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Abstract 

Background  Natural and artificial selection for more than 9000 years have led to a variety of domestic pig breeds. 
Accurate identification of pig breeds is important for breed conservation, sustainable breeding, pork traceability, and 
local resource registration.

Results  We evaluated the performance of four selectors and six classifiers for breed identification using a wide 
range of pig breeds (N = 91). The internal cross-validation and external independent testing showed that partial least 
squares regression (PLSR) was the most effective selector and partial least squares-discriminant analysis (PLS-DA) was 
the most powerful classifier for breed identification among many breeds. Five-fold cross-validation indicated that 
using PLSR as the selector and PLS-DA as the classifier to discriminate 91 pig breeds yielded 98.4% accuracy with only 
3K single nucleotide polymorphisms (SNPs). We also constructed a reference dataset with 124 pig breeds and used it 
to develop the web tool iDIGs (http://​alpha​index.​zju.​edu.​cn/​iDIGs_​en/) as a comprehensive application for global pig 
breed identification. iDIGs allows users to (1) identify pig breeds without a reference population and (2) design small 
panels to discriminate several specific pig breeds.

Conclusions  In this study, we proved that breed identification among a wide range of pig breeds is feasible and we 
developed a web tool for such pig breed identification.

Background
Pigs are one of the main sources of animal protein for 
humans and are commonly used for biomedical research. 
Over the past 9000  years, various pig breeds have been 
produced through natural and artificial selection [1]. 
According to a recent report of the Food and Agriculture 
Organization of the United Nations, there are currently 
approximately 600 pig breeds worldwide, most of which 

are found in Asia and Europe [2]. Breed identification of 
pigs is crucial for breed conservation, sustainable breed-
ing, pork traceability, and local resource registration. 
Local pig breeds represent an important genetic resource 
with considerable genetic variability, however, most of 
these breeds are at risk of extinction because of a multi-
tude of challenges, including emerging diseases, climate 
change, and competition from international commercial 
breeds [3]. Accurate breed identification is the premise of 
undertaking measures to alleviate such trends. Further-
more, the increasingly abundant whole-genome sequence 
(WGS) and single nucleotide polymorphism (SNP) chip 
datasets that are available in curated databases represent 
important resources to characterize the genetic diversity 
of pigs [4].

The long history of pig domestication has shaped the 
genetic structure of pig breeds, which facilitates breed 
identification based on genetic information. Molecular 
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genetic markers, such as short tandem repeats (STRs) 
and SNPs, can be used to identify genetic heterogene-
ity among breeds. For more than 30  years, the highly 
variable STRs have been used for breed identification in 
various species [5]. However, due to advances in high-
throughput sequencing and genotyping technology, large 
numbers of SNPs have now been characterized and these 
have replaced STRs in animal genetic research over the 
past decade [6]. Heterogeneous SNPs are referred to as 
breed informative markers and they are used for breed 
identification and assessing genetic breed composition 
and signatures of selection. Commercial SNP chips for 
pigs have mainly been developed based on the most het-
erogeneous SNPs between a wild boar population and 
four cosmopolitan breeds [7] but, to discriminate breeds 
of interest, it is necessary to select a more specific sub-
set of these SNPs. Compared to commercial SNP chips, 
selection of breed-specific informative SNPs can remove 
noisy and redundant SNPs, and can reduce the cost of 
breed identification.

Current studies on breed identification typically 
include two steps, i.e., (1) selecting breed informative 
SNPs and (2) fitting a classification model using these 
SNPs [8, 9]. In machine-learning methods, a ‘selector’ 
is defined as any approach that selects a subset of fea-
tures from original features by removing those that are 
irrelevant and noisy, while a ‘classifier’ is defined as any 
algorithm that assigns test individuals to labeled classes 
[10, 11]. Some machine-learning approaches, however, 
accomplish both of these simultaneously. For example, 
random forest (RF) produces results for both dependent 
variable significance and classification [12]. Accordingly, 
in this study, the approaches used for the selection of 
breed informative SNPs are referred to as selectors, and 
models used for classification analysis are referred to as 
classifiers.

For selection of breed informative markers, commonly 
used methods are the delta method, Wright’s fixation 
index (FST), and principal component analysis (PCA) [6]. 
For breed assignment analysis, various machine-learning 
methods have been used, including RF [13, 14], sup-
port vector machine (SVM) [8], and k-nearest neighbor 
(KNN) methods [9], with performance differing only 
slightly between classifiers [9]. Most studies that have 
compared different selectors and classifiers for breed 
identification of farm animals have, however, included 
at most 20 specific breeds. For example, a panel contain-
ing 64 breed informative markers was developed to dif-
ferentiate Iberian and Duroc pigs [7] and a panel of 20 
breed informative markers was selected using FST to dis-
criminate 13 pig breeds using different machine-learning 
methods [9]. These studies often provide a protocol to 
design a panel for breed identification of specific breeds. 

However, breed informative markers for a limited num-
ber of breeds cannot be applied to other breeds. Con-
sequently, users need to develop a new panel for breed 
identification of the breeds that they are interested in, 
which requires the construction of a specific reference 
population, alongside the selection of breed informa-
tive markers based on this reference population. Thus, a 
publicly available reference database that includes many 
breeds can obviate the need for these time-consuming 
and costly tasks.

As a result of the massive application of SNPs in 
genomic selection and genome-wide association analysis 
in pigs, abundant SNP information is now publicly avail-
able from commercial SNP chips and WGS datasets for 
many pig breeds. These data can help develop a public 
database for the identification of breeds from across the 
globe. However, the performance of breed identification 
methods remains unclear when the number of breeds is 
very large. In addition, while it is well known that more 
SNPs are required to distinguish among a large number 
of breeds, the minimum number of SNPs to distinguish 
pig breeds globally is unknown.

In this study, we curated data from three commercial 
SNP chips and a WGS dataset that represent 3605 indi-
viduals from various pig breeds worldwide. To confirm 
the applicability of breed identification in a wide range of 
pig breeds, we compared the performance of four selec-
tors and six classifiers using internal cross-validation or 
an external independent dataset. We generated a refer-
ence dataset for breed identification and developed an 
interactive web tool, iDIGs, to perform pig breed identi-
fication by simply uploading SNP information of testing 
individuals. The iDIGs tool also allows users to design 
panels of breed informative markers for specific pig 
breeds without requiring additional pre-prepared data.

Methods
A flowchart that depicts the general scheme of this study 
is in Fig. 1.

Data collection and pre‑processing
Three pig SNP chip datasets were downloaded from 
the Dryad Digital Repository (https://​datad​ryad.​org/) 
[15] and the Figshare database (https://​figsh​are.​com/) 
[16, 17]. Breeds with less than ten individuals were 
removed. Table  1 shows a summary of these datasets. 
The three datasets were merged and SNPs with physi-
cal locations on the sex chromosomes and with minor 
allele frequencies lower than 0.01 were removed. The 
software Beagle (v5.2) [18] was used to impute sparse 
missing genotypes using default parameters. Cross-
breds were removed and served as an independent test-
ing set in downstream analyses. The admixture (v1.3.0) 

https://datadryad.org/
https://figshare.com/
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software [19] was used to investigate the genetic 
structure of all animals included in the chip reference 
dataset. Animals with admixture profiles that differed 
markedly from those of other animals from the same 
breed were removed and the remaining samples were 
considered purebred. Since the downloaded raw data 
were based on the 10.2 Sus scrofa assembly, we also 
generated a chip reference dataset based on the 11.1 
Sus scrofa assembly [20]. A WGS dataset from the Pig 
Haplotype Reference Panel (PHARP) [21] was also 
included in this analysis. PHARP is a free genotype 
imputation service that comprises various pig breeds 
from across the globe. SNPs in the PHARP data were 
generated using the GATK pipeline [22] with the 11.1 
Sus scrofa assembly as the reference genome.

Selection of breed informative SNPs
To compare the performance of different selectors, 
average Euclidean distance (AED), FST, PCA, and par-
tial least squares regression (PLSR) were used to select 
breed informative SNPs. These four selectors each 
assign a different statistic to each SNP that reflects the 
heterogeneity of that SNP between breeds. The four 
statistics were calculated as follows:

–	 AED: the AED value for a certain SNP across all 
breeds was calculated as:

(1)AED =
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Fig. 1  Flowchart of the evaluation of model performance and construction of the reference database. AED: average Euclidean distance; FST: fixation 
index; PCA: principal component analysis; PLSR: partial least squares regression; KNN: k-nearest neighbor; NSC: nearest shrunken centroids; PLS-DA: 
partial least squares-discriminant analysis; RF: random forest; SVMp: support vector machine with polynomial kernel; SVMr: support vector machine 
with Gaussian radial basis function

Table 1  Summary of the datasets used

Dataset Sample size Number of breeds or 
populations

Number of SNPs References

Chip dataset 1 2113 146 47,700 [23]

Chip dataset 2 263 10 32,012 [16]

Chip dataset 3 124 4 23,532 [24]

PHARP v2 1585 99 34,265,424 [21]
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where T  is the number of breeds, fi and fj are the 
allele frequencies for the SNP in breeds i and j , 
respectively, and C2

T is the number of combinations 
that select two breeds from the T  breeds.

–	 FST: estimates of Weir and Cockerham’s global FST 
[25] were calculated using the PLINK (v1.9) [26] soft-
ware.

–	 PCA: first, the allele frequencies of each SNP in each 
breed were calculated and a breed-specific allele 
frequency matrix was generated. Then, PCA was 
performed on the matrix of breed-specific allele fre-
quencies using the prcomp function of the R software 
[27]. The loading of a SNP was defined as the sum of 
the squares of the first ten eigenvectors, which were 
ordered by their corresponding eigenvalues.

–	 PLSR: PLSR is a supervised learning algorithm that 
reduces the explanatory variables to a smaller set of 
uncorrelated components and performs a regres-
sion on these components. This is appropriate for 
a regression analysis for which multicollinearity of 
explanatory variables is high. Several studies have 
shown the efficiency of PLSR for the selection of 
breed informative SNPs [7, 8]. Considering the large 
number of SNPs used in this study, we applied 150 
components in the PLSR using the R software pack-
age pls [28]. The sum of the square of the regression 
coefficients for each SNP calculated by PLSR was 
used to select breed informative SNPs.

Using these four statistics, nine SNP panels with dif-
ferent densities (200, 500, 800, 1K, 3K, 5K, 7K, 10K, 
and 12K) based on their magnitude were constructed to 
assess the impact of different marker densities.

Classifiers for pig breed identification
Five multi-class classification methods were used to 
perform breed assignment using different numbers 
of breed informative SNPs, including KNN, nearest 
shrunken centroids (NSC), partial least squares discri-
minant analysis (PLS-DA), RF, SVM with a polynomial 
kernel (SVMp), and SVM with a Gaussian radial basis 

function (SVMr). The model parameters for these six 
classifiers are summarized in Table  2. These methods 
are described in the following paragraphs:

–	 KNN: KNN is a non-parametric algorithm for multi-
class classification. For each test individual (the indi-
vidual whose breed needs to be predicted), it calcu-
lates its distance to all the training individuals (the 
individuals whose breed is known) and chooses the 
first k nearest training individuals. Then, it assigns 
the test individual with the mode of the breed labels 
of the k nearest training individuals. KNN classifica-
tion was performed using the R package class [29]. 
The parameter k was set to 5 and Euclidean distances 
were used to calculate the distances between training 
and test individuals.

–	 NSC: NSC classification was first introduced for the 
diagnosis of multiple cancer types based on DNA 
microarrays [30], using data with a large number of 
features and a relatively small number of individu-
als. Thus, NSC was considered suitable for perform-
ing breed assignment analysis using SNP data. NSC 
obtains centroids for all breeds by averaging each 
SNP in each breed and then standardizing cen-
troids using the within-breed standard deviation of 
all SNPs. After standardization, NSC shrinks these 
centroids towards the overall centroid, which is cal-
culated by averaging each SNP for all breeds. The 
predicted class of a test individual is the class of its 
nearest centroid. NSC classification was performed 
using the R package caret with default parameters 
[31].

–	 PLS-DA: PLS-DA is a discrimination method 
based on PLSR and recently has become increas-
ingly popular in the research area of metabolomics 
for the purpose of classifying individuals into 
either a case or control group based on their met-
abolic profile [32]. As a variant of PCA in super-
vised learning, PLS-DA is capable of feature selec-
tion as well as classification [33]. For the PLS-DA 
analysis, PLSR was used to model the relationship 

Table 2  Parameters used in the classifiers

p is the number of SNPs

Classifier Tuned parameters Default parameters

KNN K = 3 l = 0

NSC – threshold = 30

PLS-DA ncomp = 150 probMethod = "softmax"

RF – ntree = 500, mtry = sqrt(p),

SVMp – degree = 3, scale = true, gamma = 1/p, cost = 1

SVMr – scale = true, gamma = 1/p, cost = 1
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between the breed labels and the first 150 uncor-
related components of the SNP genotype matrix. 
Prediction values of all breeds from PLSR were 
then converted to a probability distribution of all 
breed labels using the softmax function [31]. The 
breed label with the highest probability was con-
sidered to be the predicted label. PLS-DA classi-
fication was performed using the R package caret 
[31].

–	 RF: RF is an ensemble learning method that assem-
bles results from several decision trees to avoid 
overfitting by a single decision tree model. For clas-
sification jobs, the output of the RF model is the 
mode of the predicted class from all decision trees. 
RF models were previously considered adequate for 
the selection of breed informative markers [34] and 
for breed classification [13, 14]. RF modeling was 
performed using the R package randomForest with 
default parameters [35].

–	 SVMp and SVMr: SVM is a well-known and fast 
machine-learning algorithm that can be used for 
regression and classification [36]. SVM uses differ-
ent kernel functions to map the raw input to high-
dimensional feature spaces and then finds a maxi-
mum-margin hyperplane that can separate the data 
into classes in high-dimensional spaces [37]. SVM 
is an efficient classifier, especially when dealing 
with nonlinear separable problems. For multi-class 
classification problems, SVM adopts a one-to-one 
approach, which breaks the multiclass problem into 
multiple binary classification problems. SVMp uses 
a polynomial kernel to map the input SNP matrix 
to high-dimensional feature spaces, whereas SVMr 
uses the Gaussian radial basis function [38]. SVMp 
and SVMr were performed using the R package 
e1071 with default parameters [38].

Evaluation of model performance using the chip reference 
dataset
Stratified five-fold cross-validation was used to evaluate 
the performance of all classification methods with the 
chip reference dataset by partitioning this dataset into 
five equally-sized subsets of individuals, while main-
taining each subset to have roughly equal proportions 
of all breeds. To obtain reliable estimates of model per-
formance, we performed the stratified five-fold cross-
validation five times, and the average accuracy across 
the five times five-fold cross-validation was used as a 
measurement of model performance.

Prediction of unknown breeds and crossbreds
We randomly selected eight breeds from the chip refer-
ence dataset as unknown breeds. All individuals that 
belonged to these unknown breeds were extracted as 
testing sets. For the other breeds in the chip reference 
dataset, we randomly extracted one third of the individu-
als for testing. Individuals from two crossbreds, CSLM 
(LargeWhite × Meishan) and CSPL (Pietrain × Large-
White), from the chip dataset 1 were also extracted as 
testing sets, which were removed when constructing the 
chip reference dataset. Information on the testing sets is 
in Table 3.

The PCA and PLSR methods were used to select three 
panel densities (1K, 5K, and 10K) because of their high 
performance in cross-validation. PLS-DA was used to 
predict breed labels of test individuals with different 
panel densities. The regression coefficients for each breed 
label from PLS-DA were transformed to a probability dis-
tribution using the softmax function. In the cross-valida-
tion analyses, the breed label with the highest probability 
was set as the predicted label. A predefined threshold was 
used to identify unknown breeds and crossbreds. When 
the highest probability was lower than the threshold, the 
predicted label was set as “unknown”. To identify an ade-
quate threshold, we tested different thresholds from 0.01 
to 0.03 with increments of 0.001.

Evaluation of model performance using the independent 
WGS dataset
Individuals whose breed labels occurred in the chip ref-
erence dataset were extracted from the WGS PHARP 
datasets. In total, 26,858 SNPs that were shared between 
the chip reference (version 11.1) and the WGS PHARP 
datasets were used. PCA and PLSR were chosen to select 
different panel densities because of their performance 

Table 3  Summary of unknown breeds and crossbreds

Breeds Abbreviation Sample size Type

American Feral AMFE 36 Unknown breeds

Berkshire BK 38 Unknown breeds

CostaRica Creole CRCR​ 12 Unknown breeds

DeBao DB 15 Unknown breeds

HeTaoDaEr HTDE 16 Unknown breeds

ShaZiLing SZL 11 Unknown breeds

Ukrainian Pork Swine UAPS 12 Unknown breeds

YueDongHei YDH 25 Unknown breeds

LargeWhite × Meishan CSLM 20 Crossbreds

Pietrain × LargeWhite CSPL 20 Crossbreds
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in cross-validation. PLS-DA was used to predict breed 
labels of individuals in the independent testing data-
set with different panel densities, ranging from 1000 to 
15,000, with increments of 1000.

Construction of the reference dataset and design 
of the iDIGs webtool
Breeds from PHARP with more than 10 individuals were 
merged with the chip dataset to produce a larger refer-
ence dataset. To generate a high-quality SNP reference 
dataset for use with different genotyping platforms, SNPs 
that overlapped between the chip and the PHARP refer-
ence dataset were retained and imputed. The R package 
Shiny [39] was used to construct the web interface for 
breed identification based on the reference dataset.

Results
Data and pre‑processing
After basic quality control of the merged dataset, we 
obtained genotypes on 2333 individuals and 46,974 com-
mon SNPs in the chip dataset. Forty crossbreds were 
removed and an additional 21 individuals were removed 
due to their inconsistent admixture profile (see Addi-
tional file  1: Fig. S1). In total, genotypes on 2272 indi-
viduals and 46,974 common SNPs were retained in the 
chip dataset. The conversion from the 10.2 to the 11.1 Sus 
scrofa assembly resulted in the loss of 1231 SNPs. There-
fore, the chip reference dataset (Sus scrofa 11.1) con-
tained genotypes on 2272 individuals and 45,743 SNPs 
and comprised 91 breeds, of which 41 were Chinese 
indigenous breeds. Breeds used in the chip reference 
dataset and the number of individuals for each breed are 
in Additional file 2: Table S1.

Performance evaluation of classifiers in the chip reference 
dataset
We performed a stratified five-fold cross-validation five 
times for each classifier and each SNP panel using the 
chip reference dataset. The average accuracy of different 
classifiers is shown in Fig. 2. In general, the average accu-
racy increased as  the number of markers increased  for 
all classifiers. Using PLS-DA as a classifier with the 10K 
SNP panel resulted in the highest accuracy (98.8%). In 
terms of selectors, PCA and PLSR exhibited significantly 
higher efficiencies than AED and FST. PLSR was the most 
efficient marker selection method, especially when the 
number of markers was small. When using PLSR to select 
breed informative markers, almost all classifiers obtained 
an average accuracy greater than 90%, although only 200 
markers were selected. When using the PLSR selector, 
the 1K and 10K marker densities led to similar predictive 
accuracies. In general, PLS-DA was the best classifier. 

Average accuracies were less than 98.3% for of all meth-
ods, except for PLS-DA.

Prediction of unknown breeds and crossbreds
In total, 756 individuals, including 551 pure individuals, 
165 unknown individuals, and 40 cross individuals, were 
used to establish an adequate threshold for breed iden-
tification when considering the presence of unknown 
breeds or crossbreds (see Additional file  3: Table  S2). 
We evaluated the prediction accuracy for purebreds, 
unknown breeds, and crossbreds independently, and 
we attempted to identify an adequate threshold to bal-
ance the trade-off between pure breed identification and 
incorrect detection. For the unknown breeds and cross-
breds, an “unknown” identification was considered to be 
a correct outcome. The prediction accuracy under dif-
ferent thresholds are shown in Fig.  3. As expected, the 
prediction accuracy of unknown breeds and crossbreds 
increased and that of pure breeds decreased with increas-
ing thresholds. When using 1K SNPs, it was not possible 
to simultaneously obtain accuracies higher than 90% 
for all three categories, regardless of the threshold used. 
The utilization of 5K or 10K SNPs results in an almost 
equivalent accuracy of prediction for all three types of 
individuals by both selectors. The best trade-off between 
prediction accuracy of pure breeds and the other two cat-
egories occurred when using 5K SNPs, PLSR as the selec-
tor and a threshold of 0.021, as it resulted in accuracies of 
92.4% for purebreds and 100% for unknown breeds and 
crossbreds. In almost all situations, a threshold of either 
0.02 or 0.021 resulted in a satisfactory trade-off, where 
the prediction accuracy for all three categories surpassed 
90%.

Independent evaluation of model performance using 
the WGS dataset
Data on 806 individuals from 48 breeds were used as 
an independent WGS dataset (see Additional file  4: 
Table  S3). We used PLSR and PCA to select 15 SNP 
panels with densities ranging from 1K to 15K, and 
then used PLS-DA to assign a breed label to each indi-
vidual in the WGS dataset for different panels (Fig. 4). 
Overall, the prediction accuracy of these two selectors 
increased as the number of markers increased. With 
more than 4K markers, both selectors reached a sta-
ble prediction accuracy of approximately 97.8%. The 
minimum accuracy of 95.9% was obtained with the 1K 
panel selected by PLSR, while the maximum accuracy 
of 97.9% was obtained for several panels. The accuracy 
obtained with PLSR was almost always slightly higher 
or the same as the accuracy obtained with PCA when 
the number of markers exceeded 2.5K. The incorrectly 
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assigned individuals from the WGS dataset tended to 
be consistent across different marker densities, indi-
cating the underlying genetic distance between the 
same breeds in the chip reference dataset and the 
WGS dataset leads to inaccurate prediction. These 
incorrectly assigned individuals were discarded and 
the two types of datasets were then merged.

Construction of the reference dataset and design 
of the iDIGs webtool
By combining the chip reference dataset and the PHARP 
datasets after removing the incorrectly assigned indi-
viduals (see above), we produced a reference dataset with 
45,743 SNPs and 3605 individuals from 124 pig breeds. 
The information included for each breed is in Additional 

Fig. 2  Average accuracy of breed identification in the chip reference dataset. The average identification accuracy of five times five-fold 
cross-validation in merged chip data using 36 SNP panels and six classifiers. The 36 SNP panels were constructed using four models (EDA, FST, PCA, 
and PLSR) and nine SNP densities (200, 500, 800, 1K, 3K, 5K, 7K, 10K, and 12K)
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file 5: Table S4. These 45,743 SNPs covered almost all the 
genomic regions (Fig. 5).

Based on the reference dataset, the web tool (iDIGs) 
was designed for pig breed identification-related analy-
ses, including pig breed identification and design of 
SNP panels (breed informative marker selection) for 
the identification of specific pig breeds. The work-
flow of breed identification analysis is as follows. 
First, the PLINK binary file needs to be uploaded to 

the iDIGs web server and the version of the reference 
genome should be chosen. iDIGs renames the SNP ID 
to “Chr:Pos:allele1:allele2”, where “Chr” and “Pos” are 
the chromosome and position localizations of this SNP, 
respectively; “allele1” and “allele2” are the alleles that 
have the smaller and larger ASCII code, respectively. 
Next, iDIGs extracts the common SNPs between the 
uploaded data and the reference data, based on SNP ID. 
Then, SNPs in the uploaded data are recoded as the num-
ber of reference alleles. The reference allele of each SNP 
in the uploaded data is consistent with the reference allele 
used in the reference dataset. By default, iDIGs selects 
5000 breed informative SNPs using PLSR. If the number 
of common SNPs is smaller than 5000, the marker selec-
tion procedure is skipped. iDIGs then retrains the PLS-
DA model using the selected SNPs and assigns a breed 
label for each sample in the uploaded file.

In order to design a SNP panel for the identification of 
specific breeds, no additional files need to be uploaded. 
Users need to choose the panel density and input the 
breeds that are targeted to be differentiated from the 
available 124 breeds. Here, users can input multiple breed 
IDs or a single breed ID. If multiple breed IDs are used, 
markers that are most discriminating among all input 
breeds are selected. When using a single breed ID, mark-
ers that can distinguish the breed from all other breeds 
in the reference database are selected. After obtaining the 
panel of breed informative markers, iDIGs automatically 
conducts five-fold cross-validation to evaluate the perfor-
mance of the panel. Users can then judge if the number of 

Fig. 3  Prediction accuracies of pure breeds, unknown breeds, and crossbreds using six SNP panels. The six SNP panels were constructed using two 
models (PCA and PLSR) and three SNP densities (1K, 5K, and 10K)

Fig. 4  Identification accuracy in the independent WGS dataset. 
Identification accuracy of the independent WGS dataset using 
different panels selected by PCA and PLS-DA. Thirty different panels 
were constructed using two selectors (PCA and PLSR) and 15 SNP 
densities
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SNPs in the panel is sufficiently large for identification of 
the breeds of interest.

Discussion
Advantages and disadvantages of iDIGs
In this study, we generated a reference dataset with 124 
pig breeds and built the web tool iDIGs for pig breed 
identification using this reference dataset. To our knowl-
edge, this is the first breed identification study based on 
worldwide pig breeds, as well as the first public tool for 
the identification of a wide range of pig breeds. In addi-
tion to breed identification, iDIGs can also be used to 
authenticate the breed label of publicly available data. 
It is acknowledged that individuals within such datasets 
may possess incorrect or inaccurate breed labels, which 
can result in erroneous conclusions if used in genomic 
analyses (e.g. selection signatures). As such, it is recom-
mended that breed labels be verified using iDIGs prior to 
conducting any related analyses.

While previous studies on breed identification only 
selected tens or hundreds of markers [7, 34, 40], in the 
current study, 3K markers were the minimum num-
ber required to obtain 98% accuracy. The number of 
markers required for breed identification depends on 

the number of breeds being considered [41]. Previous 
studies have primarily focused on a limited number 
of specific breeds and were able to achieve acceptable 
results with a small SNP panel. However, the design 
of iDIGs, which is intended to handle a wide range of 
pig breeds, highlights the inefficiency of such small 
SNP panels. The minimum number of SNPs required 
is mainly determined by the heterogeneity of SNPs 
across all breeds. By default, iDIGs assigns a test indi-
vidual to one of the 124 possible breeds, thus requiring 
a greater number of SNPs to accurately discriminate 
against each breed. Our reference dataset was gener-
ated using commercial SNP chips and comprises over 
40,000 SNPs, ensuring that the number of common 
SNPs is not a concern for commercial chip or WGS 
data. For reduced-representation sequencing, users 
can first perform imputation using a public imputation 
database, such as PHARP. In addition, iDIGs allows 
users to select a subset of breeds from the 124 reference 
breeds for breed identification, which can help reduce 
the minimum number of required SNPs and improve 
prediction accuracy.

”Breed” is a dynamic concept and the genetic char-
acteristics of a breed may change over time as a result 

Fig. 5  Genome distribution of SNPs in the reference dataset. Genome distribution of 45,743 SNPs in the reference dataset in 10.2 and 11.1 Sus scrofa 
assemblies
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of selection, genetic drift, and other gene flow events. 
Therefore, the increasing genetic distance of the test 
individuals from individuals from the same breed in the 
reference dataset will decrease prediction accuracy. This 
can be addressed by continuously updating the reference 
dataset.

Prediction of unknown breeds
In iDIGs, each test individual is assigned to one of 124 
breed labels, even if the true breed label is not included 
in our reference dataset. It was, however, not possible to 
include all worldwide pig breeds in our reference dataset. 
To overcome this shortcoming, we predefined a threshold 
for the model fitness of PLS-DA and reset the predicted 
breed as “unknown” if the probability of the predicted 
breed is smaller than this threshold. iDIGs uses 0.02 as 
the default threshold, but users can change this parame-
ter to achieve a better trade-off between true positive and 
false positive rates. If the threshold is set to “NA”, iDIGs 
disables the function of unknown breed prediction.

Designing a small SNP panel for pig breed identification
iDIGs also provides a function to select breed informa-
tive markers to differentiate among specific breeds. All 
SNPs in the reference dataset were derived from com-
mercial SNP chips and are, therefore, easy to design and 
to genotype for a small panel. Building a reference data-
set is the prerequisite for the design of a panel for breed 
identification but this is time-consuming and expensive. 
With iDIGs, users can directly use the reference database 
to select breed informative markers to design panels for 
most situations because it includes 124 pig breeds that 
were distributed across 47 sites in 24 countries. How-
ever, it is important to consider that the performance of 
the panels generated by iDIGs may be subject to bias due 
to the limited number of individuals representing certain 
breeds in the reference dataset. Therefore, to mitigate 
this potential bias, we suggest increasing the size of the 
SNP panel.

Analysis of genomic breed composition
With economic globalization, gene flow between local 
and foreign breeds will increase, which may threaten the 
purity and integrity of local breeds. Some local breeds 
may be crossed with commercial breeds in order to accel-
erate lean growth and improve carcass mass, which may 
disintegrate precious local genetic resources. Analysis of 
breed purity is referred to as genomic breed composition 
(GBC) analysis [42, 43]. GBC reflects the genomic con-
tribution of each ancestral breed to the genome of the 
test animal. Multiple methods can be used to estimate 
the GBC of crossbreds, such as linear models, supervised 
admixture models [44], and Bayesian inference of breed 

composition (BIBI) methods [45]. He et al. [41] reported 
high correlations between GBC that were calculated 
from a linear model and those from an admixture model. 
Almost all the  GBC methods developed to date require 
all potential ancestral breeds to be included in the refer-
ence database.

Breed identification is a qualitative analysis, while 
GBC analysis is quantitative, which makes it more com-
plex and requires detailed prior knowledge (all potential 
ancestral breeds) of candidate individuals. Because of 
this, iDIGs currently does not include a function for GBC 
analysis with the linear model. In addition, because GBC 
analyses are based on allele frequencies of breeds, sam-
ple sizes in our reference database are too small for some 
breeds to calculate accurate allele frequencies. In addi-
tion, because natural and artificial selection can result in 
multiple strains of a given breed, allele frequencies cal-
culated from individuals in public databases may be less 
representative for some populations. We did attempt 
GBC analyses for some crossbreds, but obtained no reli-
able results. Since we are not sure about the true pedigree 
of the crossbreds (which were downloaded from public 
databases), we did not include these results here. To elim-
inate the bias introduced by public data, we designed an 
R package (https://​github.​com/​JanMi​ao/​GBC) to compile 
reference data from user-provided data. The procedure 
for the construction of the reference database includes 
removing outliers, removing relatives, and selection of 
breed informative markers. This also allows users to per-
form GBC analysis with multiple algorithms based on 
their own reference data.

Conclusions
In this study, we first proved that breed identification 
for a wide range of breeds is feasible. We constructed a 
reference dataset for breed identification using multiple 
datasets and developed a web tool (iDIGs) based on the 
reference database. iDIGs can be used to identify breed 
identity and to design small panels for the identification 
of specific pig breeds without the need to prepare a sepa-
rate reference population.
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