versus commer-
cial environments is  ~ 0.6: (1) when less than 75% of 
all animals tested in the commercial environment are 
genotyped, animals with extreme phenotypes should be 
genotyped since this yields the highest accuracy of GEBV 
for body weight in the commercial environment; how-
ever, the GEBV should be interpreted with caution since 
they are over dispersed, especially when a limited num-
ber of genotyped birds is available in each generation; 
and (2) when the proportion of genotyped animals is 75% 
or more, animals should be randomly sampled for geno-
typing since this reduces the bias and yields accuracies 
that are similar to those obtained when using the high 
and low ranked animals based on body weight.

Table 6 Regression coefficients (βf-r) of GEBV for  BWC based on 
the full data on the GEBV based on the reduced data for each 
genotyping strategy

RNDPed pedigree available on all birds in Env C, genotypes are sampled 
randomly; RNDNoPed pedigree is only available on genotyped birds, genotypes 
are sampled randomly; SIRE pedigree available on all birds, genotypes are 
sampled randomly within a sire family; EXTPed pedigree available on all birds, 
genotypes are sampled based on extreme phenotypes; EXTNoPed pedigree is 
only available on genotyped birds, genotypes are sampled based on extreme 
phenotypes

Genotyping strategy Proportion 
genotyped (%)

βf-r SE

Pedigree only 0.00 0.88 0.012

RNDPed 12.50 0.90 0.008

RNDNoPed 12.50 0.80 0.020

SIRE 12.50 0.90 0.005

EXTPed 12.50 0.75 0.008

EXTNoPed 12.50 0.47 0.008

RNDPed 25 0.95 0.010

RNDNoPed 25 0.98 0.018

SIRE 25 0.93 0.009

EXTPed 25 0.78 0.007

EXTNoPed 25 0.58 0.007

RNDPed 50 0.96 0.006

RNDNoPed 50 0.98 0.017

SIRE 50 0.95 0.006

EXTPed 50 0.85 0.006

EXTNoPed 50 0.76 0.010

RNDPed 75 1.00 0.008

RNDNoPed 75 1.01 0.016

SIRE 75 0.99 0.002

EXTPed 75 0.93 0.003

EXTNoPed 75 0.91 0.008
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