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Genomic prediction in pigs using data 
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insights from the Duroc x (Landrace x Yorkshire) 
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Abstract 

Background  Genomic selection is widely applied for genetic improvement in livestock crossbreeding systems 
to select excellent nucleus purebred (PB) animals and to improve the performance of commercial crossbred (CB) 
animals. Most current predictions are based solely on PB performance. Our objective was to explore the potential 
application of genomic selection of PB animals using genotypes of CB animals with extreme phenotypes in a three-
way crossbreeding system as the reference population. Using real genotyped PB as ancestors, we simulated the 
production of 100,000 pigs for a Duroc x (Landrace x Yorkshire) DLY crossbreeding system. The predictive performance 
of breeding values of PB animals for CB performance using genotypes and phenotypes of (1) PB animals, (2) DLY ani-
mals with extreme phenotypes, and (3) random DLY animals for traits of different heritabilities ( h2 = 0.1, 0.3, and 0.5) 
was compared across different reference population sizes (500 to 6500) and prediction models (genomic best linear 
unbiased prediction (GBLUP) and Bayesian sparse linear mixed model (BSLMM)).

Results  Using a reference population consisting of CB animals with extreme phenotypes showed a definite pre-
dictive advantage for medium- and low-heritability traits and, in combination with the BSLMM model, significantly 
improved selection response for CB performance. For high-heritability traits, the predictive performance of a reference 
population of extreme CB phenotypes was comparable to that of PB phenotypes when the effect of the genetic cor-
relation between PB and CB performance ( rpc ) on the accuracy obtained with a PB reference population was consid-
ered, and the former could exceed the latter if the reference size was large enough. For the selection of the first and 
terminal sires in a three-way crossbreeding system, prediction using extreme CB phenotypes outperformed the use 
of PB phenotypes, while the optimal design of the reference group for the first dam depended on the percentage of 
individuals from the corresponding breed that the PB reference data comprised and on the heritability of the target 
trait.

Conclusions  A commercial crossbred population is promising for the design of the reference population for 
genomic prediction, and selective genotyping of CB animals with extreme phenotypes has the potential for maximiz-
ing genetic improvement for CB performance in the pig industry.

Background
With the advent of the genomic era, genomic prediction 
has become a mainstream selection technique in plant 
and animal breeding since it was first proposed [1–4]. 
Currently, the commercial livestock breeding industry 
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relies on genome-wide dense markers to select desirable 
purebreds (PB). The candidate population with only gen-
otypic records is predicted using data from a reference 
population with genotypic and phenotypic records, and 
the genetic merit of candidates is judged by their esti-
mated breeding values (EBV) to perform selection and 
retention [1]. The typical process for genomic prediction 
in animal breeding is to select a certain number of PB 
as a reference population for phenotypic measurement, 
genotype the reference and candidate populations, and 
then to construct a statistical model to calculate the EBV 
of the candidate population [5, 6]. Currently, the GS pro-
cesses are mainly implemented at the PB nucleus popula-
tion level.

The ultimate goal of breeding is to improve the perfor-
mance of commercial crossbreds (CB). Genetic progress 
created by selection for PB performance is reflected in 
commercial CB progeny after expansion and cross-
breeding. However, because of differences in genetic 
background [7, 8], genotype-by-environment interac-
tions [9, 10] and measurement methods [11], PB and 
CB performances differ for most traits. Previous stud-
ies have shown that the genetic correlation between PB 
performance and CB performance ( rpc ) for different trait 
categories such as growth, meat amount, meat quality, 
feed, and fertility is 0.6 on average [12]. Consequently, 
genomic selection based on PB performance amounts 
to indirect selection and the CB progeny of the best PB 
animals based on PB performance may not have the best 
performance [13]. In order to improve the accuracy of 
prediction of PB for CB performance, combined CB and 
PB selection (CCPS) was proposed [14]. Substantial gains 
can be achieved with CCPS compared to using only PB 
performance when rpc is lower than 0.7 [15]. In addition, 
Dekkers et  al. [16] demonstrated that marker-assisted 
selection or genomic selection with marker effects esti-
mated from CB performance can contribute to a signifi-
cant increase in genetic gain. It has been demonstrated 
that the inclusion of CB data in the genetic evaluation 
of PB selection candidates contributes to improving the 
performance of hybrid progeny [17–23] because it can 
account for the genetic differences between PB and CB 
and the potential effect of genotype-by-environment 
interactions.

However, application of GS using CB performance has 
been limited and breeding companies are not inclined 
to use CB performance exclusively for genomic predic-
tion. On the one hand, the acquisition of substantial CB 
data is demanding and time-consuming, as CB animals 
are usually not individually identified, and the systematic 
recording of CB phenotypes is challenging. On the other 
hand, although many studies have provided evidence for 
the effectiveness of using CB performance for prediction, 

most are based on fully simulated data [17–21] and sug-
gest that some of the PB information should be retained 
in the reference population, requiring continued pheno-
typing in the PB nucleus population [15, 21, 24]. There-
fore, detailed guidance on adopting genomic prediction 
using only CB information in a crossbreeding system is 
lacking.

Recently, with the rapid development of high-through-
put phenotyping platforms, such as imaging spectros-
copy and structured light sensors, it has become possible 
to automatically perform integrated measurements of 
livestock on a large-scale and within a short time [25, 26]. 
Thus, measuring CB performance of commercial herds 
that will be slaughtered and marketed uniformly, is tech-
nically feasible. Compared with the nucleus, massive phe-
notypes on commercial animals can be obtained more 
conveniently and more quickly in pre-market slaughter 
processing. Current research on the use of two-way CB 
performance for genomic prediction in pigs is compre-
hensive [22, 23], but studies on the predictive effective-
ness of CB performance in a three-way crossbreeding 
system on breeding values of the parental PB from which 
they originated are lacking. Three-way crosses are the 
mainstream of crossbreeding in pigs, and the most com-
mon commercial pig in China is the Duroc x (Landrace x 
Yorkshire) pig (DLY). In this study, we designed a three-
way crossbreeding system of commercial DLY pigs based 
on real PB ancestors, with subsequent hybridizations 
consistent with the actual production pattern. Because it 
is not feasible to genotype the entire commercial popula-
tion, the fraction that is selected for genotyping should 
represent as much of the ancestral lineage as possible. 
Several studies have revealed that, compared to random 
selection of CB to genotype [27, 28], selective genotyp-
ing can improve prediction accuracy, and also that geno-
typing the individuals that deviate from the population 
mean can increase the efficiency of genome-wide asso-
ciation studies (GWAS) for quantitative traits [29, 30]. 
Thus, the idea of performing genomic selection based 
on CB performance can be optimized to use only CB 
with extreme phenotypes for prediction. Thus, the focus 
of our study was mainly on the use of CB with extreme 
phenotypes. Our objective was to compare the predictive 
performance of PB and CB phenotypes for prediction 
of breeding values of PB for CB performance for traits 
with different heritabilities and parental breeds of origin 
across different genetic evaluation models and popula-
tion sizes. Furthermore, we explored the effect of genetic 
relationships between the reference and candidate pop-
ulations on prediction accuracy and the potential of 
the different scenarios to detect and identify quantita-
tive trait loci (QTL). The results provide comprehensive 
guidelines for the implementation of genomic prediction 
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based exclusively on CB performance in practical cross-
breeding systems from the perspective of the DLY three-
way crossbreeding system.

Methods
Ancestral population
We calculated identity-by-descent (IBD) distances 
between individuals within a base population including 
4074 Duroc pigs, 845 Landrace pigs, and 3616 Yorkshire 
pigs and selected 690 unrelated individuals including 60 
Duroc pigs (10 boars and 50 sows), 110 Landrace pigs (10 
boars and 100 sows), and 520 Yorkshire pigs (20 boars 
and 500 sows) to form the ancestral great-grandparent 
(GGP) generation GGP1. Within each breed, the pigs 
were unrelated to each other to ensure lineage diversity 
in the ancestral population, and all pigs met the breed-
ing standard of good health, growth and appearance. 
The pigs were part of a collaborative genomic selection 
project built by Henan Xinda Livestock Co., Ltd. (Henan 
Province, China) and Jiangxi Agricultural University 
(Jiangxi Province, China). The base population from 
which these pigs originate are PB herds raised by the 
company for breeding purposes. These GGP1 pigs were 
genotyped with the CC1 Porcine single nucleotide poly-
morphism (SNP)50 BeadChip [31]; the genotypes were 
filtered to ensure a call rate higher than 0.95 and a minor 
allele frequency (MAF) higher than 0.01, and only SNPs 

that mapped to the Sus scrofa build 11.1 were included. 
In total, 39,755 SNPs passed the filters and were used in 
the simulation of subsequent generations, as described 
below.

Simulated breeding system
The subsequent generations in the simulated breeding 
system were generated as follows (see Fig.  1). The first 
grandparent (GP) generation was produced by within-
breed mating of one male to many females GGP1 for 
expansion (10 males to 50 females for Duroc, 10 males 
to 100 females for Landrace and 20 males to 500 females 
for Yorkshire), producing 10 progeny per female (5 males 
and 5 females). After this step, 6500 GP1 individuals 
(500 Duroc, 1000 Landrace and 5000 Yorkshire with a 
male–female rate of 1:1) were obtained. Then, 100 Lan-
drace boars and 2000 Yorkshire sows were randomly 
selected from the GP population and mated, producing 
20,000 two-way hybrid Landrace x Yorkshire (LY) pigs 
(10,000 males and 10,000 females) in the parent (P) gen-
eration. The resulting 10,000 LY females were mated to 
100 Duroc boars that were randomly selected from the 
GP population to produce 100,000 three-way hybrid DLY 
pigs (50,000 males and 50,000 females) in the commercial 
(C) generation.

The nucleus group was updated twice as hybridiza-
tions proceeded in the whole breeding system. The first 

Fig. 1  General overview of the DLY crossbreeding system. The GGP1 population was based on actual data, and the populations in the blue dashed 
box were the subsequent generations that were simulated. The symbol "⊗" represents within-breed mating
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nucleus PB group consisted of the GGP1 and the GP1. 
The role of the GP population is to update and supple-
ment the GGP population and to provide PB individu-
als for subsequent hybridization. The replacement rate 
of the GGP was 100% for males and 50% for females and 
the number of individuals remained unchanged during 
the regenerations. We selected 35 Duroc pigs (10 boars 
and 25 sows), 60 Landrace pigs (10 boars and 50 sows), 
and 270 Yorkshire pigs (20 boars and 250 sows) from 
the GP1 population to update the GGP1. These GP1 
individuals were drawn from the progeny of each GGP1 
family to ensure that the selected GP individuals covered 
all the lineages of the original GGP evenly. The 50% of 
females that remained in GGP1 and individuals supple-
mented by GP1 formed the GGP2. The GP2 population 
was obtained by within-breed mating of GGP2 while the 
parent generation was produced, and the nucleus group 
was updated to the second generation. Then, 100 Duroc 
boars were randomly selected from GP2 as terminal sires. 
Parallel to the production of DLY commercial pigs, the 
GP3 population was generated. This breeding system 
did not involve directional selection, and no assessment 
of genetic merit for commercial CB performance was 
undertaken in the nucleus groups.

Simulated genotypes and phenotypes
Genotypes of offspring were simulated based on the 
genotypes of the GGP1. Genotypes for the eligible SNPs 
(39,755) were phased in the GGP1 population using 
SHAPEIT v2.r837 [32]. The progeny genotypes were ran-
domly sampled from the male and female gametic pools 
with 4 to 6 random crossovers on each chromosome and 
recombined into a new diploid, in which no interference 
was considered. Since the GGP1 individuals, which rep-
resented the evolution of each breed and the diversity 
among breeds, were genotyped, and given the short gen-
eration interval between GGP1 and the commercial gen-
eration, mutations were not considered in the progeny 
genotype simulation.

Phenotypes for quantitative traits controlled by 2000 
QTL were simulated [1], which were randomly drawn 
from segregating loci in the GGP1 population. The effect 
of a QTL was sampled from a gamma distribution with a 
shape parameter of 0.4 [33]. Since the gamma distribu-
tion provides only positive effects, the sign of the QTL 
effect was sampled to be positive or negative with equal 
probability. The QTL effects were rescaled so that the 
genetic variance ( Vg ) was equal to 1. We investigated the 
impact of genome prediction on traits with different her-
itabilities ( h2 ), i.e. low (0.1), medium (0.3), and high (0.5). 
Environmental variance ( Ve ) was determined based on 
the genetic variance and heritability ( h2 = Vg

Vg+Ve
 ). The 

simulated QTL effects were multiplied by the allele 

counts of the causal loci (0, 1, or 2) and then summed 
over to calculate the true breeding value (TBV) of each 
animal. Finally, a standard normal residual effect was 
added to the TBV to obtain the phenotype of an individ-
ual for a quantitative trait with a specific heritability. The 
simulation processes were performed using the R soft-
ware v3.4.3 and the genotype simulation was imple-
mented using the R package SIMER (https://​github.​com/​
xiaol​ei-​lab/​SIMER).

Reference and candidate populations
Selection is generally undertaken in the GP popula-
tion, in which the breeding values of PB are estimated 
and ranked. The highest-ranked GP individuals are 
then selected to renew the GGP population for the next 
crossbreeding. The GP3 population is the target popu-
lation, which should determine the genetic merit of the 
next nucleus group but, in practice, genotyping the 6500 
GP3 individuals is not affordable. Thus, in this study, we 
selected four pigs (2 males and 2 females) from the prog-
eny of each GGP3 sow as the candidate population, i.e. in 
total 2600 purebreds (200 Duroc, 400 Landrace, and 2000 
Yorkshire).

The aim of this study was to explore the impact of using 
commercial CB performance for the selection of PB can-
didates. We focused on the impact of using records of CB 
that were selected based on extreme phenotypes versus 
CB that were randomly selected for prediction. Conven-
tional genomic selection is performed within the nucleus 
group, usually using the PB performance of the previ-
ous generation to predict the genetic potential of the 
next generation, i.e., in this case, GGP3 would be used 
to predict GP3. Here, the limited number of individu-
als in GGP3 did not allow the influence of the reference 
population size on prediction to be evaluated. There-
fore, the GP2 population, i.e. the previous nucleus group, 
was used to represent the conventional scheme. Varying 
numbers (500, 1000, 2000, 3000, 4000, 5000, 6000, 6500) 
of individuals used as the reference population were 
selected based on phenotype using one of the following 
three scenarios: (a) two-tailed extreme DLY crossbreds; 
(b) randomly selected DLY crossbreds; and (c) randomly 
selected GP2 purebreds. Fifty replicates were carried out 
for scenarios involving random selection.

Genomic prediction of breeding values
The following single-trait mixed linear model was fitted 
to estimate the variance components and  the breeding 
values: y = µ+ g + e , where y is a vector of phenotypic 
records of the reference population for a particular trait, 
µ is the overall mean, g is a vector of random genetic 
effects, and e is a vector of random residual effects [34]. 
Two prediction models, genomic best linear unbiased 

https://github.com/xiaolei-lab/SIMER
https://github.com/xiaolei-lab/SIMER
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prediction (GBLUP) and the Bayesian sparse linear mixed 
model (BSLMM), were used for genetic evaluation. In the 
GBLUP model, the genetic values correspond to the ran-
dom effect, which is represented by y = µ+ Zu + e , 
where u is a vector of breeding values of all individuals, 
following the distribution u ∼ N (0,Gσ 2

u ), Z is an inci-
dence matrix relating observations in y to the corre-
sponding random genetic effects, σ 2

u is the additive 
genetic variance, G is the genomic relationship matrix 
based on SNP genotypes of the animals, which was calcu-
lated using VanRaden’s method [35] as: G = MM

′

2
∑n

i=1 piqi
 ; 

the GBLUP analysis was implemented using the HiBLUP 
software [36].

The BSLMM model implemented in GEMMA [37] 
was y = µ+ Xβ+ e , where X is the centered genotype 
matrix, β is the vector of allele substitution effects of the 
analyzed SNPs. The SNP effects were assumed to distrib-
uted as follows [38]:

where σ 2
a  is the variance for the SNPs with large 

effects, σ 2
b  is the variance for the SNPs with minor 

effects, and π denotes the proportion of SNPs having 
large effects. Monte-Carlo Markov chains (MCMC) 
of length 200,000 with 10% discarded as burn-in were 
conducted to generate the posterior distributions. To 
obtain the EBV of the candidate population, the SNP 
genotypes (coded as 0, 1, 2) of individuals were multi-
plied by the estimated marker effects for each scenario: 
GEBV =

∑n
i=1(βi × [SNPgenotype]i ). The prediction 

accuracy of the different scenarios and models was eval-
uated as the Pearson correlation coefficient between 
GEBV and TBV of the candidate population [39]. We also 
calculated the average TBV of the top 10% candidates 
(Best10%_TBV) based on GEBV to reflect the response 
to selection. In addition to the overall accuracy, the pre-
diction accuracy within each breed was also extracted 
from the results for each training scheme. Scenarios were 
averaged over 50 replicates.

Investigation of identity‑by‑state and identity‑by‑descent
Genetic relatedness and similarity between populations 
were evaluated by identity-by-state (IBS) and identity-
by-descent (IBD). The IBS and IBD measures were cal-
culated based on SNPs for individual pairs between the 
reference population and candidate population, as well as 
between the reference population and the GGP1 ances-
tral population. Pairwise comparisons of IBS and IBD 
were implemented using the software PLINK v1.90 [40] 
with the parameter "--distance ibs square allele-ct" for 
IBS and the parameter "--genome" for IBD. The SNPs 

βi|σ
2
βi
=

{

∼ N
(

0, σ 2
a + σ 2

b

)

with probability π

∼ N
(

0, σ 2
b

)

with probability (1− π)
,

were first pruned with a sliding window of 50 SNPs, a 
window step size of 10 SNPs, and a maximum r2 thresh-
old of 0.2 to strive for independence between SNPs in the 
calculation. Scenarios with reference population sizes 
ranging from 500 to 6500 individuals with a trait with a 
heritability of 0.5 were used for comparison. The average 
IBS/IBD of all individuals in the reference population to 
each individual in the target population (GGP1/Candi-
date) was recorded.

Genome‑wide association studies (GWAS)
To investigate the potential of scenarios with different 
reference populations to detect and identify QTL, GWAS 
analyses were performed using a linear mixed model 
implemented in GEMMA v0.98 [37]. The significance 
threshold for the GWAS was determined with Bonfer-
roni correction for multiple testing. For further valida-
tion, genome-wide pairwise LD between SNPs and QTL 
was evaluated for each scenario using the PopLDdecay 
software v3.41 [41] and pairwise LD with an r2 greater 
than 0.6 indicated a high degree of linkage disequilibrium 
between SNPs and QTL. In addition, we identified the 
peak SNP that reached the GWAS significance thresh-
old within the 500 kb region upstream and downstream 
of each QTL and calculated the phenotypic variance 
explained (PVE) by the peak SNP, as follows [42]:

where the left-hand side of the equation is the PVE of the 
i th significant SNP, ai is the estimated size of the effect 
for SNP i in the GWAS output, Se(ai) is the standard error 
of effect estimate, pi is the minor allele frequency, and N 
is the sample size of the reference population. The PVE of 
the most significant SNP within each QTL region were 
summed to obtain the corresponding total significant 
PVE of the reference population (sigPVE).

Results
Overview of simulated traits
After scaling the QTL effects across the whole system 
(140,190 pigs), the overall genetic variance was set to 1. 
Statistics for the resulting TBV and phenotypes for the 
populations used for training are in Table 1. Traits with 
different heritabilities were created based on three lev-
els of environmental variance while keeping the TBV 
unchanged. Compared to GP2, the average TBV of the 
commercial DLY population increased by 17.42%, which 
confirmed the utility of crossbreeding [43]. The DLY_
extreme populations with different sample sizes were 
determined by sorting individuals based on phenotype 
and then taking half of the individuals from the top and 

PVEi =
2a2i pi(1− pi)

2a2i pi(1− pi)+ 2NSe2(ai)pi(1− pi)
,
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bottom of the distribution, respectively. The average TBV 
under three heritabilities was similar for all extreme sam-
pling schemes and did not differ significantly from the 
average TBV of the entire DLY population.

When the heritability of the trait decreased from 0.5 
to 0.3, the average phenotype was not affected for any 
population, but a decline was observed when heritabil-
ity decreased from 0.3 to 0.1, especially in the GP2 and 
DLY_extreme populations of small sizes. The standard 
deviations (SD) of phenotypes in the GP2 and DLY popu-
lations were approximately equal to the corresponding 
environmental variance, indicating that the simulated 
traits were realistic. Compared with the whole DLY pop-
ulation, the SD of the phenotypes was much larger for the 
DLY_extreme population, and increased as heritability 
and population size decreased. The investigated sampling 
strategies can explore the contribution of CB that deviate 
from the population mean for genomic prediction [44].

Overall accuracy of genomic prediction
The accuracy of GEBV for the different training pro-
grams and models for traits with different heritabilities 
was measured in the whole candidate population and 
the results are shown in Fig. 2. The average TBV of the 
best 10% candidates based on GEBV (Best10%_TBV) was 
calculated and is provided in Table  2. All genetic vari-
ance components were estimated for each scenario. As 
expected, the overall prediction accuracy increased as the 
size of the reference population increased, and the pre-
dictability of traits increased as the heritability increased. 
Compared to GBLUP, using the BSLMM model for train-
ing slightly improved prediction accuracy (Fig.  2 and 
Table  2). The two CB populations from the same com-
mercial group but corresponding to different sampling 

strategies showed significant differences in the prediction 
of PB in the candidate population, i.e. for the random 
sampling strategy  (CB_random), the overall prediction 
accuracy was lowest, but for the extreme phenotypic sub-
set (CB_extreme) it was comparable to that of the GP2 
population (PB).

For high-heritability traits ( h2 = 0.5), the prediction 
accuracy followed the same trend for both the GBLUP 
and BSLMM models, i.e. PB > CB_extreme > CB_ran-
dom, and the difference in prediction accuracy between 
CB_extreme and PB was 0.094 and 0.069 under the 
GBLUP and BSLMM model, respectively (Fig.  2a and 
b). Genomic selection focuses not only on prediction 
accuracy but also on the response to selection, and the 
Best10%_TBV can reflect the response to selection. For 
the BSLMM model, the Best10%_TBV was highest when 
using the CB_extreme population of size 6500 (3.026) 
(Table 2). Corresponding to this scenario, the difference 
in prediction accuracy between the CB_extreme (0.801) 
and PB (0.845) populations was minimal (Fig.  2b). This 
implies that the CB_extreme population has the potential 
to select PB candidates with high TBV.

When predicting traits with medium heritability ( h2 
= 0.3), the average difference in prediction accuracy 
between the CB_extreme and PB populations under the 
GBLUP model decreased to 0.049 (Fig.  2c). This differ-
ence was even smaller for the BSLMM, for which the 
trends in accuracy for the PB and CB_extreme almost 
overlapped, as shown in Fig.  2d. Prediction accuracy of 
the PB population barely changed with BSLMM com-
pared to that with GBLUP. In contrast, the CB_extreme 
population benefited from the BSLMM training method 
with an overall improvement in accuracy compared to 
GBLUP. The results of Best10_TBV for the candidate 

Table 1  Summary of true breeding values (TBV) and of phenotypic values in GP2, DLY, and DLY_extreme with different sampling sizes 
for traits of different heritabilities ( h2)

The form of TBV and phenotype was mean ± sd in the corresponding population

Population Size TBV Phenotype

h
2 = 0.5 h

2 = 0.3 h
2 = 0.1 h

2 = 0.5 h
2 = 0.3 h

2 = 0.1

GP2 6500 1.579 ± 1.040 1.579 ± 1.040 1.579 ± 1.040 1.580 ± 1.443 1.541 ± 2.505 1.405 ± 8.991

DLY 100,000 1.854 ± 0.968 1.854 ± 0.968 1.854 ± 0.968 1.854 ± 1.395 1.861 ± 2.532 1.823 ± 9.011

DLY_extreme 6500 1.878 ± 1.674 1.860 ± 1.233 1.872 ± 0.990 1.873 ± 3.163 1.853 ± 5.734 1.815 ± 20.385

6000 1.879 ± 1.694 1.861 ± 1.245 1.871 ± 0.992 1.873 ± 3.206 1.853 ± 5.811 1.812 ± 20.659

5000 1.877 ± 1.736 1.867 ± 1.263 1.870 ± 0.998 1.875 ± 3.302 1.854 ± 5.984 1.803 ± 21.271

4000 1.879 ± 1.791 1.865 ± 1.277 1.875 ± 0.996 1.877 ± 3.415 1.855 ± 6.192 1.786 ± 21.997

3000 1.883 ± 1.854 1.859 ± 1.298 1.880 ± 1.017 1.881 ± 3.557 1.853 ± 6.451 1.757 ± 22.908

2000 1.882 ± 1.944 1.855 ± 1.345 1.890 ± 1.002 1.885 ± 3.751 1.845 ± 6.804 1.724 ± 24.135

1000 1.861 ± 2.088 1.875 ± 1.422 1.884 ± 0.985 1.886 ± 4.067 1.839 ± 7.372 1.630 ± 26.158

500 1.874 ± 2.236 1.892 ± 1.471 1.912 ± 0.989 1.883 ± 4.371 1.823 ± 7.900 1.454 ± 28.090
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Fig. 2  Predicted accuracy of estimated breeding values of the whole candidate population for different reference population types (PB: purebreds 
in GP2; CB_extreme: two_tailed crossbreds in DLY; CB_random: random crossbreds in DLY) and sizes (500, 1000, 2000, 3000, 4000, 5000, 6000, 6500). 
a GBLUP method, h2 = 0.5, b BSLMM method, h2 = 0.5, c GBLUP method, h2 = 0.3, d BSLMM method, h2 = 0.3, e GBLUP method, h2 = 0.1, f BSLMM 
method, h2 = 0.1. Predicted accuracy was averaged across 50 replications for scenarios involving randomization
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population showed that the Best10_TBV predicted by 
using the CB_extreme population was higher than that 
predicted by the PB population across all population sizes 
with the BSLMM model, and the highest Best10_TBV 
(2.874) was obtained by using the CB_extreme popula-
tion of size 4000 (Table 2). When the size of the reference 
population was 4000, the prediction accuracy of the CB_
extreme population with BSLMM was 0.712, which was 
slightly higher than that obtained with the PB population 
(0.697). For the prediction of medium-heritability traits, 
the use of the CB_extreme population with the BSLMM 
training method can achieve higher accuracy than using 
the PB reference population.

The predictability of low-heritability traits was mod-
est due to the excessive influence of non-genetic factors. 
Remarkably, the CB_extreme population showed bet-
ter predictive potential than the PB population for both 
models, both in terms of prediction accuracy (Fig.  2e 
and f ) and Best10_TBV (Table  2). Accurate prediction 

of breeding values of PB candidates requires a larger 
reference population for low-heritability traits than for 
medium-heritability traits but the CB_extreme popula-
tion of size 5000 was sufficient to obtain a relatively high 
prediction accuracy. Among the three reference popula-
tions, CB_extreme was the most optimal predictor for 
low-heritability traits.

Prediction accuracy within each pure breed
The number of animals from the three parental purebreds 
needed to produce the three-way hybrid DLY was varied. 
Since the ratios of purebreds in the candidate population 
were 1:2:10 (Duroc:Landrace:Yorkshire), the overall accu-
racy did not exactly reflect the selection response within 
each breed. Therefore, we extracted the prediction accu-
racy within each pure breed from the results predicted by 
different reference populations to determine the optimal 
selection scheme for each breed. The candidate popula-
tion included 200, 400, and 2000 Duroc, Landrace, and 

Table 2  Average true breeding value (TBV) of the top 10% candidates based on genomic breeding values predicted by different 
reference populations (PB: purebreds in GP2; CB_extreme: two_tailed crossbreds in DLY; CB_random: random crossbreds in DLY) 
with different population sizes (500, 1000, 2000, 3000, 4000, 5000, 6000, 6500) and two methods (GBLUP and BSLMM) for different 
heritabilities ( h2)

TBV were averaged across 50 replications for scenarios involving randomization

h
2 Class GBLUP BSLMM

PB CB_extreme CB_random PB CB_extreme CB_random

0.5 6500 2.943 2.771 2.730 3.016 3.026 2.874

6000 2.932 2.746 2.708 3.019 2.951 2.844

5000 2.899 2.715 2.689 2.984 2.817 2.820

4000 2.863 2.683 2.648 2.950 2.817 2.758

3000 2.810 2.640 2.603 2.882 2.766 2.720

2000 2.734 2.655 2.522 2.793 2.747 2.599

1000 2.593 2.488 2.410 2.614 2.587 2.438

500 2.465 2.481 2.333 2.468 2.601 2.313

0.3 6500 2.678 2.640 2.481 2.720 2.821 2.544

6000 2.653 2.592 2.480 2.697 2.848 2.513

5000 2.617 2.477 2.419 2.668 2.765 2.457

4000 2.581 2.619 2.391 2.606 2.874 2.406

3000 2.531 2.574 2.357 2.538 2.705 2.350

2000 2.490 2.452 2.338 2.492 2.625 2.319

1000 2.383 2.365 2.241 2.374 2.407 2.218

500 2.302 2.326 2.102 2.296 2.331 2.040

0.1 6500 2.202 2.589 2.126 2.246 2.630 2.092

6000 2.200 2.576 2.152 2.216 2.585 2.111

5000 2.231 2.543 2.153 2.206 2.597 2.109

4000 2.162 2.524 2.090 2.165 2.451 2.033

3000 2.209 2.454 2.060 2.173 2.469 2.000

2000 2.160 2.160 2.002 2.142 2.154 1.962

1000 2.137 2.170 1.920 2.051 2.191 1.864

500 2.079 1.980 1.839 2.035 1.943 1.791
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Fig. 3  Predicted accuracy of estimated breeding values within the candidate population for each pure breed for different reference population 
types (PB: purebreds in GP2; CB_extreme: two_tailed crossbreds in DLY; CB_random: random crossbreds in DLY) and sizes (500, 1000, 2000, 3000, 
4000, 5000, 6000, 6500). The results are shown for a trait with a heritability of 0.5. The accuracies of prediction for Duroc (a and b), Landrace (c and 
d), and Yorkshire (e and f) within the candidate population are shown separately. The results of the GBLUP method (a, c, and e) and the BSLMM 
method (b, d, and f ) are presented. Predicted accuracy was averaged across 50 replications for scenarios involving randomization
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Fig. 4  Predicted accuracy of estimated breeding values within the candidate population for each pure breed for different reference population 
types (PB: purebreds in GP2; CB_extreme: two_tailed crossbreds in DLY; CB_random: random crossbreds in DLY) and sizes (500, 1000, 2000, 3000, 
4000, 5000, 6000, 6500). The results are shown for a trait with a heritability of 0.3. The accuracies of prediction for Duroc (a, b), Landrace (c, d), and 
Yorkshire (e, f) within the candidate population are shown separately. The results of the GBLUP method (a, c, e) and the BSLMM method (b, d, f) 
were presented. Predicted accuracy was averaged across 50 replications for scenarios involving randomization
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Yorkshire individuals, respectively. The correlations 
between the TBV and GEBV for the candidates of each 
breed are in Figs. 3 and 4, and in Additional file 1: Fig. S1. 
Similarly, Best10_TBV was calculated for the candidate 
group of each breed (see Additional file 5: Table S1 and 
Additional file 6: Table S2).

As expected, the CB outperformed the PB for the 
prediction of the Duroc candidates since the CB were 
derived from the terminal paternal Duroc. For both mod-
els, the trends in accuracy for the three reference popula-
tions were: CB_extreme > CB_random > PB. The highest 
prediction accuracy for Duroc was always obtained by 
using the CB_extreme population combined with the 
BSLMM model, i.e. 0.837, 0.768, and 0.638 for the 
low-, medium- and high-heritability traits, respectively 
(Figs.  3b and 4b) and (see Additional file  1: Fig. S1b). 
The difference in prediction accuracy between the CB_
extreme population and the two other reference popula-
tions increased as heritability of the trait decreased.

For the prediction of Landrace candidates, the CB_
extreme population also showed good predictive per-
formance. The trends in the prediction accuracy of the 
CB_extreme and PB populations almost overlapped when 
predicting high-heritability traits with GBLUP (Fig.  3c), 
but CB_extreme reached the highest Best10_TBV (3.314) 
at a reference population size of 4000 (see Additional 
file  5: Table  S1). When BSLMM was used for training, 
the improvement in prediction accuracy was greater for 
the CB_extreme than for the PB population (Fig.  3d), 
and the highest Best10_TBV (3.389) was obtained for the 
CB_extreme population, even at a size of 3000 (see Addi-
tional file 6: Table S2). For medium- and low-heritability 
traits, CB_extreme consistently ranked at the top across 
all population sizes and for both models, both in terms of 
prediction accuracy and Best10_TBV.

The PB reference population was from GP2, which had 
the same Duroc:Landrace:Yorkshire ratios of 1:2:10 as 
the candidate population (GP3), with the Yorkshire indi-
viduals representing the largest proportion. When the 
GBLUP model was used for prediction, prediction accu-
racy for a breed increased with the number of individuals 
of the breed in the reference population [45, 46]. This was 
confirmed by the results of the prediction of Yorkshire 
candidates in the PB reference population using GBLUP 
(Figs.  3e and 4e). Notably, when BSLMM was used for 
the prediction of medium-heritability traits, the accuracy 
obtained by the CB_extreme population improved and 
became similar to that obtained with the PB population 
(Fig. 4f ) and (see Additional file 6: Table S2). For low-her-
itability traits, the Best10_TBV was always greater when 
using the CB_extreme population than with the PB pop-
ulation for both models (see Additional file 6: Table S2). 
Although the prediction accuracy of the CB_extreme 

population was not superior when using GBLUP (see 
Additional file 1: Fig. S1e), it was significantly improved 
when using the BSLMM approach and even surpassed 
that of the PB population (see Additional file 1: Fig. S1f ).

Genetic relatedness
The genetic relatedness and similarity of the differ-
ent reference populations to the candidate population 
and to the GGP1 ancestral population were measured 
by IBS and IBD. The mean IBS/IBD of all individuals in 
the reference population to each individual in the target 
population (GGP1/Candidate) was calculated. The aver-
age IBS was plotted against the breed classification of the 
target population, as shown in Fig. 5. Since the calcula-
tion of IBS and IBD was based on SNP genotypes, and 
they are not affected by the phenotypes, the results for 
the CB_extreme and CB_random populations were iden-
tical, and both represented the performance of the com-
mercial population, which in our study were combined as 
CB. Therefore, the different reference populations were 
grouped into two categories, PB and CB. Measurements 
of IBS and IBD can be used to compare the predictive 
potential of genetic relatedness-based methods, such as 
GBLUP [47]. No differences were observed in the aver-
age IBS of the GGP1 ancestral population between the 
smallest (Fig. 5a) and largest (Fig. 5b) reference popula-
tion sizes for the three reference population designs. As 
expected, the IBS was higher for CB than for PB by an 
average of 0.055 for Duroc ancestors, and PB performed 
better when targeting GGP1_Yorkshire, on average by 
0.027. When targeting GGP1_Landrace, the CB slightly 
exceeded the PB in average IBS. In general, CB were 
more closely related to Duroc and Landrace ancestors 
compared to PB, although the generation interval of PB 
to GGP1 was shorter than CB to GGP1.

Focusing on genetic relatedness with the candidate 
population, the performance of PB was not influenced 
by the size of the reference population. However, the 
average IBS of CB decreased slightly as the size of 
the reference population increased (Fig.  5c and d). 
Only the results for reference population sizes of 500 
and 6500 are presented here, and the specific trend 
of average IBS for CB (from 500 to 6500) is shown in 
Additional file 2: Fig. S2. The average IBS between the 
reference population and candidate population can 
explain the prediction  accuracy of the correspond-
ing scenarios with GBLUP, although this is only valid 
when predicting high-heritability traits [48]. The high 
genetic similarity between DLY crossbreds in the ref-
erence population and Duroc purebreds in the candi-
date population validated the excellent performance 
of CB in the prediction of Duroc candidates, while the 
PB outperformed the CB in the prediction of Yorkshire 
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candidates due to the greater genetic relatedness 
resulting from the larger number of Yorkshire individ-
uals in the PB population. The average IBS for the Lan-
drace candidates showed minimal difference between 
the PB and CB. Although the number of PB was stable 
and the number of CB declined slightly as the popula-
tion size increased, overall they remained comparable. 
This corresponded to the results for the prediction of 
Landrace candidates in GBLUP (Fig.  3c), with slight 
fluctuations in prediction accuracy but no significant 
differences. Similarly, the results of average IBD also 
demonstrated the dominance of CB over Duroc and 

PB over Yorkshire in terms of genetic relationships 
(see Additional file 3: Fig. S3).

QTL detection and linkage disequilibrium
To explore the efficiency of using PB versus CB to detect 
QTL, a GWAS was performed within each reference sce-
nario based on 37,755 SNPs and simulated phenotypes. 
In addition, pairwise LD between 37,755 SNPs and 2000 
QTL was estimated, and the combination with the high-
est LD was prioritized when a SNP was in LD with mul-
tiple QTL. First, we counted the number of SNPs that 
reached the genome-wide suggestive threshold for dif-
ferent reference populations and then we counted the 

Fig. 5  Pairwise IBS calculations between the reference population and the GGP1 ancestral population (a, b) and between the reference population 
and the candidate population (c, d). The violin distribution of mean IBS coverage of all individuals in the reference population against each 
individual in the target population is shown, where the x-axis denotes the breeds within the target population (GGP1/Candidate), and the y-axis 
is the mean IBS corresponding to each individual in the target population. The distributions of three reference population types (PB, CB_extreme, 
and CB_random) and two population sizes (500 for a, c, 6500 for b, d) are shown. The IBS coverage for each individual was averaged across 50 
replications for scenarios involving randomization
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number of significant SNPs that had an LD with the QTL 
higher than 0.6 (Fig.  6). Markers that reached the sug-
gestive threshold and had an LD higher than 0.6 with the 
QTL were strong indicators for the identification of trait-
associated QTL.

The results showed that the performance of the CB_
extreme population in GWAS was superior to that of the 
PB and CB_random populations, with the largest number 
of detected significant SNPs (Fig.  6a) and of significant 
SNPs in high LD (Fig.  6b). For high-heritability traits, 
the number of detected SNPs increased with increas-
ing population size but the overall trend remained: CB_
extreme > PB > CB_random. Although both the random 
and the extreme phenotypic individuals came from the 
commercial CB population, they differed significantly 
in their potential to detect QTL, with roughly twice as 
many significant SNPs in high LD identified with the CB_
extreme than with the CB_random population (Fig. 6b).

The results of the GWAS for the medium- and low-
heritability traits showed that the potential to detect QTL 
of the PB and CB_random populations was almost 0, 
even at the largest population size. However, the advan-
tage of the CB_extreme population was more evident for 
medium- and low-heritability traits, with 11 significant 
SNPs detected for the medium-heritability trait, 10 of 
which were highly linked to known QTL. For the low-
heritability trait, three significant SNPs were detected 
by using the CB_extreme population, all in high LD (see 
Additional file 4: Fig. S4).

Phenotypic variance explained by the peak SNPs
Based on the physical location of each QTL, upstream 
and downstream 500-kb intervals were classified as a 
QTL region (1  Mb long). We selected the peak SNP 
among those that reached the significance threshold in 
each QTL region and calculated the phenotypic variance 
explained by this SNP. The PVE of the peak SNPs were 
summed, as shown in Table 3, although significant signals 
were not detected in each QTL region. Each significant 
peak SNP can be used to quantify the impact of the QTL 
on the trait, although 100% representation is achieved 
only with complete LD between the peak SNP and QTL. 
The potential of the different populations to detect and 
identify QTL can be further validated based on the PVE 
of significant peak SNPs [49].

As expected, the trend for the PVE in the GWAS results 
for high-heritability traits was the same as for the number 
of detected significant SNPs, i.e. CB_extreme > PB > CB_
random (Table  3). However, we observed that the PVE 
of CB_extreme did not increase with population size, 
with the PVE of CB_extreme being higher with a popula-
tion size of only 500 (4.7%) than with size of 1000 (2.4%). 
This may be attributed to the Beavis effect occurring in 
the CB_extreme population, also known as the “winner’s 
curse” [50]. When the evaluation was conducted in a 
small population, the small number of statistically signifi-
cant QTL detected (Fig. 6) resulted in an inflated effect 
size for the identified QTL, thus an overestimation of the 
phenotypic variance of the significant peak SNPs asso-
ciated with the identified QTL. Populations with larger 

Fig. 6  Number of SNPs significantly associated with the simulated traits in different reference population scenarios detected by GWAS (a) and 
number of significant SNPs with an r2 higher than 0.6 (b). The results are shown for traits with a heritability of 0.5, including the investigations of 
three reference population types (PB, CB_extreme, and CB_random) and eight reference population sizes (500, 1000, 2000, 3000, 4000, 5000, 6000, 
6500). The scenarios involving randomization were averaged, and error bars denotes the SD between 50 replicates
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sizes are more effective to detect QTL and, thus, the esti-
mation of PVE is also more accurate. For CB_extreme, 
the PVE obtained from the evaluation with a population 
size of at least 2000 can reflect the actual magnitude of 
the associated QTL. The PVE of significant peak SNPs 
was about twice as large for the CB_extreme population 
(10.3%) than for the PB (5.4%) and CB_random (4.3%) 
populations at the largest population size of 6500, which 
might reflect the actual disparity between these three 
populations (Table 3). Since the potential of PB and CB_
random to detect QTL for medium- and low-heritability 
traits (see Additional file  4: Fig. S4) was weak, the cor-
responding PVE was almost 0. In addition, the pheno-
typic variance captured by CB_extreme was also greatly 
reduced, with a maximum of only 3.4% for medium-her-
itability (Table 3) and 0.8% for low-heritability traits (see 
Additional file 7: Table S3).

Discussion
The aim of this study was to investigate the effect of 
using commercial crossbreds as a reference population 
for genomic prediction in pigs, focusing on the perfor-
mance of individuals with extreme phenotypes. The pre-
dictability of PB performance and CB performance for 
low-, medium-, and high-heritability traits was compared 
across different reference population sizes and prediction 
models. Furthermore, we explored the effect of genetic 
relatedness on prediction accuracy and the ability for 
GWAS to detect genetic variations associated with traits 
for the above scenarios.

Our results indicate that individuals with extreme phe-
notypes in the commercial population have a definite 
advantage for genomic prediction for medium- and low-
heritability traits. In addition, predictions based on the 
BSLMM model resulted in greater responses to selection 
than the GBLUP model. For high-heritability traits, the 
performance of training on commercial crossbreds with 

extreme phenotypes was comparable to that of train-
ing on purebreds if the sampling size was large enough. 
Although similar prediction accuracies could be achieved 
by training on the same number of purebreds versus 
extreme phenotypic crossbreds, commercial crossbreds 
could provide more accessible phenotypic measurements 
and less threat to biosecurity. This study provides insights 
into genomic prediction for different target traits and dif-
ferent parental breeds in pig crossbreeding. Genotyping 
crossbreds with extreme phenotypes in commercial pop-
ulations could facilitate an efficient and secure genomic 
selection.

Breeding system for analysis
Combined crossbred and purebred selection has been 
an optimal solution to increase genetic response for 
genomic prediction, and several studies have investi-
gated the proportion of CB to be included in the training 
population [15, 20, 21], as well as the use of different pre-
diction models. [51, 52]. Here, we implemented the bot-
tom-up selection strategy with a 100% CB inclusion rate 
in the reference population, refraining from phenotype 
collection in the nucleus group. Currently, with the devel-
opment of livestock farming, many breeding companies 
have established the production pattern of nucleus-mul-
tiplication-commercial farms. Using high-throughput 
automated phenotyping techniques, it is convenient and 
fast to obtain multiple phenotypic records on commer-
cial crossbreds. If the selection response based on PB 
information can be achieved by using CB information, 
the GS application based on CB performance is advan-
tageous because of the easier phenotypic measurements 
and fewer biosafety concerns. However, it is impractical 
to collect genotypes and phenotypes for all crossbreds in 
the commercial group that are to be included in genetic 
evaluation. Instead, we focused on selective genotyp-
ing of individuals with extreme phenotypes, and CB 

Table 3  Sum of the phenotypic variances explained (PVE) by the peak SNP within each QTL region in the GWAS results of different 
reference populations (PB: purebreds in GP2; CB_extreme: two_tailed crossbreds in DLY; CB_random: random crossbreds in DLY) with 
different population sizes (500, 1000, 2000, 3000, 4000, 5000, 6000, 6500) for traits of different heritabilities ( h2 ) (%)

PVE were averaged across 50 replications for scenarios involving randomization

h
2 Class Reference population size

500 1000 2000 3000 4000 5000 6000 6500

0.5 PB 0.200 1.007 2.202 3.973 4.695 4.794 5.108 5.379

CB_extreme 4.724 2.391 8.750 9.443 8.522 10.530 10.182 10.288

CB_random 0.765 0.151 1.081 2.803 3.461 3.697 4.510 4.372

0.3 PB 0.409 0 0.025 0.069 0.072 0.058 0.032 0

CB_extreme 0 0 2.727 2.297 3.392 2.624 2.494 2.888

CB_random 0.092 0.049 0.028 0 0.038 0.165 0.201 0.323
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performance of this subset was expected to substitute 
conventional PB performance for the selection of nucleus 
purebreds.

To date, many studies have evaluated the effect of CB 
performance on PB selection by using simulated data 
[17–20]. In our study, we used real genotyping data on 
pigs, which reflects the result of the formation of breeds 
and the authentic history of the evolution of the popula-
tion and also embraced the real pattern of LD between 
loci in different breeds. Taking the most common com-
mercial herds of the three-way hybrid DLY on the mar-
ket as a breeding goal, we designed the construction of a 
100,000 DLY pig population based on real PB ancestors 
(GGP1) with subsequent hybridizations conforming to 
the actual production patterns. The point of crossbreed-
ing is the selection of PB, specifically the selection of indi-
viduals with excellent genetic merit from the GP to form 
the next GGP. The nucleus group was updated to the 
third generation (GGP3 + GP3) when commercial DLY 
pigs were generated. Given the timeliness of the breeding 
industry, our aim was to select outstanding individuals 
from GP3 to form the next generation of GGP (GGP4), 
with the expectation of generally improved performance 
in the commercial CB progeny produced by a new round 
of crosses based on GGP4.

Prediction accuracy
Our results showed that, with GBLUP, the overall predic-
tion accuracy of the CB_extreme population was lower 
than that of the PB reference population when predict-
ing high- and medium-heritability traits, but that it can 
be enhanced by using the BSLMM model. However, the 
prediction accuracy of PB was overestimated in our study 
since rpc was assumed to be 1. The breeding values of PB 
candidates obtained by using CB performance for pre-
diction is GEBVCB, while that by using PB performance 
is GEBVPB. Ultimately, we focused on the GEBV for CB 
performance of PB selection candidates, i.e., GEBVCB. A 
genetic correlation between PB and CB performance ( rpc ) 
can affect the prediction accuracy of PB reference popu-
lations [53]. Due to differences in genetic background, 
management and housing conditions, and trait measure-
ments, rpc varies between traits [12]. The accurate evalu-
ation of rpc requires a substantial amount of data for a 
given trait, and rpc values vary between different combi-
nations of PB lines and CB progeny [54]. Thus, estimat-
ing a separate rpc for each unique PB-CB combination in 
a large and realistic breeding program is necessary. Traits 
in this experiment were based on three common levels of 
heritability without considering different combinations 
of heritability and rpc , and the multiple possible levels of 
rpc for real traits. As a result, estimates of the prediction 
accuracy of PB here were biased upward for traits with 

an rpc lower than 1. When using the GBLUP model, the 
largest difference in prediction accuracy between CB_
extreme and PB was 0.119 (reference size = 2000) and 
0.089 (reference size = 5000) for high (0.5) and medium 
(0.3) heritability traits, respectively. Assuming a rela-
tively high genetic correlation between PB performance 
and CB performance for simulated traits with an rpc of 
0.8, the accuracy of PB would be reduced by 20% overall, 
corresponding to a reduction of 0.147 and 0.140 for the 
above scenarios. Therefore, since the rpc is lower than 1 
and given the potential impact of rpc on the PB reference 
population, CB_extreme actually outperformed PB in 
the predictions of medium- and high-heritability traits, 
based either on GBLUP or BSLMM. Although simulated 
traits were simple and based on additive effects only, 
without considering non-additive effects and genotype-
by-environment (G × E) interaction, which may lead to a 
slightly higher accuracy overall, the trends in prediction 
accuracy were not affected.

In this study, the predicted results of different sampling 
strategies in the commercial CB population were similar 
to those of previous studies [28, 55, 56], with selective 
genotyping of top and bottom crossbreds (CB_extreme) 
being distinctly better than random genotyping (CB_ran-
dom). More genetic variations associated with traits are 
covered by genotypic information of individuals with 
extreme phenotypes compared to that of random indi-
viduals [29], which we also verified by GWAS. When 
prediction was done with the GBLUP model, we used the 
variance components that were estimated for each refer-
ence population scenario, as shown in Additional file  8: 
Table  S4. Using true variance components contributes 
to unbiased predictions of GEBV in selective genotyp-
ing [56]. However, the true variance structure of traits is 
not accessible in practice. We found that variance com-
ponents were greatly overestimated with extreme selec-
tive genotyping. In contrast, random genotyping, which 
represented the distribution of the whole commercial 
population, resulted in a more accurate estimate of the 
variance components, in agreement with previous stud-
ies [28, 57]. Maximizing the role of the commercial CB 
population by adding the variance components esti-
mated from random individuals into the genomic predic-
tion of individuals with extreme phenotypes is expected 
to further improve prediction accuracy with selective 
genotyping.

The benefit of crossbreeding is the use of breed com-
plementarity and heterosis [43, 58]. Compared with the 
PB reference population, the commercial CB popula-
tion is not influenced by rpc , and heterosis is only pre-
sent in CB performance. Non-additive genetic effects, 
such as dominance and epistasis effects are the main 
causes of heterosis [59]. The benefits from CCPS when 
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dominance is present are increased when dominance 
effects are included in the prediction model [20]. In 
our study, including dominance effects in the predic-
tion model would reduce the accuracy of GEBV, as only 
additive effects were simulated. Previous results sug-
gested that it would be better to include dominance and 
epistatic effects in the model, even if the action of nearly 
all the genes was additive, and dominance may be small 
or absent [19]. We believe that the performance of com-
mercial crossbreds will be further enhanced by including 
non-additive effects in the prediction model due to the 
presence of heterosis in practice, especially for the low-
heritability traits resulting from non-additive effects.

Design of an optimal reference population
We explored the design of an optimal reference popula-
tion for different breeds based on the prediction accuracy 
for each breed in the candidate group. When the GBLUP 
model is used and the environmental variance of the trait 
is small, the genetic relatedness between populations can 
provide a basis for the design of the reference population 
[45, 48]. In our study, the prediction accuracy within each 
breed and the genetic relatedness between the reference 
group and the corresponding breed were correlated when 
predicting a high-heritability trait with GBLUP. For a 
three-way crossbreeding system, the selection of terminal 
males is crucial since it accounts for half of the genetics 
of CB progeny [13]. Our results validated the high genetic 
relatedness between DLY and Duroc and demonstrated 
the superiority of CB performance in predicting Duroc 
candidates compared to PB performance, especially the 
CB performance from individuals from the top and bot-
tom of the phenotype distribution. This indicated that 
crossbreds with extreme phenotypes in the commercial 
population constitute the optimum reference population 
for the selection of terminal paternal purebreds.

Concerning purebreds serving as the first sire, i.e., Lan-
drace in this crossbreeding system, PB and CB popula-
tions showed similar genetic relatedness with Landrace 
candidates, which is consistent with the predicted results 
for Landrace candidates when using GBLUP ( h2 = 0.5), 
for which the predictive performances of PB and CB were 
comparable. However, we found that BSLMM can signifi-
cantly improve the prediction accuracy when using the 
CB_extreme reference population, with the maximum 
improvement in accuracy reaching 0.112 (reference pop-
ulation size = 6500), while the maximum improvement 
for PB was only 0.038 (reference population size = 2000). 
In addition, the CB_extreme reference population con-
sistently outperformed PB for medium- and low-herita-
bility traits, using either GBLUP or BSLMM, but BSLMM 
achieved a higher prediction accuracy. A reference 

population consisting of crossbreds in the commer-
cial population with extreme phenotypes has a definite 
advantage for the prediction of the first sire, and the best 
selection response can be obtained when using BSLMM 
for prediction.

There is a great demand for purebreds serving as the 
first dam in three-way crossbreeding systems, such as 
Yorkshire in the present study. For high-heritability 
traits, the PB reference population was preferred to the 
CB reference population because a large number of York-
shire individuals in the PB population resulted in a more 
similar LD pattern and, thus, higher genetic relatedness 
with Yorkshire candidates than the CB population [46]. 
The effect of genetic relatedness on prediction accu-
racy decreased as the environmental variance increased. 
Therefore, the prediction accuracy of PB for predicting 
Yorkshire candidates decreased significantly as the herit-
ability decreased. However, since CB are not affected by 
rpc , and the CB_extreme can provide an accurate estimate 
of marker effects [13], the CB_extreme population was 
superior to PB for the prediction of Yorkshire GEBV for 
medium- and low-heritability traits. For medium- or low-
heritability traits, CB_extreme combined with BSLMM 
will be a good option for predicting the first dam.

Analysis of the size of the reference population indi-
cated that an extreme sampling size of 4000 for CB per-
formance in combination with the BSLMM model was 
adequate to carry out accurate predictions for medium-
heritability traits. In contrast, a larger sampling size of 
5000 was required for low-heritability traits.

Reasons for the advantage of using extreme phenotypes 
for prediction
Selective genotyping was first applied in quantitative 
genetics by [60], and its efficiency in analyzing marker-
QTL linkage was demonstrated subsequently [44]. A 
selective genotyping strategy with individuals that devi-
ate from the population mean showed great potential 
for detecting genetic variation associated with quantita-
tive traits [61–63]. The present study also confirmed the 
advantage of extreme selective genotyping (CB_extreme) 
for QTL identification, as the number of significant SNPs 
in high LD with QTL was larger and the PVE of signifi-
cant peak SNPs was higher than for GWAS using the two 
random groups (PB and CB_random) given the same 
number of genotyped individuals. The reason is that 
more beneficial genetic information for QTL detection is 
available for individuals with extreme phenotypes, i.e. the 
density of trait-related genetic variation was greater with 
extreme selective genotyping and thus the frequency 
of mutant alleles at QTL was higher than with random 
genotyping [29]. Simulated QTL effects in this study 
were assumed to follow a Gamma distribution, resulting 
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in relatively large effects for a small fraction of QTL [2, 
33]. The GWAS that was carried out in an extreme sub-
set of the population yielded more accurate localizations 
of large-effect QTL and a higher detection probability 
of small-effect QTL. Therefore, extreme selective geno-
typing can provide more accurate estimates of marker 
effects due to the LD between markers and QTL, which is 
the core of the BSLMM approach [1, 64].

The predicted results are based on simulated traits 
controlled by 2000 QTL. We also explored the effect of 
PB and CB reference populations for predicting traits 
controlled by much fewer QTL. Similarly, phenotypes 
for three traits controlled by 100 QTL corresponding to 
different heritabilities ( h2 = 0.1, 0.3, and 0.5) were simu-
lated. We compared the prediction accuracy of differ-
ent reference scenarios for traits with a simpler genetic 
structure under the two models (see Additional file  9: 
Fig. S5). The results showed that even if the number of 
QTL for quantitative traits was small, higher prediction 
accuracy was obtained with the BSLMM model than with 
the GBLUP model, and the improvement in accuracy was 
most significant for the CB_extreme reference popula-
tion. The combination of extreme selection genotyping 
and the BSLMM model is advantageous for genomic 
prediction regardless of the number of QTL associated 
with the trait. The ability of a population to detect QTL 
for a single trait indicates its effectiveness for predictions 
based on marker effects. We demonstrated that individu-
als with extreme phenotypes in the commercial popu-
lation combined with BSLMM yielded the maximum 
selection response. The number of SNPs used for predic-
tion in this experiment was only 37,755 and we believe 
that the combination of extreme CB performance and 
BSLMM will benefit more from increasing marker den-
sity and that the prediction accuracy of using commercial 
crossbreds with extreme phenotypes as a reference popu-
lation will be further improved.

Practicality in breeding farms
Many animal breeding companies will be reluctant to 
stop phenotyping at the PB level, and an important rea-
son for this is the uncertainty in the CB information flow. 
The CB phenotypes must come from commercial farms 
and there is no guarantee that such farms will continue 
to phenotype their animals, especially for small breeding 
companies. They may go out of business or break down 
with an infectious disease and be unable to record all 
the required phenotypic information on the commercial 
population. Interruption of CB information flow from 
commercial farms would affect the company’s breed-
ing decisions. Our results demonstrate that genotyping 
crossbreds with extreme phenotypes and using them for 
GS prediction would be a good option. This idea could be 

picked up by breeding companies, but given the uncer-
tainty in CB information, they will still depend on some 
PB information and likely use a combination of PB and 
CB. However, unlike the CCPS strategy in the past, they 
should replace data from random CB animals with data 
from CB animals with extreme phenotypes for the CB 
information flow they have.

Therefore, we tested the prediction accuracy of the 
CCPS system with the combination of PB and CB_
extreme based on the simulated crossbreeding system 
(see Additional file  10: Fig. S6). Here, the proportion 
of CB to be included in the reference group is 50%. 
The results showed that the prediction accuracy of this 
CCPS strategy was consistently lower than that of PB 
and CB_extreme for the three traits with different her-
itabilities when using the GBLUP model. However, we 
found that the prediction accuracy of CCPS for high-
heritability traits could be significantly improved to a 
level in between that reached by PB and CB_extreme 
when using the BSLMM model. For medium-heritabil-
ity traits, for which the trends in prediction accuracy of 
PB and CB_extreme almost overlapped, the prediction 
accuracy of CCPS was slightly lower than that of the 
other two. For low-heritability traits, the results of pre-
diction accuracy for the three reference populations were 
CB_extreme > PB > CCPS.

We have proved that CB_extreme has a definite advan-
tage for the prediction of breeding values of PB candi-
dates for medium- and low-heritability traits (Fig. 2 and 
Table. 2). However, this CCPS strategy can also accurately 
predict high-heritability traits, because the PB informa-
tion that is included in this strategy could provide high 
genetic relatedness with PB candidates. In addition, the 
requirements for genetic relatedness between the refer-
ence and candidate populations are greater as heritabil-
ity increases [45, 46]. Thus, if the CB information flow is 
incomplete in practical breeding, partial PB information 
can be included and combined with the available extreme 
CB information. This CCPS system (PB + CB_extreme) 
would be a good choice for the prediction of PB for CB 
performance for high-heritability traits. However, as her-
itability decreases, using full extreme CB information for 
genomic prediction is more effective.

Conclusions
In this study, we simulated a three-way crossbreeding 
system of 100,000 DLY based on actual PB ancestors and 
explored the efficiency of using the commercial CB pop-
ulation for genomic prediction of breeding values of PB 
for CB performance. The predictive performance of using 
CB and PB data was compared across different popula-
tion sizes and prediction models, providing a guide to 
the design of reference populations for traits of different 
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heritabilities and for PB selection of different breeds. 
The results indicated that the performance of extreme 
CB has the potential to replace PB performance and in 
combination with the BSLMM model can maximize the 
response to selection. Genetic relatedness provided pre-
liminary insights into the accuracy obtained for different 
reference populations under the GBLUP model. Moreo-
ver, the GWAS results demonstrated the high poten-
tial of commercial crossbreds with extreme phenotypes 
for QTL detection, which was correlated with its good 
predictive performance under the BSLMM model. For 
high-heritability traits, the results of extreme CB perfor-
mance and PB performance were comparable when the 
influence of rpc on the accuracy obtained with a PB ref-
erence population was considered. The use of extreme 
CB data even exceeded that of using PB data in terms of 
response to selection at a large population size. For traits 
of medium-heritability, an extreme sample size of 4000 
was sufficient to carry out accurate predictions of breed-
ing values of PB candidates, but the sample size had to 
be increased to 5000 for low-heritability traits in order 
to achieve adequate accuracy. In a three-way crossbreed-
ing system, extreme CB performance was superior to PB 
performance for the selection of purebreds that served as 
the first sire and terminal sire, while the optimal design 
of the reference group for the first dam depended on 
the heritability of the target trait and the percentage of 
purebreds from the corresponding breed that the PB ref-
erence data comprised. These findings present new guid-
ance for the implementation of genomic selection in pig 
crossbreeding systems.
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tion are shown separately. The results of the GBLUP method (a, c, and e) 
and the BSLMM method (b, d, and f ) are presented. Predicted accuracy 
was averaged across 50 replications for scenarios involving randomization.
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mean IBS coverage of all individuals in the reference population against 
each individual in the candidate population is shown. The x-axis denotes 
the breeds within the candidate population, and the y-axis is the mean IBS 
corresponding to each individual in the candidate population. The results 
for all reference population sizes (from 500 to 6500) and three reference 
population types (PB, CB_extreme, and CB_random) are shown. The IBS 
coverage for each individual was averaged across 50 replications for 
scenarios involving randomization.

Additional file 3: Figure S3. Pairwise IBD calculations between the refer-
ence population and GGP1 ancestral population (a and b), and between 

the reference population and candidate population (c and d). The scat-
tered distribution of mean IBD coverage of all individuals in the reference 
population against each individual in the target population (GGP1/
Candidate) is shown. The x-axis refers to each individual in the target 
population divided by breed, and the y-axis is the mean IBD correspond-
ing to the targeted breed. The numbers of individuals in the GGP1 and 
candidate population were 690 and 2600, respectively, in which the breed 
ratios were 1:2:10 (Duroc: Landrace: Yorkshire) for both populations. The 
distributions of the three reference population types (PB, CB_extreme, and 
CB_random) and two population sizes (500 for a and c, 6500 for b, and d) 
are shown. The IBD coverage for each individual was averaged across 50 
replications for scenarios involving randomization.

Additional file 4: Figure S4. Number of SNPs significantly associated with 
the simulated traits in different reference population scenarios detected 
by GWAS (a and c) and number of significant SNPs with an r2 higher than 
0.6 (b and d). Results are presented for traits with h2 = 0.3 (a and b) and 0.1 
(c and d), including the investigations of three reference population types 
(PB, CB_extreme, and CB_random) and eight reference population sizes 
(500, 1000, 2000, 3000, 4000, 5000, 6000, 6500). The scenarios involving 
randomization were averaged, and error bars denotes the SD between 50 
replicates.
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ranked by GEBV for each pure breed in the candidate group predicted 
by different reference populations (PB: purebreds in GP2; CB_extreme: 
two_tailed crossbreds in DLY; CB_random: random crossbreds in DLY) 
with different population sizes (500, 1000, 2000, 3000, 4000, 5000, 6000, 
6500) in the GBLUP model. TBV were averaged across 50 replications for 
scenarios involving randomization.
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two_tailed crossbreds in DLY; CB_random: random crossbreds in DLY) 
with different population sizes (500, 1000, 2000, 3000, 4000, 5000, 6000, 
6500) in the BSLMM model. TBV were averaged across 50 replications for 
scenarios involving randomization.

Additional file 7: Table S3. Sum of the phenotypic variances explained 
(PVE) by the peak SNP within each QTL region in the GWAS results of 
different reference populations (PB: purebreds in GP2; CB_extreme: 
two_tailed crossbreds in DLY; CB_random: random crossbreds in DLY) 
with different population sizes (500, 1000, 2000, 3000, 4000, 5000, 6000, 
6500) for a low-heritability trait ( h2 = 0.1) (%). PVE were averaged across 50 
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Additional file 8: Table S4. Variance components estimated from the 
GBLUP model for different reference population scenarios. Vg: estimated 
genetic variance, Ve: estimated residual variance; variance was averaged 
across 50 replications for scenarios involving randomization.

Additional file 9: Figure S5. Predicted accuracy of estimated breeding 
values of the whole candidate population for different reference popula-
tion types (PB: purebreds in GP2; CB_extreme: two_tailed crossbreds in 
DLY; CB_random: random crossbreds in DLY) and sizes (500, 1000, 2000, 
3000, 4000, 5000, 6000, 6500). The predicted results are presented for 
the simulated traits controlled by 100 QTL. (a) GBLUP method, h2 = 0.5, 
(b) BSLMM method, h2 = 0.5, (c) GBLUP method, h2 = 0.3, (d) BSLMM 
method, h2 = 0.3, (e) GBLUP method, h2 = 0.1, (f ) BSLMM method, h2 = 
0.1. Predicted accuracy was averaged across 50 replications for scenarios 
involving randomization.

Additional file 10: Figure S6. Predicted accuracy of estimated breeding 
values of the whole candidate population for different reference popula-
tion types (PB: purebreds in GP2; CB_extreme: two_tailed crossbreds in 
DLY; CCPS: PB + CB_extreme, 50% each) and sizes (500, 1000, 2000, 3000, 
4000, 5000, 6000, 6500). (a) GBLUP method, h2 = 0.5, (b) BSLMM method, 
h
2 = 0.5, (c) GBLUP method, h2 = 0.3, (d) BSLMM method, h2 = 0.3, (e) 

GBLUP method, h2 = 0.1, (f ) BSLMM method, h2 = 0.1. Predicted accuracy 
was averaged across 50 replications for scenarios involving randomization.
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