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Validation with single‑step SNPBLUP 
shows that evaluations can continue using 
a single mean of genotyped individuals, even 
with multiple breeds
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Abstract 

Background  In genomic prediction, it is common to centre the genotypes of single nucleotide polymorphisms 
based on the allele frequencies in the current population, rather than those in the base generation. The mean breed-
ing value of non-genotyped animals is conditional on the mean performance of genotyped relatives, but can be 
corrected by fitting the mean performance of genotyped individuals as a fixed regression. The associated covariate 
vector has been referred to as a ‘J-factor’, which if fitted as a fixed effect can improve the accuracy and dispersion bias 
of sire genomic estimated breeding values (GEBV). To date, this has only been performed on populations with a single 
breed. Here, we investigated whether there was any benefit in fitting a separate J-factor for each breed in a three-way 
crossbred population, and in using pedigree-based expected or genome-based estimated breed fractions to define 
the J-factors.

Results  For body weight at 7 days, dispersion bias decreased when fitting multiple J-factors, but only with a low 
proportion of genotyped individuals with selective genotyping. On average, the mean regression coefficients of vali-
dation records on those of GEBV increased with one J-factor compared to none, and further increased with multiple 
J-factors. However, for body weight at 35 days this was not observed. The accuracy of GEBV remained unchanged 
regardless of the J-factor method used. Differences between the J-factor methods were limited with correlations 
approaching 1 for the estimated covariate vector, the estimated coefficients of the regression on the J-factors, and the 
GEBV.

Conclusions  Based on our results and in the particular design analysed here, i.e. all the animals with phenotype are 
of the same type of crossbreds, fitting a single J-factor should be sufficient, to reduce dispersion bias. Fitting multiple 
J-factors may reduce dispersion bias further but this depends on the trait and genotyping rate. For the crossbred 
population analysed, fitting multiple J-factors has no adverse consequences and if this is done, it does not matter if 
the breed fractions used are based on the pedigree-expectation or the genomic estimates. Finally, when GEBV are 
estimated from crossbred data, any observed bias can potentially be reduced by including a straightforward regres-
sion on actual breed proportions.

*Correspondence:
Michael Aldridge
michael.aldridge@wur.nl
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-023-00787-1&domain=pdf
http://orcid.org/0000-0002-9033-3081
http://orcid.org/0000-0002-2554-072X
http://orcid.org/0000-0001-8403-968X
http://orcid.org/0000-0002-2808-5216
http://orcid.org/0000-0002-3213-704X


Page 2 of 12Aldridge et al. Genetics Selection Evolution           (2023) 55:19 

Background
In genomic prediction, genotypes of single nucleotide 
polymorphisms (SNPs) are usually centred, preferably 
using allele frequencies in the base generation [1]. Several 
methods have been proposed to correct for the fact that 
often the allele frequencies in the current population are 
used, because animals from the assumed base population 
are typically not genotyped. Vitezica et  al. [2] and Fer-
nando et al. [3] suggested that the mean breeding value of 
non-genotyped animals is conditional on the mean per-
formance of genotyped relatives. The method proposed 
by Hsu et  al. [4] corrects for the centring of genotypes 
based on observed allele frequencies, by fitting the mean 
performance of genotyped individuals as a fixed regres-
sion, and is similar to the method of Vitezica et  al. [2] 
except that they considered a random regression instead. 
The associated covariate vector has been colloquially 
referred to as the ‘J-factor’. The J-factor for genotyped 
animals is equal to − 1, and for ungenotyped animals 
ranges from − 2 to 0, where animals that are ungeno-
typed but closely related to genotyped animals will have 
a J-factor value closer to − 1. Recently, the method of Hsu 
et al. [4] has begun to be implemented in practice. It has 
been shown to increase the accuracy of breeding values 
and to reduce their dispersion bias, particularly in popu-
lations where genotyping is predominantly done in the 
more recent generations or with heavy selective genotyp-
ing based on phenotypic performance [4]. To date, the 
described applications are mostly limited to data involv-
ing a single breed or population, see for example Vanden-
plas et  al. [5], Vandenplas et  al. [6], and Bermann et  al. 
[7].

Several studies have explored the impact of fitting 
breed-specific models on the realized accuracy of pre-
diction. An increase in accuracy of prediction of 2% and 
3% (milk yield and milk protein, respectively) has been 
observed in dairy cattle [8]. For some specific traits and 
breeds, there might be some benefit for the accuracy 
of prediction [9], or when selective genotyping is not 
accounted for [10]. However, generally the benefit of fit-
ting breed-specific allele frequencies is limited or nil 
[8–11]. Crossbred animals represent a special case, as 
each breed has a different base population, and the con-
tributions of each breed may vary among the crossbred 
animals. Therefore, especially in the presence of selective 
genotyping, it may be important to properly consider this 
variation in genetic background in the model.

We found a single published example of a sepa-
rate J-factor being fitted per breed but no indication of 
whether there was any benefit [12]. Our first aim for 
this study was to determine if fitting a J-factor for each 
breed in a crossbred population would have any benefit 
on accuracy of prediction or its dispersion bias, with a 

particular focus on when selective genotyping is applied. 
Our second aim was to explore if using pedigree-based 
expected versus observed breed fractions to calculate the 
multiple J-factors would have any effect on the estimates 
of the accuracy and dispersion bias of sire GEBV.

Methods
This study reuses data from a broiler three-way cross 
experiment that was previously analysed [13–16]. The 
main advantages of this dataset are that (1) all the phe-
notyped animals are genotyped, (2) the pedigree and the 
observed breed composition of all the crossbred animals 
were previously derived by Calus et al. [13], and (3) the 
three purebred lines have been shown to be distantly 
related [15, 16]. Furthermore, Duenk et al. [14] analysed 
the same dataset using models based on the breed-of-
origin (BOA) of alleles, which enabled us to compare our 
results to those obtained with that model. The two traits 
of interest in their study were: body weight recorded at 
approximately 7 (BW7) and 35  days (BW35), which we 
also used here because of data availability and for com-
parison with the findings of Duenk et al. [14].

To determine if there is any benefit of estimating sepa-
rate coefficients of regressions on J-factors per breed, we 
tested three methods of estimating J-factor coefficients: 
(1) by fitting a single J-factor for all breeds (ONE), which 
is most similar to the current practice; (2) by estimating 
three J-factors from the pedigree-based expected breed 
fractions (EXP); and (3) by estimating three J-factors 
based on the observed breed fractions derived from the 
earlier BOA analysis (OBS). For each of these methods, 
we investigated if there was any improvement in accu-
racy or dispersion bias of prediction by using different 
genotyping rates, either by selecting animals at random 
or based on their phenotype. The full details on how the 
J-factors were estimated and how the results were calcu-
lated are defined later.

Estimation of the covariate vector J
We followed the method proposed by Hsu et  al. [4], 
where a covariate is fitted to model the mean of the unse-
lected base population. The value of this covariate for all 
animals is stored in a vector J , where entries for geno-
typed individuals are equal to − 1. For ungenotyped indi-
viduals, the covariate is estimated as Jn = −AngA

−1
gg 1 , 

where Ang and Agg are the pedigree-based relationship 
submatrices of non-genotyped (n) with genotyped (g) 
individuals and only genotyped individuals, respec-
tively. Ungenotyped individuals will have covariates that 
range from − 2 to 0, and ungenotyped individuals with 
no genotyped relatives will have covariates equal to 0. 
An in-house software package has been developed to 
implement the method of Tribout et al. [17] to efficiently 
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compute the J vector. For the ungenotyped animals that 
are not ancestors of genotyped animals, the parent aver-
ages of the J-factor covariates are used and processed 
from the oldest to the youngest.

For both EXP and OBS, the method described 
above was extended to support multiple J-factors, as 
Jn = −AngA

−1
gg Q , where Q contains the breed fractions 

with the dimensions g × b , with g being the number of 
genotyped animals and b the number of breeds (i.e., b = 3 
in this study). For purebred sires and dams in EXP, the 
corresponding entries in Q are 1 in the column for the 
relevant purebred breed (the three breeds are denotated 
as A, B, or C), and 0 for the other two columns. Based on 
the expected breed fractions in this study, the crossbreds 
had entries in Q of 0.5 in the column corresponding to 
the sire breed A, and 0.25 in both columns corresponding 
to the dam breeds B and C.

Dataset
We used a dataset on a broiler three-way cross experi-
ment that was provided by Cobb Vantress. The original 
dataset included 161 sires from breed A. In total, 156 
sires were mated with both purebred breed A dams and 
F1 dams (BC). A principal component analysis of pure-
line and crossbred genotypes by Duenk et al. [15] demon-
strated that the three purebred breeds (A, B, and C) were 
genetically separate. A single generation of purebred and 
crossbred offspring were hatched across five consecutive 
batches between June 2014 and November 2014. In each 
batch, the offspring were housed in three to five pens. In 
total, 20 pens were used across the five batches, with near 
equal sex ratios in each batch. In 16 of the pens, the off-
spring were more than 90% purebred (A) or more than 
90% crossbred (A(BC)), and in the remaining four pens 
the proportions of purebred vs crossbred were lower 
ranging from 53 to 77%. The majority of the offspring of a 
sire were housed together in the same pen, but each pen 
was represented by multiple sires.

For the analysis, we considered phenotype informa-
tion from the crossbred offspring only. At approximately 
7 and 35  days of age, all the animals were weighed. A 
previous outlier analysis that was performed by Duenk 
et al. [14] removed animals that deviated more than 3.5 
standard deviations from the mean per day of recording. 

After these data edits, 10,585 records for BW7 (originally 
10,602), and 10,272 records for BW35 days (originally 
10,290) remained (Table 1). In Duenk et al. [14], purebred 
performance was also evaluated, but the number of pure-
bred offspring was significantly smaller (4687 and 4471 
records for BW7 and BW35, respectively). In our study, 
we did not use the purebred offspring. However, in the 
study of Duenk et al. [14], the number of crossbred prog-
eny were filtered to reflect the number of purebreds in 
order to ensure a fair comparison between purebred and 
crossbred information. This was done by selecting full-sib 
families based on family size. In an initial analysis, Duenk 
et al. [14] showed that depending on which full-sib fami-
lies were randomly selected, the results of the validation 
changed significantly. The random sampling in Duenk 
et  al. [14] was repeated 100 times, which resulted in 
approximately 5000 crossbred progeny per replicate, and 
in our study, we used these same 100 sets as validation.

For each of the 100 replicates, five cross-validation 
folds were created. Sires were selected such that there 
were four groups of 32 animals and one group of 33 ani-
mals, whose crossbred offspring were removed, in turn, 
from the reference population. These cross-validation 
folds were used to limit the relationships between the 
animals in the reference population and those in the vali-
dation population. For further information on how full-
sib families were selected to subset the crossbred data 
and on how sires were selected for the validation repli-
cates and cross-validation folds, see Duenk et al. [14].

All the crossbred animals were genotyped with a cus-
tom 60k Illumina SNP chip [18]. After removal of SNPs 
with low call rates, SNPs with minor allele frequencies 
lower than 0.005, and SNPs with parent–offspring incon-
sistencies greater than 1% based on derived parentage, 
50,960 SNPs remained for further analyses. For the differ-
ent analyses, four genotyping rates were considered (100, 
75, 50 and 25%). The animals with a genotype that were 
included in the analyses were selected either randomly 
or based on phenotypic performance to mimic random 
genotyping or selective genotyping, respectively. In the 
scenario with random genotyping (RND), the required 
proportion of animals was randomly selected from the 
reference population and their genotypes were removed. 
For scenarios that considered selective genotyping based 

Table 1  Summary statistics for body weight at 7 (BW7) and 35 days of age (BW35)

a All crossbred progeny were phenotyped and used for variance component estimation, the 100 validation sets are selected from these animals

Standard deviations (sd) are provided in parentheses

Trait Number of crossbred 
progenya

Number of sires Number of dams Min Mean ± sd Max

BW7 10,585 156 1028 100 179 (23) 260

BW35 10,272 156 1027 922 2090 (302) 3097
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on phenotypic performance (TOP), the required propor-
tion of animals with a genotype was selected based on 
their own observation from the top performing animals 
for the trait of interest. The genotypes of unselected ani-
mals were discarded. Selection was implemented inde-
pendently for each trait, resulting in different groups of 
animals with a genotype in the TOP scenarios for BW7 
and BW35. Selection of animals for both RND and TOP 
was performed within each cross-validation fold.

Computation of observed breed fractions
To compute multiple J-factors, it is necessary to use the 
contribution of each breed. We derived the breed frac-
tions from a previous BOA analysis [13], based on the 
approach of Vandenplas et  al. [19]. We decided on this 
method because the previously derived BOA were availa-
ble and because this is probably one of the most accurate 
ways of determining the actual breed composition [20].

Across the three breeds, the sum of the breed fractions 
for each individual is expected to equal 1. The contribu-
tions of the sire breed to crossbreds were fixed at 0.5, 
because that is the exact contribution of a sire breed to a 
3-way crossbred. The BOA analysis achieved a close 0.495 
of the sire breed contribution. The contributions of the 
two dam breeds across all animals were first corrected 
for each dam breed, separately, such that the mean pro-
portion across all the crossbreds is equal to the expected 
average value of 0.25 for both dam breeds. Then, for each 
crossbred animal, the contributions of each of the two 
dam breeds were scaled to ensure that their combined 
contribution was 0.5. For both dam breeds, the scaled 
contributions ranged from 0.09 to 0.41.

Genomic prediction using J‑factors
All variance components were estimated by restricted 
maximum likelihood (REML) using a univariate animal 
model in the ASReml program version 4.1 [21]. For both 
traits, BW7 and BW35, the model can be summarized in 
matrix notation as:

where y is the vector of observations, X , Z , and W are 
incidence matrices that relate phenotypes to the vectors 
of fixed, additive genetic, and non-genetic permanent 
environmental effects, respectively, i.e. b is the vector of 
fixed effects (batch × pen × sex × age in days) with 52 lev-
els for BW7 and 72 levels for BW35, up ∼ MVN

(

0,Aσ 2
a

)

 
is the vector of additive genetic effects, and 
c ∼ MVN

(

0, Iσ 2
c

)

 is the vector of non-genetic maternal 
permanent environmental effects, and e ∼ MVN

(

0, Iσ 2
e

)

 ) 
is a vector of residuals. The terms σ 2

a  , σ 2
c  , and σ 2

e  , are 
the variances for additive genetic, non-genetic maternal 

(1)y = Xb+ Zup +Wc+ e,

permanent environment, and residual effects, respec-
tively, with A and I being a pedigree-based relationship 
matrix (18,177 and 17,640 animals for BW7 and BW35, 
respectively) and an identity matrix, respectively.

Unlike in the previous estimation of variance compo-
nents using this dataset [15], we considered only cross-
bred information and the pedigree-based relationship 
matrix. The estimates of heritability were similar to those 
previously used, i.e., 0.26 for BW7 and 0.25 for BW35. The 
variance components estimated with this pedigree-based 
model (Table 2) were used as the variance components of 
the random effects in all the single-step SNP best linear 
unbiased prediction (ssSNPBLUP) models. Note that the 
scenarios with a 100% genotyping rate are still considered 
as ssSNPBLUP, since some ancestors in the pedigree are 
not genotyped.

For each of the J-factor approaches (ONE, EXP, and 
OBS), each of the selective genotyping (TOP, RND) meth-
ods, each genotyping rate (100, 75, 50 and 25%), and each 
cross-validation fold within validation replicates, GEBV 
were predicted using the hpblup solver in MiXBLUP 
[22]. For this purpose, a ssSNPBLUP model following the 
method of Liu et al. [23] with one covariate for the J-fac-
tor in ONE and three covariates in EXP and OBS was as 
follows:

where J is the previous estimated covariate matrix for 
EXP and OBS and a vector for NONE, and µg is a vector 
with the mean performance for each breed of genotyped 
animals for EXP and OBS, and a scalar for ONE, and the 
additive genetic effects of genotyped animals:

where Zg is the matrix of centred SNP genotypes for 
genotyped animals, g is the vector of the additive genetic 
effects of the fitted SNPs, and a is the vector of residual 
polygenic effects. The observed allele frequencies across 
all genotyped animals were used to centre the SNP geno-
types. Following Liu et al. [23], it follows that:

(2)y = Xb+ ZJµg + Zus +Wc+ e,

us = Zgg + a,

Table 2  Variance components used for genomic prediction: 
additive genetic 

(

σ 2
up

)

 , non-genetic maternal permanent 

environment 
(

σ 2
c

)

 , residual 
(

σ 2
e

)

 , and the estimated heritability 
(

h
2
)

Standard errors in parentheses

Trait σ
2
up

σ
2
c σ

2
e h2

BW7 69.01 (6.66) 43.73 (10.18) 151.07 (25.41) 0.26 (0.04)

BW35 8,240.59 (7.33) 1,235.72 (3.59) 24,163.40 (33.73) 0.25 (0.03)
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where A =

[

Ann Ang

Agn Agg

]

 is the pedigree-based relation-

ship matrix between ungenotyped (“n ”) and genotyped 
(“g ”) animals, B = I 1−w

2
∑

po(1−po)
 , with po being the 

observed allele frequency of the o-th SNP and w being the 
proportion of variance (due to additive genetic effects) 
considered as residual polygenic effects, and 
G = ZBZ′ + wAgg is the genomic relationship matrix 
among genotyped animals. In these analyses, the propor-
tion of additive genetic variance w considered to be due 
to residual polygenetic effects was assumed to equal 5%, 
and the estimated co-variance components used for the 
ssSNPBLUP evaluations were the same as the estimated 
co-variance components used for the pedigree-based 
BLUP evaluations. For further details on the ssSNPBLUP 
evaluation, see Vandenplas et al. [5, 6]. Finally, the GEBV 
analysed in this study were equal to Jµ̂+ ûs.

The same model without including J or µg was used 
with a 100% genotyping rate to compare the effect of 
fitting no J-factor (NONE). However this is redundant 
because the J-factor in the scenario in which 100% of 
the phenotyped animals are genotyped is completely 
confounded with the general mean, and therefore only 
the results for a 100% genotyping rate with ONE are 
presented.

For each of the 100 replicates and five cross-validation 
folds, there were 16 scenarios. Each possible combination 
of genotyping rate, method of selective genotyping, and 
J-factor calculation was included in the genomic predic-
tion (Table 3).

us =





us,n
us,g
g





∼ MVN






0,







Ann − AngA
−1
gg Agn + AngA

−1
gg GA−1

gg Agn AngA
−1
gg G AngA

−1
gg ZgB

GA−1
gg Agn G AngA

−1
gg ZgB

BZ′
gA

−1
gg Agn BZ′

gA
−1
gg Agn B






σ
2
u






,

Accuracy and dispersion bias
Accuracies and dispersion bias of sire GEBV were com-
puted using mean offspring performance records for 
both BW7 and BW35. The mean offspring performances 
records were computed by Duenk et al. [14] by averaging 
for each sire the offspring phenotypic records corrected 
for systemic environmental effects estimated with a sire 
model. More details on the computation of the mean 
offspring performance records are in Duenk et  al. [14]. 
The accuracy of sire GEBV were estimated as a weighted 
correlation between the sire GEBV (estimated with the 
above genomic prediction) and the mean offspring per-
formance. Dispersion bias was estimated as a weighted 
regression of the mean offspring performance on the 
same sire GEBV and multiplied by 2 so that the expecta-
tion is for an individual (1.00) rather than for a sire. The 
reliabilities of the mean offspring performance were used 
as the weights in the validation correlation and regres-
sion calculations. These reliabilities were estimated with 
the same method as in Duenk et  al. [14] and following 
Cameron [24] as:

where n is the number of offspring with records (between 
2 and 430 for BW7 and between 2 and 404 for BW35) 
and h2 is the estimated heritability (Table 2). The reliabili-
ties ranged from 0.12 to 0.97 for BW7, and from 0.12 to 
0.96 for BW35.

As the estimated slopes of the regressions on the J-factors 
differ for each cross-validation, the resulting GEBV may 
differ on scale. Therefore, the validation correlations and 
regression coefficients were estimated within cross-valida-
tion folds, which contrasts with the study of Duenk et al. [14] 
in which they were estimated across cross-validation folds 
within a replicate.

Results
All of the results presented here are for the same 100 repli-
cates and their cross-validation folds.

1
4
nh2

1+ 1

4
(n− 1)h2

,

Table 3  Summary of the factors used in combination to build 
the scenarios

Scenario factors Factor levels and abbreviations

Genotyping rate 100%, 75%, 50%, or 25%

Selective genotyping No selective genotyping (RND) or 
genotyping based on phenotype 
(TOP)

J-factor calculation No J-factor (NONE), one (ONE), 
observed (OBS), or expected 
(EXP) J-factor
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Comparison of computed J factor covariates
With the J-factor method OBS, the mean J-factor covari-
ates of phenotyped animals differed between the two 
dam breeds (Table 4) regardless of the selective genotyp-
ing method used. In contrast, the mean J-factor covari-
ate of phenotyped animals for the EXP method were 
identical for the two dam breeds (Table  4). The differ-
ences between mean sire covariates across EXP and OBS 
were large, while those between the same dam covariates 
across J-factor methods were much smaller (Table 4).

The distributions of the J-factor covariates (results 
not shown) were identical for the J-factor method ONE 
regardless of whether genotyping was random or based 

on phenotype. For EXP and OBS, the sum of the J-factor 
covariates had an identical distribution to that for ONE, 
which is expected since Q ∗ 1 = 1 . The distributions of 
the J-factor covariates were similar for both Dam breed B 
and Dam breed C across the J-factor methods and selec-
tive genotyping method. For the J-factor method OBS, 
the two dam breeds had covariates that were normally 
distributed but more stretched than for EXP.

Estimated J‑factor regression coefficients
The estimated J-factor regression coefficients were 
similar across scenarios and methods. For EXP, the 
estimated coefficients for the two dam breeds were 

Table 4  Mean J-factor covariates of the 100 replicates, estimated for the three breeds with animals phenotyped for body weight at 7 
and 35 days (BW7 and BW35)

a J-factor methods used include: three J-factors calculated using for each breed the expected (EXP), or observed (OBS) breed contribution calculated using BOA from 
previous analysis [13]

Genotyping rate J-factor 
methoda

Selective 
genotyping

BW7 BW35

Sire Dam B Dam C Sire Dam B Dam C

75% EXP RND − 0.411 − 0.194 − 0.194 − 0.406 − 0.192 − 0.192

EXP TOP − 0.411 − 0.193 − 0.193 − 0.406 − 0.192 − 0.192

OBS RND − 0.239 − 0.202 − 0.186 − 0.228 − 0.200 − 0.184

OBS TOP − 0.239 − 0.201 − 0.186 − 0.228 − 0.199 − 0.184

50% EXP RND − 0.411 − 0.188 − 0.188 − 0.406 − 0.185 − 0.185

EXP TOP − 0.411 − 0.186 − 0.186 − 0.406 − 0.185 − 0.185

OBS RND − 0.239 − 0.195 − 0.180 − 0.228 − 0.193 − 0.178

OBS TOP − 0.239 − 0.194 − 0.179 − 0.228 − 0.192 − 0.178

25% EXP RND − 0.411 − 0.178 − 0.178 − 0.406 − 0.175 − 0.175

EXP TOP − 0.411 − 0.176 − 0.176 − 0.406 − 0.174 − 0.174

OBS RND − 0.239 − 0.185 − 0.171 − 0.228 − 0.182 − 0.168

OBS TOP − 0.239 − 0.183 − 0.169 − 0.228 − 0.181 − 0.168

Table 5  Mean estimated J factor regression coefficients of the 100 replicates, for body weight at 7 and 35 days (BW7 and BW35), with 
random genotyping

a J-factor methods used include: one for all breeds (ONE), three J-factors calculated using for each breed the expected (EXP), or observed (OBS) breed contribution 
calculated using BOA from previous analysis [13]
b The estimate for ONE is for a single estimate for the full population and not the sire breed

Genotyping rate J-factor methoda BW7 BW35

Sire Dam B Dam C Sire Dam B Dam C

75% ONEb 4.64 25.80

EXP − 121.30 4.57 4.57 − 1403.35 25.80 25.80

OBS − 121.24 7.46 0.90 − 1402.87 58.70 0.90

50% ONEb 4.22 27.29

EXP − 121.13 4.20 4.20 − 1403.16 27.16 27.16

OBS − 121.08 7.48 0.11 − 1402.68 62.24 − 16.18

25% ONEb 5.22 39.34

EXP − 121.33 5.22 5.22 − 1405.45 39.46 39.46

OBS − 121.30 8.38 1.43 − 1405.78 85.33 − 14.74
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identical, regardless of the genotyping rate and with or 
without selective genotyping. The estimates between 
the two dam breeds with OBS were not identical but 
quite similar. With a genotyping rate of 100% and for 
the three J-factor methods (ONE, EXP, and OBS), the 
J-factors are highly confounded with the general mean, 
which indicates that the results are not reliable and thus 
they are not presented. The sire is highly confounded 

with the breed which is picked up in the general mean, 
which indicates that the results of the estimated regres-
sion for the sire breed for OBS and EXP in Tables 5 and 
6 are not reliable. At lower genotyping rates, there were 
differences between EXP and OBS, both with random 
genotyping (Table 5) and selective genotyping (Table 6), 
however the results were still similar. Finally, the abso-
lute values of the regression coefficients for the dam 

Table 6  Mean estimated J factor regression coefficients of the 100 replicates, for body weight at 7 and 35 days (BW7 and BW35), with 
selective genotyping based on phenotypic performance

a J-factor methods used include: one for all breeds (ONE), three J-factors calculated using for each breed the expected (EXP), or observed (OBS) breed contribution 
calculated using BOA from previous analysis [13]
b The estimate for ONE is for a single estimate for the full population and not the sire breed

Genotyping rate J-factor methoda BW7 BW35

Sire Dam B Dam C Sire Dam B Dam C

75% ONEb − 194.37 − 1999.56

EXP − 57.72 − 194.33 − 194.33 − 753.68 − 1999.07 − 1999.07

OBS − 57.67 − 191.97 − 197.38 − 753.23 − 1965.18 − 2040.79

50% ONEb − 137.75 − 1330.02

EXP − 78.47 − 137.79 − 137.79 − 991.49 − 1330.17 − 1330.17

OBS − 78.45 − 136.32 − 139.57 − 991.03 − 1284.36 − 1385.35

25% ONEb − 89.32 − 785.36

EXP − 95.54 − 89.27 − 89.27 − 1178.14 − 785.43 − 785.43

OBS − 95.50 − 88.11 − 90.84 − 1178.49 − 729.79 − 850.37

Table 7  Mean validation correlations of 100 replicates for bodyweight at 7 days and 35 days (BW7 and BW35), for each method of 
selective genotyping (RND or TOP)

a J-factor methods used include none (NONE), one for all breeds (ONE), three J-factors calculated using for each breed the expected (EXP), or observed (OBS) breed 
contribution calculated using BOA from previous analysis [13]
b Standard deviations in parentheses. Standard deviation can be calculated as SD

/√
n , where SD is the standard deviation and n is the number of replicates (100)

c For 100% genotyping with ONE, it is equivalent to fitting NONE, EXP, and OBS

Genotyping rate J-factor methoda BW7b BW35b

RND TOP RND TOP

100%c Duenk et al. [14] 0.16 (0.058) 0.26 (0.060)

ONEc 0.17 (0.055) 0.26 (0.061)

75% NONE 0.14 (0.059) 0.13 (0.055) 0.23 (0.059) 0.28 (0.056)

ONE 0.14 (0.061) 0.14 (0.061) 0.24 (0.061) 0.26 (0.061)

EXP 0.14 (0.060) 0.14 (0.059) 0.24 (0.061) 0.26 (0.061)

OBS 0.14 (0.071) 0.14 (0.059) 0.23 (0.055) 0.26 (0.066)

50% NONE 0.13 (0.063) 0.10 (0.048) 0.21 (0.064) 0.25 (0.057)

ONE 0.13 (0.057) 0.11 (0.056) 0.21 (0.064) 0.21 (0.065)

EXP 0.12 (0.057) 0.11 (0.056) 0.21 (0.062) 0.21 (0.064)

OBS 0.13 (0.059) 0.11 (0.055) 0.21 (0.064) 0.20 (0.064)

25% NONE 0.11 (0.061) 0.10 (0.049) 0.18 (0.072) 0.23 (0.055)

ONE 0.11 (0.062) 0.11 (0.062) 0.18 (0.066) 0.19 (0.063)

EXP 0.11 (0.064) 0.11 (0.057) 0.18 (0.066) 0.19 (0.062)

OBS 0.11 (0.062) 0.11 (0.056) 0.18 (0.065) 0.19 (0.063)
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breeds increased considerably with selective compared 
to random genotyping.

Accuracy of sire GEBV
For both BW7 and BW35 and with either random or 
selective genotyping, there was no difference in accu-
racy of sire GEBV when using the J-factor methods 
ONE, EXP, or OBS (Table  7). When genotyping was 
random, the accuracy for BW7 was the same regardless 
of whether a J-factor was fitted or not. When genotyp-
ing was based on phenotypic performance for BW7, the 
accuracy tended to increase when a J-factor was fitted. 
The opposite was observed for BW35 with TOP selec-
tive genotyping, i.e. the accuracy decreased when J-fac-
tors were used. This difference seems to increase with 
more stringent selective genotyping. For BW35 with 
random genotyping, the accuracy remained the same if 
J-factors were used or not. For both traits and genotyp-
ing strategies, the accuracy decreased with decreasing 
genotyping rates.

Dispersion bias of sire GEBV
Dispersion bias of sire GEBV was evaluated by the 
regression coefficient of offspring averages on breed-
ing values of sires, multiplied by 2, with an expected 
value of 1 for unbiased breeding values (Table  8). The 
dispression bias for BW7 was quite strong for all scenar-
ios. For BW7 with random genotyping, there was some 

reduction in dispersion bias when fitting at least one 
J-factor, and as the genotyping rate decreased the disper-
sion bias increased (i.e. the estimated regression coeffi-
cient decreased from 0.40 when 100% of the population 
was genotyped to 0.32 when only 25% of the population 
was genotyped). Compared to random genotyping, when 
genotyping was based on phenotypic performance for 
BW7, dispersion bias decreased, but it should be noted 
that considerable differences were found when fitting 
J-factors and between J-factor methods. At a genotyp-
ing rate of 75%, the estimated regression coefficient with 
no J-factors was 0.31, but when J-factors were included 
it increased to 0.40. Similarly at a genotyping rate of 50% 
with no J-factors the estimated regression coefficient was 
0.24, but when J-factors were included it increased to 
0.36. At the lowest genotyping rate (25%), the benefit of 
fitting multiple J-factors appeared to increase, i.e. when 
no J-factor was fitted the estimated regression coefficient 
was 0.27, with the J-factor from method ONE it increased 
slightly at 0.33, and with the J-factors from both the EXP 
and OBS methods, it further increased to 0.37.

Compared to BW7, the differences in dispersion bias 
for BW35 were not as clear. Generally, the dispersion 
bias was reduced, with estimates of the regression coef-
ficient ranging from 0.64 to 0.80 when genotyping was 
random. Again there was less dispersion bias at higher 
genotyping rates with estimates of the regression coef-
ficient decreasing from 0.80 at 100% genotyping to 0.65 

Table 8  Mean regression coefficients of validation records on GEBV from 100 replicates for bodyweight at 7 days and 35 days (BW7 
and BW35), with both methods of selective genotyping (RND or TOP)

a J-factor methods used include none (NONE), one for all breeds (ONE), three J-factors calculated using for each breed the expected (EXP), or observed (OBS) breed 
contribution calculated using BOA from previous analysis [13]
b Standard deviations in parentheses. Standard deviation can be calculated as SD

/√
n , where SD is the standard deviation and n is the number of replicates (100)

c For 100% genotyping with ONE, it is equivalent to fitting NONE, EXP, and OBS

Genotyping rate J-factor methoda BW7b BW35b

RND TOP RND TOP

100%c Duenk et al. [14] 0.36 (0.133) 0.64 (0.158)

ONEc 0.39 (0.142) 0.76 (0.190)

75% NONE 0.35 (0.163) 0.31 (0.142) 0.72 (0.191) 0.84 (0.166)

ONE 0.37 (0.161) 0.40 (0.192) 0.73 (0.200) 0.92 (0.220)

EXP 0.37 (0.160) 0.40 (0.186) 0.76 (0.203) 0.92 (0.220)

OBS 0.36 (0.193) 0.40 (0.187) 0.70 (0.171) 0.91 (0.237)

50% NONE 0.34 (0.185) 0.24 (0.132) 0.70 (0.221) 0.76 (0.178)

ONE 0.35 (0.170) 0.36 (0.209) 0.69 (0.229) 0.78 (0.246)

EXP 0.35 (0.174) 0.36 (0.209) 0.69 (0.218) 0.79 (0.244)

OBS 0.35 (0.176) 0.36 (0.205) 0.69 (0.222) 0.78 (0.243)

25% NONE 0.32 (0.199) 0.27 (0.149) 0.65 (0.255) 0.78 (0.188)

ONE 0.33 (0.206) 0.37 (0.304) 0.65 (0.240) 0.77 (0.263)

EXP 0.33 (0.215) 0.37 (0.224) 0.65 (0.240) 0.78 (0.260)

OBS 0.33 (0.206) 0.37 (0.222) 0.65 (0.238) 0.78 (0.264)
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at 25% genotyping. Interestingly, at the higher 100% and 
75% genotyping rates, fitting multiple J-factors compared 
to ONE J-factor resulted in some benefit. However, there 
was no consistency between the results with EXP and 
OBS, and both were associated with larger variation in 
dispersion bias between replicates. For BW35, dispersion 
bias decreased only when J-factors were fitted and when 
75% of the animals were genotyped based on phenotypic 
performance, but not for genotyping rates of 25 and 50%.

Discussion
The aim of our study was to investigate if there is any 
benefit in estimating separate coefficients of regression 
on J-factors per breed. We compared validation correla-
tions and regression coefficients of validation records on 
sire GEBV, and found that there is some benefit in fitting 
at least one J-factor, with a reduction in dispersion bias 
and in some situations a small increase in accuracy of sire 
GEBV. In some situations where multiple J-factors are 
fitted, dispersion bias is further reduced. If this experi-
mental three way-cross were used for breeding purposes, 
fitting a single J-factor should be sufficient. However, 
the usefulness of multiple J-factors may differ with other 
breeding designs and population structures.

Fitting no J‑factor versus fitting one or multiple J‑factors
Generally, fitting or not fitting a J-factor, yielded no dif-
ference in accuracy of sire GEBV but, in some cases, 
there was a considerable reduction in dispersion bias, 
which follows the expectations of Hsu et al. [4]. A consid-
erable reduction in dispersion bias was clearly observed 
for BW7 at each genotyping rate with selective geno-
typing based on phenotypic performance. However, for 
BW35 with genotyping based on phenotypic perfor-
mance and for both BW7 and BW35 with random geno-
typing, the reduction in dispersion bias was minimal. The 
only improvement in dispersion bias for BW35 was at a 
genotyping rate of 100% when OBS was used. It should 
be noted that when 100% of the animals were genotyped, 
the NONE, ONE and EXP methods are equivalent, 
because in this case there is no variation in the J-factors 
across animals for ONE and EXP. It should also be noted 
that, for the dam breeds and for both traits, the esti-
mated coefficients of the regression on J-factors for EXP 
were similar to those for ONE, regardless of whether 
genotyping is random or selective. Therefore, the varia-
tion captured by the EXP J-factors for the dam breeds, is 
represented in the variation of the ONE J-factor, which is 
probably much larger than the variation in J-factors due 
to the sire breed. As a result, the regression on the sire 
breed effectively models an intercept in the model, which 
is captured by the other fixed effects when using ONE. 
This means that, probably, only the estimates for the dam 

breeds are meaningful. There is variation captured by the 
OBS J-factors for the dam breeds, which indicates that 
the J-factors effectively model the variation that the two 
different dam breeds contribute, unlike EXP, ONE, and 
NONE.

For BW35, there was an issue when the low genotyping 
rate based on phenotypic performance was applied, since 
the accuracy was lower when fitting a J-factor; this ten-
dency was also observed for BW7 but with much smaller 
differences. When not fitting a J-factor, the unaccounted 
differences between genotyped and non-genotyped ani-
mals would be included in the breeding values, lead-
ing to an inflated accuracy. This would also explain why 
the differences are larger with the more stringent selec-
tive genotyping, as in this case, it is more important to 
account for the differences between genotyped and non-
genotyped animals. This explanation is supported by the 
fact that, the sum of the estimated coefficients for the 
dam breeds drops considerably with decreasing rates of 
genotyping (Table 6). With different genotyping rates, the 
difference in mean breeding value between genotyped 
and non-genotyped animals will change. However, we 
may expect a similar difference in mean breeding values 
between scenarios with genotyped and non-genotyped 
animals with 25 and 75% genotyped individuals, if the 
distribution of breeding values is more or less symmet-
ric. However, it is expected that with a higher genotyping 
rate (75%), the model is better able to properly estimate 
the breeding values and mitigate the dispersion bias aris-
ing from the difference in mean breeding values between 
genotyped and non-genotyped animals that is not prop-
erly accounted for without fitting a J-factor.

When comparing the scenarios with no J-factors, 
including NONE, the scenario ONE with a 100% geno-
typing rate should also be considered because at this rate, 
a single J-factor is completely confounded with the gen-
eral mean. That is why the estimates of accuracy and dis-
persion bias for NONE and ONE at a genotyping rate of 
100% are identical. Thus, at this high genotyping rate it 
does not matter if a J-factor is fitted or not. Compared 
to the previous estimates of accuracy and dispersion 
bias from the same dataset reported by Duenk et al. [14] 
where no J-factors were used, with NONE we observed 
slightly higher estimates of accuracy and slightly less dis-
persion bias for BW7, and no difference in accuracy but 
less dispersion bias for BW35. While we used an identical 
cross-validation structure and the same animals in each 
cross-validation fold, unlike the previous analysis, we 
used parameter estimates that only considered crossbred 
information and the pedigree-based relationship matrix. 
The heritabilities were similar to the previously reported 
estimates of 0.26 for BW7 and 0.25 for BW35. The vari-
ance components estimated with this pedigree-based 
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model (Table  2) were used as the variance components 
of the random effects in all of the ssSNPBLUP models. 
The largest difference between scenarios could be caused 
by the methods used to estimate accuracy and dispersion 
bias. While we used the same formulas and sire mean 
progeny performance values, in our analysis we were 
forced to calculate accuracy and dispersion bias within a 
cross-validation fold due to scale differences when fitting 
multiple J-factors, which were observed as parallel band-
ing when plotted, whereas Duenk et al. [14] did not have 
this problem and calculated accuracy and dispersion bias 
within replicate.

We hypothesized that one of the reasons why there was 
a larger reduction in dispersion bias for BW7 when using 
ONE or multiple (EXP and OBS) J-factors compared to 
NONE, and why a similar reduction in dispersion bias 
was not observed for BW35, is that the maternal effect 
is more important for BW7 than for BW35. The model 
used, fitted a non-genetic maternal permanent environ-
mental effect and if a maternal genetic component is 
not fitted, the results could be biased [25]. It is possible 
that by fitting separate covariates for the two maternal 
breeds, some maternal genetic information is captured, 
thereby reducing dispersion bias. However, we rejected 
this hypothesis because the estimated coefficients of the 
regression on J-factors for OBS were very similar for the 
two dam breeds. This could be tested by fitting a mater-
nal genetic effect, using the pedigree information.

While there were some differences in the covariates 
estimated between the three J-factor methods (ONE, 
EXP, and OBS), there was limited benefit in fitting one 
J-factor or a separate J-factor per breed. We estimated 
covariates of J-factors for multiple breeds using two 
methods of calculating breed fractions, and as expected, 
the resulting covariates were very similar (see Additional 
file 1). Thus, it is not surprising that the resulting GEBV 
had a correlation close to 1, and that the estimates of 
accuracy and dispersion bias were very similar (within a 
standard error of ± 0.01). The estimated regression coef-
ficients for J-factors of the two dam breeds were the same 
for EXP, because the covariates were the same, while the 
estimates for OBS were generally both close to those for 
EXP. The similarity of these estimates suggests that the 
created (phenotypic) difference between the genotyped 
and non-genotyped animals is similar for both dam 
breeds. Since the EXP breed fractions for the two dam 
breeds were identical, it indicates that it is possible to 
reduce the number of J-factors in some scenarios.

In our study, the population used was from an experi-
mental design where a single generation of crossbreds 
(A(BC)) were hatched across five batches. The sires (A) 
and dams (BC) were selected from grandparents (of the 
crossbreds) from populations with divergent selection. It 

is likely that the impact of fitting breed-specific J-factors 
is population-dependent. We do not know what the effect 
of fitting multiple J-factors would be on other breed-
ing designs, such as a three-way rotational cross or with 
multiple generations. Another reason why fitting mul-
tiple J-factors might be population-dependent (at least 
for OBS), is that the impact of the use of breed-specific 
allele frequencies in other applications was also found to 
be population-dependent [8–11]. It should be noted that 
in these previous applications, they were used to model 
breeding values rather than fixed effects. In our study, no 
adverse consequence was observed when using observed 
breed fractions calculated from BOA.

Limitations
It should be noted that our study is limited by the popula-
tion structure, i.e. all the animals with phenotype are of 
the same type of crossbreds, and generally speaking, very 
few datasets have complete phenotyping and genotyping 
of both purebred and crossbred animals, and with the 
breed contributions known. However, we are confident 
that the three breeds used here are sufficiently diver-
gent for the usefulness of fitting multiple J-factors to be 
observable. This is based on the fact that these breeds 
have been selected from real breeding lines that are 
divergent, such that the average FST value between the 
three breeds is 0.24, which is greater than between simu-
lated populations that separated 50 generations ago (see 
Calus et al. [16]). It would be interesting to consider other 
breeding designs and population structures, especially 
with multiple different types of crossbreds included, to 
investigate if they would benefit from additional J-factors.

The effect of fitting multiple J-factors could be trait-
specific. We considered only two traits, both being body 
weight traits with high genetic correlations and similar 
heritabilities. While BW7 and to a lesser extent BW35 
do have a maternal component, it would be interesting 
to consider other traits with a larger maternal compo-
nent, especially when the dam breeds have been histori-
cally selected for maternal traits. The study of Bermann 
et al. [7] showed that fitting the mean of genotyped ani-
mals can increase accuracy and reduce dispersion bias if 
the genomic and pedigree relationship matrices are not 
scaled, whereas if they are scaled, fitting the mean of 
genotyped animals increases dispersion bias but has no 
effect on accuracy. In the same study, fitting the mean 
performance as a fixed or random effect was also exam-
ined, and it was found that fitting it as a random effect 
reduced dispersion bias whereas fitting it as a fixed effect 
increased it. We did not consider these factors in our 
analysis, but based on the results of Bermann et  al. [7], 
further improvements could potentially be made by fit-
ting the J-factors as a random effect.
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Finally, although our aim was to be able to compare 
directly our results with those of Duenk et  al. [14], we 
had to calculate results within a cross-validation fold 
rather than a replicate because of scaling differences with 
multiple J-factors. While at a genotyping rate of 100% our 
estimates of accuracy were slightly higher and had less 
dispersion bias, the fact that we had only 30 observations 
available for each calculation rather than 150 may have 
limited our estimates of accuracy and dispersion bias at 
lower genotyping rates. We suggest that future studies 
exploring multiple J-factors consider more varied traits, 
with more breeds and/or family groups, consider differ-
ent crossbreeding systems, explore different modelling 
strategies such as multi-trait models or fitting J-factors as 
a random effect, and if possible increase the number of 
observations per validation fold.

Conclusions
We performed a cross-validation study in a 3-way 
crossbred population using ssSNPBLUP and fitting 
J-factors or not, to determine if there is any benefit 
in fitting a specific J-factor for each breed compared 
to fitting a single J-factor. We found that fitting a sin-
gle J-factor was easier and that it would be sufficient if 
this experimental data was used for breeding purposes, 
with a reduction in dispersion bias and possibly some 
increase in accuracy. Fitting multiple J-factors may fur-
ther reduce dispersion bias but this appears to depend 
on the trait and the genotyping rate. If a similar popula-
tion structure is used for breeding purposes and mul-
tiple J-factors are used, using breed fractions that are 
based on the expectation or observation has no impact. 
In applications where breeding values estimated from 
crossbred data are inflated, i.e. there is too much vari-
ance in the breeding values, it may be beneficial to 
include a straightforward regression on actual breed 
proportions, as we observed for our scenario with a 
100% genotyping rate. This analysis provides a suitable 
framework for testing the usefulness of multiple J-fac-
tors and demonstrates the robustness of the single-step 
method when fitting multiple J-factors.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12711-​023-​00787-1.

Additional file 1. Mathematical proof that the covariates estimated with 
ONE J-factor are equal to the sum of covariates estimates from multiple 
J-factors regardless of whether the breed fractions used are from expecta-
tion (EXP) or observation (OBS).

Acknowledgements
The use of the HPC cluster has been made possible by CAT-AgroFood (Shared 
Research Facilities Wageningen UR). Special thanks to Cobb Europe for prov-
ing the data.

Author contributions
MA analysed the data and wrote the manuscript. MC and JV provided 
additional analysis and assisted with interpretation of results and writing of 
the manuscript. JV implemented computation of the J-factor covariates, and 
MC supervised the study. PD designed the cross-validation and provided 
assistance with calculations of results. JH and RH supervised data collection 
and provided technical insights. All authors read and approved the final 
manuscript.

Funding
This study was financially supported by the Dutch Ministry of Economic 
Affairs (TKI Agri & Food Project 16022) and the Breed4Food partners Cobb 
Europe (Colchester, Essex, United Kingdom), CRV (Arnhem, the Netherlands), 
Hendrix Genetics (Boxmeer, the Netherlands), and Topigs Norsvin (Helvoirt, 
the Netherlands).

Availability of data and materials
The data used in the present study were provided by Cobb-Vantress, Inc and 
are not publicly accessible. Raw phenotypes and genotypes are only available 
through Cobb-Vantress.

Declarations

Ethics approval and consent to participate
Data recording and sample collection were conducted strictly in line with the 
Dutch law on the protection of animals (Gezondheids-en welzijnswet voor 
dieren).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Animal Breeding and Genomics, Wageningen University and Research, P.O. 
Box 338, 6700 AH Wageningen, The Netherlands. 2 Cobb-Vantress Inc., Siloam 
Springs, AR 72761‑1030, USA. 

Received: 2 March 2022   Accepted: 13 February 2023

References
	1.	 VanRaden PM. Efficient methods to compute genomic predictions. J 

Dairy Sci. 2008;91:4414–23.
	2.	 Vitezica ZG, Aguilar I, Misztal I, Legarra A. Bias in genomic predictions for 

populations under selection. Genet Res (Camb). 2011;93:357–66.
	3.	 Fernando RL, Dekkers JC, Garrick DJ. A class of Bayesian methods to 

combine large numbers of genotyped and non-genotyped animals for 
whole-genome analyses. Genet Sel Evol. 2014;46:50.

	4.	 Hsu WL, Garrick DJ, Fernando RL. The accuracy and dispersion bias of 
single-step genomic prediction for populations under selection. G3 
(Bethesda). 2017;47:2685–94.

	5.	 Vandenplas J, Eding H, Bosmans M, Calus MPL. Computational strategies 
for the preconditioned conjugate gradient method applied to ssSNPB-
LUP, with an application to a multivariate maternal model. Genet Sel Evol. 
2020;52:24.

	6.	 Vandenplas J, Eding H, Calus MPL. Technical note: genetic groups in 
single-step single nucleotide polymorphism best linear unbiased predic-
tor. J Dairy Sci. 2021;104:3298–303.

	7.	 Bermann M, Lourenco D, Misztal I. Technical note: automatic scaling in 
single-step genomic BLUP. J Dairy Sci. 2021;104:2027–31.

	8.	 Makgahlela ML, Mäntysaari EA, Strandén I, Koivula M, Nielsen US, Sillan-
pää MJ, et al. Across breed multi-trait random regression genomic predic-
tions in the Nordic Red dairy cattle. J Anim Breed Genet. 2013;130:10–9.

	9.	 Sevillano CA, Vandenplas J, Bastiaansen JWM, Bergsma R, Calus MPL. 
Genomic evaluation for a three-way crossbreeding system considering 
breed-of-origin of alleles. Genet Sel Evol. 2017;49:75.

https://doi.org/10.1186/s12711-023-00787-1
https://doi.org/10.1186/s12711-023-00787-1


Page 12 of 12Aldridge et al. Genetics Selection Evolution           (2023) 55:19 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	10.	 Lourenco DAL, Tsuruta S, Fragomeni BO, Chen CY, Herring WO, Misztal I. 
Crossbreed evaluations in single-step genomic best linear undispersion 
biased predictor using adjusted realized relationship matrices. J Anim Sci. 
2016;94:909–19.

	11.	 Makgahlela ML, Strandén I, Nielsen US, Sillanpää MJ, Mäntysaari EA. Using 
the unified relationship matrix adjusted by breed-wise allele frequen-
cies in genomic evaluation of a multibreed population. J Dairy Sci. 
2014;97:1117–27.

	12.	 Scholtens M, Lopez-Villalobos N, Lehnert K, Snell R, Garrick D, Blair HT. 
Advantage of including genomic information to predict breeding values 
for lactation yields of milk, fat, and protein or somatic cell score in a New 
Zealand dairy goat herd. Animals (Basel). 2021;11:24.

	13.	 Calus MPL, Vandenplas J, Hulsegge B, Borg R, Henshall J, Hawken R. Deri-
vation of parentage and breed-of-origin of alleles in a crossbred broiler 
dataset. In: Proceedings of the 11th world congress on genetics applied 
to livestock production: 11–16 February 2018; Auckland. http://​www.​
wcgalp.​org/​proce​edings/​2018/​deriv​ation-​paren​tage-​and-​breed-​origin-​
allel​es-​cross​bred-​broil​er-​datas​et. Accessed 9 Dec 2021.

	14.	 Duenk P, Calus MPL, Wientjes YCJ, Breen VP, Henshall JM, Hawken R, et al. 
Validation of genomic predictions for body weight in broilers using 
crossbred information and considering breed-of-origin of alleles. Genet 
Sel Evol. 2019;51:38.

	15.	 Duenk P, Calus MPL, Wientjes YCJ, Breen VP, Henshall JM, Hawken R, et al. 
Estimating the purebred-crossbred genetic correlation of body weight in 
broiler chickens with pedigree or genomic relationships. Genet Sel Evol. 
2019;51:6.

	16.	 Calus MP, Henshall JM, Hawken R, Vandenplas J. Estimation of dam line 
composition of 3-way crossbred animals using genomic information. 
Genet Sel Evol. 2022;54:44.

	17.	 Tribout T, Boichard D, Ducrocq V, Vandenplas J. A fast method to fit the 
mean of unselected base animals in single-step SNP-BLUP. In: Book of 
abstracts of the 70th annual meeting of the European Federation of 
Animal Science: 26–30 August 2019; https://​meeti​ngs.​eaap.​org/​wp-​conte​
nt/​uploa​ds/​2021/​09/​2019-​ghent-​book-​of-​abstr​acts.​pdf. Accessed 9 Dec 
2021.

	18.	 Groenen MA, Megens H-J, Zare Y, Warren WC, Hillier LW, Crooijmans 
RP, et al. The development and characterization of a 60K SNP chip for 
chicken. BMC Genomics. 2011;12:274.

	19.	 Vandenplas J, Calus MPL, Sevillano CA, Windig JJ, Bastiaansen JWM. 
Assigning breed origin to alleles in crossbred animals. Genet Sel Evol. 
2016;48:61.

	20.	 Calus MPL, Henshall JM, Hawken RJ, Vandenplas J. Estimation of dam line 
composition of 3-way crossbred broilers using genomic information. In: 
Proceedings of the 72nd annual meeting of the European Federation of 
Animal Science: 30 August–3 September 2021; Davos. https://​meeti​ngs.​
eaap.​org/​wp-​conte​nt/​uploa​ds/​2021/​09/​BoA_​Davos​2021.​pdf. Accessed 9 
Dec 2021.

	21.	 Gilmour AR, Gogel BJ, Cullis BR, Welham S, Thompson R. ASReml user 
guide release 4.1 structural specification. Hemel Hempstead: VSN interna-
tional Ltd.; 2015.

	22.	 Ten Napel J, Vandenplas J, Lidauer M, Stranden I, Taskinen M, Mäntysaari 
V, et al. 2017. MiXBLUP, user-friendly software for large genetic evaluation 
systems-manual. http://​www.​mixbl​up.​eu/​docum​ents/​Manual%​20MiX​
BLUP%​202.1_​June%​202017_​V2.​pdf. Accessed 9 Dec 2021.

	23.	 Liu Z, Goddard ME, Reinhardt F, Reents R. A single-step genomic model 
with direct estimation of marker effects. J Dairy Sci. 2014;97:5833–50.

	24.	 Cameron ND. Selection indices and prediction of genetic merit in animal 
breeding. Wallingford: CAB International; 1997. p. ix–203.

	25.	 Bijma P. Estimating maternal genetic effects in livestock. J Anim Sci. 
2006;84:800–6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.wcgalp.org/proceedings/2018/derivation-parentage-and-breed-origin-alleles-crossbred-broiler-dataset
http://www.wcgalp.org/proceedings/2018/derivation-parentage-and-breed-origin-alleles-crossbred-broiler-dataset
http://www.wcgalp.org/proceedings/2018/derivation-parentage-and-breed-origin-alleles-crossbred-broiler-dataset
https://meetings.eaap.org/wp-content/uploads/2021/09/2019-ghent-book-of-abstracts.pdf
https://meetings.eaap.org/wp-content/uploads/2021/09/2019-ghent-book-of-abstracts.pdf
https://meetings.eaap.org/wp-content/uploads/2021/09/BoA_Davos2021.pdf
https://meetings.eaap.org/wp-content/uploads/2021/09/BoA_Davos2021.pdf
http://www.mixblup.eu/documents/Manual%20MiXBLUP%202.1_June%202017_V2.pdf
http://www.mixblup.eu/documents/Manual%20MiXBLUP%202.1_June%202017_V2.pdf

	Validation with single-step SNPBLUP shows that evaluations can continue using a single mean of genotyped individuals, even with multiple breeds
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Estimation of the covariate vector 
	Dataset
	Computation of observed breed fractions
	Genomic prediction using J-factors
	Accuracy and dispersion bias

	Results
	Comparison of computed J factor covariates
	Estimated J-factor regression coefficients
	Accuracy of sire GEBV
	Dispersion bias of sire GEBV

	Discussion
	Fitting no J-factor versus fitting one or multiple J-factors
	Limitations

	Conclusions
	Anchor 22
	Acknowledgements
	References


