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Abstract 

Background The Western honeybee is an economically important species globally, but has been experiencing 
colony losses that lead to economical damage and decreased genetic variability. This situation is spurring additional 
interest in honeybee breeding and conservation programs. Stochastic simulators are essential tools for rapid and low-
cost testing of breeding programs and methods, yet no existing simulator allows for a detailed simulation of honey-
bee populations. Here we describe SIMplyBee, a holistic simulator of honeybee populations and breeding programs. 
SIMplyBee is an R package and hence freely available for installation from CRAN http:// cran.r- proje ct. org/ packa ge= 
SIMpl yBee.

Implementation SIMplyBee builds upon the stochastic simulator AlphaSimR that simulates individuals with their 
corresponding genomes and quantitative genetic values. To enable honeybee-specific simulations, we extended 
AlphaSimR by developing classes for global simulation parameters, SimParamBee, for a honeybee colony, Colony, 
and multiple colonies, MultiColony. We also developed functions to address major honeybee specificities: hon-
eybee genome, haplodiploid inheritance, social organisation, complementary sex determination, polyandry, colony 
events, and quantitative genetics at the individual- and colony-levels.

Results We describe its implementation for simulating a honeybee genome, creating a honeybee colony and its 
members, addressing haplodiploid inheritance and complementary sex determination, simulating colony events, 
creating and managing multiple colonies at the same time, and obtaining genomic data and honeybee quantitative 
genetics. Further documentation, available at http:// www. SIMpl yBee. info, provides details on these operations and 
describes additional operations related to genomics, quantitative genetics, and other functionalities.

Discussion SIMplyBee is a holistic simulator of honeybee populations and breeding programs. It simulates individual 
honeybees with their genomes, colonies with colony events, and individual- and colony-level genetic and breeding 
values. Regarding the latter, SIMplyBee takes a user-defined function to combine individual- into colony-level values 
and hence allows for modeling any type of interaction within a colony. SIMplyBee provides a research platform for 
testing breeding and conservation strategies and their effect on future genetic gain and genetic variability. Future 
developments of SIMplyBee will focus on improving the simulation of honeybee genomes, optimizing the simulator’s 
performance, and including spatial awareness in mating functions and phenotype simulation. We invite the honey-
bee genetics and breeding community to join us in the future development of SIMplyBee.
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Background
The Western honeybee (Apis mellifera) is an economi-
cally important species globally that plays a major role in 
pollination and food production. The value of insect pol-
linators is estimated at 150 billion euros per year world-
wide, which is approximately 10 percent of the global 
agriculture production [1–3]. In recent decades, wild 
and managed honeybee populations have been experi-
encing increased colony losses due to numerous biotic 
and abiotic factors [4–6]. Besides the economic loss, 
high colony mortality and human-mediated hybridisa-
tion have also driven the loss of within-species diversity 
during the last century and put native subspecies at risk 
[5, 7–9]. Although honeybees are a diverse species that 
are differentiated into seven evolutionary lineages and 33 
subspecies [10, 11], two subspecies, A. m. ligustica and 
A. m. carnica, dominate the vast majority of commercial 
beekeeping operations [12]. The loss of genetic variabil-
ity can decrease the fitness of the populations and further 
increases the susceptibility of populations to ecological 
and anthropogenic factors [5, 9].

Due to increased colony losses and a decline in genetic 
diversity, there has been increasing interest in honey-
bee management programs, either for breeding, con-
servation, or both. Breeding programs aim at improving 
honeybee production, behaviour, and resistance to path-
ogens, and managing genetic diversity that enables long-
term response to selection. Conservation programs aim 
at preserving populations of endangered or native spe-
cies by managing genetic diversity, reducing inbreed-
ing depression, maintaining locally adaptive traits, and 
reducing the prevalence of pathogens.

The increased interest in honeybee breeding has 
spurred additional research in quantitative genetics of 
honeybees. Stochastic simulators are an essential tool 
for in-silico development and testing of quantitative 
genetic and statistical methods, and breeding strategies 
[13–16]. While simulations rely on many assumptions, 
they enable cost-effective and rapid testing of hypotheses 
before practical deployment. There are some simulators 
available for the most commercially relevant mammalian 
and plant species [13, 15, 16]. Due to the differences in 
biology and social organisation, these simulators cannot 
simulate honeybee populations. Although honeybee sim-
ulators have been developed, they are either too simplis-
tic, do not simulate genomes and genetic and phenotypic 
values of individual honeybees, lack the flexibility to sim-
ulate the honeybee colony life cycle or the entire breed-
ing program, or are not available as open source [14, 
17]. One such honeybee simulator is BeeSim [14] that 
accounts for the quantitative genetics of the honeybees, 
but simulates quantitative values at the colony level, does 

not account for the colony events, and is also not publicly 
available. Another honeybee simulator, BEEHAVE [17], 
simulates colony and population dynamics and environ-
mental variation to explore causes of colony failures and 
colony performance, but does not include genetics.

The aim of this work was to develop a holistic simu-
lator of honeybee population management programs, 
SIMplyBee. SIMplyBee simulates (i) genomes as well as 
quantitative genetic and breeding values of individual 
honeybees and of whole colonies, (ii) major biological, 
reproductive, and organisational specificities of honey-
bees, and (iii) colony events. SIMplyBee is freely available 
from CRAN (http:// cran.r- proje ct. org/ packa ge= SIMpl 
yBee) with extensive help pages, examples, and vignettes. 
See also http:// www. SIMpl yBee. info. We welcome contri-
butions from the community at https:// www. github. com/ 
Highl ander Lab/ SIMpl yBee. In the following, we describe 
the theory and technical implementation of SIMplyBee, 
demonstrate its use, and discuss its potential uses and 
plans for its future development.

Implementation
SIMplyBee builds upon an established simulator, 
AlphaSimR [15, 18], and shares its core simulation prin-
ciples and functionality. AlphaSimR is a stochastic simu-
lator that simulates individuals with their corresponding 
genomes and quantitative genetic and phenotypic values. 
The most important classes in AlphaSimR are the Sim-
Param class for global simulation parameters and the 
Pop class for objects that hold a group of individuals 
with their individual identification, parent identifications, 
as well as the genomes’ sequence and simulated traits’ 
values.

To enable a honeybee-specific simulation, SIMplyBee 
expands AlphaSimR with three classes: SimParamBee 
for global simulation parameters, Colony for a honey-
bee colony, and MultiColony for multiple honeybee 
colonies. Associated functions simulate honeybee popu-
lations and their events and facilitate an inspection or 
analysis of results. SIMplyBee’s functions address major 
honeybee specificities: honeybee genome, haplodiploid 
inheritance, complementary sex determination, social 
organisation, polyandry, and colony events. SIMply-
Bee includes five function groups related to: genome 
and genomic information, caste operations, colony and 
multicolony operations, quantitative genetics, and aux-
iliary operations. These functions operate at four lev-
els with respect to the simplest object they return: level 
0 being auxiliary functions returning standard R class 
objects such as vectors, matrices, and lists; level 1 return-
ing an AlphaSimR Pop class object; level 2 returning a 

http://cran.r-project.org/package=SIMplyBee
http://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info
https://www.github.com/HighlanderLab/SIMplyBee
https://www.github.com/HighlanderLab/SIMplyBee
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SIMplyBee Colony class object; and level 3 returning 
a SIMplyBee MultiColony class object. SIMplyBee 
includes over 16,000 lines of R code, documentation, and 
unit tests.

Results
Here, we present the SIMplyBee functionalities by 
describing the underlying biological mechanisms behind 
the SIMplyBee functionality and by demonstrating its 
use. We describe: (i) how to simulate honeybee genomes; 
(ii) how to create a honeybee colony and its members; 
(iii) haplodiploid inheritance and complementary sex 
determination locus CSD; (iv) colony events; (v) how to 
work with multiple colonies; and (vi) honeybee genomics 
and quantitative genetics. Supplementary vignettes give 
further details for these and additional topics (Additional 
files 1, 2, 3, 4, 5, 6 and 7; http:// SIMpl yBee. info).

Honeybee genome and initiating a honeybee simulation
To initiate the simulation, we first need to simulate hon-
eybee genomes and set simulation parameters (Fig.  1). 
The honeybee genome is small in its physical length, only 
250 million bp, but large in its genetic length, 23 Mor-
gans, due to a very high recombination rate of 2.3 x 10

−7 
per bp [19]. SIMplyBee generates honeybee genome 
sequences with the approximate (Markovian) coalescent 
simulator MaCS [20]. It implements a state-of-the-art 
honeybee demographic model [21], allowing for the sim-
ulation of three subspecies: A. m. ligustica, A. m. carnica, 
and A. m. mellifera.

To start the simulation, the SIMplyBee package must 
first be installed and loaded:

The first simulation step consists of generating founder 
honeybee genomes using simulateHoneybeeGe-
nomes(). Here, we simulate 10 A. m. carnica honeybees 
with three chromosomes, each with 100 segregating sites. 
These numbers are not realistic, but enable a fast dem-
onstration. Alternatively, we can import chromosome 
haplotypes, say from drones, or from phased queen or 
worker genotypes. Further details about initiating a sim-
ulation can be found in the Additional file 1.

The second step is setting the global simulation param-
eters with SimParamBee, which builds upon the 
AlphaSimR class SimParam that contains global user-
defined simulation parameters that apply to all individuals 
and populations, including genome and trait parameters, 
but also global pedigree and recombination events. In 
addition, SimParamBee holds honeybee-specific infor-
mation: default numbers of workers (nWorkers), drones 
(nDrones), and virgin queens (nVirginQueens) in 
a full-size colony, the default number of drones that a 
queen mates with (nFathers), default proportions of 
workers that leave in a colony swarm (swarmP) or that 
are removed in a colony split (splitP), and the default 
percentage of workers that are removed during colony 
downsize (downsizeP). These default numbers can be 
changed according to the needs of a simulation or can be 
replaced by providing functions to sample numbers. For 
example, variable numbers of fathers, workers, drones, 
and virgin queens can be sampled from Poisson or trun-
cated Poisson distributions (Additional file  7). Most 
SIMplyBee functions that take the number of individu-
als as an argument can accept these sampling functions 
as input, meaning that the output of such functions’ calls 
will be stochastic. SimParamBee also holds information 
about the CSD locus: the chromosome it is on (csdChr), 
its physical position on the chromosome (csdPos), and 
the number of alleles (nCsdAlleles). SimParamBee 
also holds the caste of each individual in the simulation 
that can be queen, father (drones that successfully mated 
and died), worker, drone, or virgin queen. The caste can 
change during the life of a honeybee. For example, after 
successful mating, a virgin queen becomes a queen and 
drones become fathers.

Here, we set the SimParamBee with the default num-
ber of workers in a colony being 100, the default number 
of drones in a colony being 10, and the CSD locus to have 
32 alleles. We save the output to the SP object, which 
enables its direct use for other SIMplyBee functions 
without explicitly passing it as an argument.

Colony as an operational unit
A honeybee colony consists of individuals of two sexes, 
males, which are the drones, and females, which are dif-
ferentiated into two castes, the queen and the workers. 

http://SIMplyBee.info
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The queen is a single reproductive diploid female, the 
workers are non-reproductive diploid females that per-
form various colony maintenance tasks (collect food, 
nurse larvae, clean cells, etc.), and the drones are repro-
ductive haploid males. A single colony can contain up 

to 65,000 workers [22] while drones can represent up 
to 20% of a honeybee colony [23]. In SIMplyBee, we 
accounted for this social organisation by creating a class 
Colony that holds all the above-mentioned individu-
als as AlphaSimR populations. For ease of use, all these 

Fig. 1 A flow chart of initialising a honeybee simulation in SIMplyBee. The first step is simulating a desired number of founder genomes and 
specifying the global simulation parameters in a new SimParamBee object. Next, we create the base virgin queens from the founder genomes. 
We can simulate any number (nInd) of virgin queens with the maximum being the number of simulated founder genomes. We choose one virgin 
queen as the future queen of the colony (left). On the other side (right), we select n virgin queens to provide drones for the DCA. We could select 
more virgin queens as future queens to create more colonies, and more virgin queen to contribute to the DCA. We next cross the virgin queen to 
a sample of drones from the DCA and use it to create a colony. We next build-up a colony, which adds in a desired number of workers and drones. 
The build-up also results in a productive colony
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groups are referred to as “castes”, including the drones 
that the queen mated with (fathers) and the virgin queens 
(queen-cells or emerged virgin queens). The Colony fur-
ther contains technical information about the colony, its 
identification (id) and its location (location), coded 
as (latitude, longitude) coordinates, as well as 
logical information about past colony events: split, 
swarm, supersedure, or collapse. It also contains 
colony’s production status, which indicates whether 
production phenotypes can be collected from the colony. 
The latter is possible when the colony is built-up to its 
full size and has not swarmed. Production is turned off 
when a colony swarms, collapses, is downsized, or is split 
from another colony.

Here we show how to create a colony in SIMplyBee 
(Fig.  1). The createVirginQueens() function cre-
ates a base population of virgin queens (an AlphaSimR’s 
Pop class object) by recombining founder genomes. The 
isVirginQueen() function checks whether individu-
als are virgin queens. A similar is*() function checks 
the caste of each honeybee, where * is the inquired caste. 
These functions return TRUE or FALSE when an individ-
ual does or does not belong to the caste.

Here, the createColony() function creates a Col-
ony object from the first virgin queen but can use n 
simulated queens to simulate n colonies. Printout of a 
Colony object returns its basic information: its id (1), 
location (not set, hence NA), queen (not yet available, 
hence NA), the number of fathers, workers, drones, and 
virgin queens, as well as the colony’s event statuses.

In honeybees, virgin queens mate with multiple 
drones, a phenomenon termed polyandry. A honeybee 
virgin queen will undergo several mating flights to a 
drone congregation area (DCA) that consists of thou-
sands of drones from up to 240 colonies [24]. There, she 
will mate with 6 to 24 drones [25] and store the sperm 
in her spermatheca for life.

SIMplyBee contains a create*() function for each 
of the castes. For example, the createDrones() 
function creates drones from either a virgin queen, 
to kick-start the simulation in the absence of mated 
queens, or from a mated queen in a colony. This func-
tion can use more than one virgin queen to create 
a DCA. The simulation of genomes for these indi-
viduals is described in the next section (haplodiploid 
inheritance).

Here, the function cross() mates a virgin queen in 
the colony to the created drones. This promotes her to a 
queen so she can lay eggs for workers and drones. After 
the mating, the colony printout shows that the identi-
fication of the queen is “2”, that there are 15 fathers, 
and that there are no more virgin queens in the colony.



Page 6 of 17Obšteter et al. Genetics Selection Evolution           (2023) 55:31 

SIMplyBee includes additional functionality regarding 
open or controlled mating that are described in detail in 
the Crossing vignette in Additional file 4. There is a func-
tion to (i) create a DCA for open mating, createDCA(), 
or a DCA with drones from sister queens, as commonly 
found on honeybee mating stations, createMating-
StationDCA(); (ii) sample a desired number of drones 
from a DCA, pullDroneGroupsFromDCA(); (iii) 
create a cross plan, which includes information about 
which drones will mate with each virgin queen, creat-
eRandomCrossPlan(); (iv) cross a virgin queen to a 
selected population of drones or according to a user-
defined cross plan, cross().

Next, the buildUpColony() function builds-up 
the colony with a specified number of workers and 
drones. Without specifying these numbers, the func-
tion uses default numbers in the SimParamBee object. 
Building up the colony always switches the production 
status to TRUE.

SIMplyBee also contains n*() functions to count indi-
viduals in each caste.

The get*() functions access individuals. Note that 
these functions copy individuals and hence leave indi-
viduals in the colony. Alternatively, the individuals can be 
“pulled” (and hence removed) from the colony with the 
pull*() functions.

The getCaste() function accesses the caste informa-
tion of every individual.

This function can be very useful when you have a group 
of honeybees and you do not know their source.

Additional functions for caste operations include 
obtaining the identifications of caste members and set-
ting or getting the year of birth and age of the queen. 
The addCastePop(), replaceCastePop(), or 
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removeCastePop() functions work with castes 
within a Colony object, and each return a modified 
Colony object.

Haplodiploidy and CSD
Honeybees belong to the insect order Hymenoptera 
that is characterised by haplodiploid inheritance [26–
28]. In SIMplyBee, we accounted for the haplodiploidy 
by simulating queens and workers as proper diploids 
and males as doubled haploids, which are fully homozy-
gous individuals. However, we only use one (haploid) 
genome in all drone operations inside all SIMplyBee’s 
functions. Drones’ genomes are generated by recom-
bining and segregating the queen’s genome. Workers’ 
and virgin queens’ genomes are generated by recom-
bining and segregating the queen’s genome and segre-
gating the fathers’ genomes. Hence, every simulated 
individual has a complete genome generated following 
the haplodiploid inheritance.

Besides haplodiploidy, sex in honeybees is deter-
mined by the complementary sex determination (CSD) 
locus. Fertilised eggs that are heterozygous at the CSD 
locus develop into diploid females, while homozygotes 
develop into diploid drones that are killed by workers 
[29]. In SIMplyBee, we assign a specific genomic region 
to represent the CSD gene. This region corresponds to 
the position of the CSD locus on chromosome 3 [30]. 
SIMplyBee simulates the CSD region as a sequence 
of non-recombining biallelic SNPs that determine a 
CSD allele. To account for balancing selection [31] 
at the CSD locus, we edit the initial founder genomes 
to achieve the desired number and frequency of CSD 
alleles in a population. The user can control the number 
of possible CSD alleles  (2length) by controlling the length 
of the locus (in number of SNPs).

The getCsdAlleles() function retrieves CSD 
alleles and reports two non-recombining haplotypes for 
diploids as strings of 0s and 1s that represent respec-
tively ancestral and mutation alleles along the CSD 
locus. The code below outputs the queen’s CSD alleles. 
The first row of the output shows locus identifications 
(chromosome_locus) and the first column shows 
haplotype identifications (individual_haplo-
type). The two sequences are different, meaning that 
the queen is heterozygous, as expected—otherwise her 
egg would have developed into a diploid drone that 
would have been killed by workers.

Heterozygosity of honeybees at the CSD locus is criti-
cal. The CSD alleles of this queen and the drones she 
mated with (compare getCsdAlleles(queen) and 
getCsdAlleles(fathers)—not shown) show 
no allele matches, which means we do not expect any 
homozygous brood in this colony. The pHomBrood() 
function calculates the theoretical brood homozygosity 
of a queen and the nHomBrood() function returns the 
realized number of homozygous offspring.

In the following, we create an inbred colony by mat-
ing a virgin queen from our colony with her brothers, 
and inspect the expected brood homozygosity.

In this case, 25% of the diploid brood is expected 
to be homozygous. We now add workers to the col-
ony to observe how many of them are homozygous. 
Inheritance is a random process, so the realised num-
ber of homozygotes will deviate from the expected 
proportion.
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We aimed to add 100 workers, but we only got 71 due 
to CSD homozygous brood. The information about the 
number of homozygous brood is stored in the queen’s 
miscellaneous slot and is updated every time we create 
offspring from her.

Colony events
A honeybee colony can experience a series of events dur-
ing its life: swarming, superseeding, splitting, and col-
lapsing. We present the details of colony events and their 
simulation in Additional file 3.

In swarming, a proportion of workers leave the 
hive with the queen, while the rest of the workers and 
the  drones stay in the hive. New virgin queens emerge 
and compete in the colony. The winner undergoes mating 
flights as described above.

The swarm() function swarms a colony (Fig.  2). The 
function takes the percentage of workers that leaves 
with the swarm, p. This can be either a fixed number or 
a function that samples p from either a uniform distri-
bution or from a beta distribution that accounts for the 
number of individuals in a colony (colony strength). Fur-
ther details about the sampling functions are described in 
Additional file  7. The swarm function returns an R list 
with two colonies: swarm, which contains the old queen 
and a proportion p of workers, and remnant, which 

contains the rest of workers, all the drones, and the vir-
gin queens that are daughters of the queen that swarmed. 
The function also changes the swarm status to TRUE and 
the production status to FALSE

Fig. 2 A flow chart of the colony swarming event in SIMplyBee. The swarm() function returns an R list with two colonies, swarm and remnant, 
both of which are non-productive. Parameter p represent the proportion of workers that leave with the swarm. After the swarm, the user can 
cross() the virgin queen of the remnant colony, or use an already mated queen from another source using reQueen(), which mimics the 
beekeepers’ options. Refer to the key in Fig. 1
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To build-up the population or prevent swarming, bee-
keepers often split strong colonies by taking away a pro-
portion of the workers and starting a new colony with a 
new queen. The rest of the workers stay in the hive with 
the old queen. The split() function takes a colony 
and a proportion of the workers that are removed with 
the split, p. The split function returns an R list with 

two colonies: split, which contains the proportion p 
of workers taken from the main hive and virgin queens, 
and remnant, which contains the queen, the remaining 
workers, and drones (Fig. 3). After the split, the remnant 
colony is still productive, while the split is not.

Fig. 3 A flow chart of the colony splitting event in SIMplyBee. The split() function returns an R list with two colonies, split and remnant, 
where the split is non-productive and the remnant is productive. Parameter p represents the proportion of workers that are removed in a split. 
After the split, the user can cross() the virgin queen of the remnant colony, or use an already mated queen from another source using 
reQueen(), which mimics the beekeepers’ options. Refer to the key in Fig. 1

Fig. 4 A flow chart of the colony supersedure event in SIMplyBee. 
The supersede() function returns a queen-less colony with a 
virgin queen. After a supersedure, a colony remains productive since 
the colony is still at its full size but a cross() is required for a new 
queen. Refer to the key in Fig. 1

Fig. 5 A flow chart of the colony collapse event in SIMplyBee. The 
collapse() function keeps all the individuals in a colony, but 
turns on the collapse parameter, hence marking the colony as 
collapsed and all the individual within it as dead. Further simulation 
with a collapsed colony is not allowed in SIMplyBee. Refer to the key 
in Fig. 1
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In supersedure, the queen dies or is killed and its work-
ers raise new virgin queens. The supersede() func-
tion removes the queen and produces new virgin queens 
from the brood (Fig. 4). After a supersedure, the colony is 
still productive because the workers are still present and 
working within the colony.

Finally, some colonies can collapse due to the death of 
all its members. The collapse() function collapses a 
colony by changing the collapse status to TRUE (Fig. 5). 
The function keeps the individuals in the colony to enable 
the study of genetic and environmental causes that contrib-
uted to the collapse. In reality, dead honeybees would also 
be present in a collapsed colony.

SIMplyBee also includes functions to build-up a 
colony, as shown above, a downsize() function that 
removes a proportion of the workers, all drones, and all 
virgin queens, and a function combine() that com-
bines a strong and a weak colony. Additional details 
about simulating events are provided in Additional 
file 3.

Working with multiple colonies
Beekeepers regularly work with a collection of colonies 
at the same time. The MultiColony class collects a 
list of colonies to represent an apiary, a region, an age 
group, etc. Additional details about working with mul-
tiple colonies are provided in Additional file 2.

The createMultiColony() function creates a 
MultiColony object. Here, we create an apiary with 
three virgin colonies. The printout of the object returns 
basic information, including the number of all, empty, 
and NULL colonies, and information about the colony 
events for the colonies in the Multicolony object.

All functions for managing a Colony object can also 
be applied to a MultiColony object, which streamlines 
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simulation scripts. These include functions for cross-
ing, adding or removing individuals, simulating colony 
events, etc. Here, we demonstrate how to cross the api-
ary, build-up its colonies, and swarm some of them. The 
createDrones function creates a DCA from the base 
population virgin queens and the pullDroneGroups-
FromDCA() function samples three groups of drones 
to mate the three virgin queens. As already mentioned, 
functions that sample individuals can use either fixed 
numbers or sampling functions (Additional file 7).

Next, the cross() function crosses the virgin queens 
in the apiary with the provided drone groups. To test for 
the presence of queens before and after mating to show 
that mating was successful, we can use is*Present() 
functions, where * is the caste, that check the presence of 
a caste in a colony. The buildUp() function builds-up 
all colonies in the MultiColony object.

Next, the pullColonies() function samples one col-
ony that will swarm. This returns an R list with two Multi-
Colony objects: pulled with the sampled colonies, and 
remnant with the remaining ones. We save the latter back 
in the apiary.

Now, the swarm function swarms the pulled colonies and 
returns an R list with two MultiColony objects, remnant 
and swarm. When applied to MultiColony, all the colo-
nies are swarmed with the same p, unless specified other-
wise. Additional details about simulating colony events for 
MultiColony are provided in Additional file 3.

We can combine the colonies that did not swarm with 
the swarm remnant(s) into an updated apiary.

Genomics and quantitative genetics
Similar to extracting the CSD genomic sequence, the 
functions get*Haplo() or get*Geno() extract 
whole-genome information for any set of individuals. 
Here, * can be SegSite to extract all segregating/pol-
ymorphic loci tracked in the simulation, Snp to extract 
marker loci, or Qtl to extract quantitative trait loci. 
There is also getIbdHaplo() to extract identity by 
descent information, with IBD alleles defined as those 
originating from the base population genomes. These 
functions leverage AlphaSimR functionality, but work 
with SIMplyBee Colony or MultiColony objects and 
in addition take the caste argument to extract informa-
tion only for a specific caste. All this genome information 
is a result of haplodiploid inheritance. For example, the 
code below extracts genotypes of the first five workers in 
the colony at the first five tracked segregating sites. See 
further details in Additional file 5.

Honeybee phenotypes are characterized by two impor-
tant phenomena. First, in honeybee keeping and breed-
ing, phenotypes are mostly collected at the colony level as 
opposed to at the individual level. Second, phenotypes in 
honeybees are a complex interaction between queen and 
worker effects that are often negatively correlated [32, 33]. 
For most traits, the queen indirectly contributes to the col-
ony phenotype by laying eggs [34, 35] and by stimulating 
the workers through pheromones [36, 37], while workers 
contribute directly by doing the actual work.

SIMplyBee simulates genetic and phenotypic values for 
each individual honeybee, but can also calculate colony-
level values from individual-level values. Quantitative 
genetic simulation is initiated by specifying the assump-
tions about the genetic architecture of traits in SimPar-
amBee, including the number of quantitative trait loci, the 
distribution of their effects, and genetic and environmental 
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variances and covariances. In the following, we initiate 
another simulation and specify two negatively correlated 
traits that represent the queen and worker effect for honey 
yield. Additional details and a more extensive explanation 
of this simulation are provided in Additional file 6.

This initiation triggers calculation of individual-level 
genetic and phenotypic values. Using the AlphaSimR Pop 
class object, genetic and phenotypic values are stored in 
gv and pheno slots, respectively. They can be accessed 
with the getGv() and getPheno() functions, which 
both have the caste argument and work on Colony and 
MultiColony.

The calcColonyValue() function maps individ-
ual values to colony values using an established map-
ping function from the literature [14, 38, 39], but users 
can also provide their own mapping function. Exam-
ples of such quantitative genetic simulations of one 
or multiple correlated traits are shown in Additional 
file 6.

Here, we compute the colony-level genetic and phe-
notypic values for the colonies in our apiary.

The best colony according to the genetic as well as 
the phenotypic value is the colony with ID “12”, hence 
we would select it for further reproduction. These 
values can be passed into the use parameter of the 
selectColonies() function.

Computing time
We tested the computing time needed to perform some 
basic actions with SIMplyBee: create drones, and create, 
cross, and build-up colonies (Additional file 8: Table S1). 
The results show that most operations take seconds but 
increase with larger numbers.

Discussion
SIMplyBee is an R package for holistic simulation of 
honeybee breeding and conservation programs. In com-
parison to previously developed general genetics and 
breeding simulators [15, 16], it simulates honeybee-
specific genomes, social organisation, and behaviours. 
SIMplyBee differs from previously developed honeybee-
specific simulators [14, 17] by simulating individual hon-
eybees, individual-level and colony-level quantitative 
values, and colony events that can affect genetic and phe-
notypic variation in a population.
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Potential uses of SIMplyBee
SIMplyBee provides a valuable research platform for 
testing different population-management decisions and 
answering various questions regarding the design of 
breeding schemes. SIMplyBee can be used to test the 
effect of various decisions in a breeding program on 
genetic gain, genetic diversity, and inbreeding; or to test 
the accuracy of inferences with competing quantitative 
genetic models. For example, users can test the effect of 
different phenotyping schemes by varying the frequency 
of phenotyping or the measuring scale. Furthermore, 
SIMplyBee can be used to test different mating control 
designs and the effect of varying the number of sires or 
drone-producing queens on a mating station. Users can 
also test different selection strategies by varying the 
time of selection, the number of selected queens, or the 
sources of information (pedigree, genomic, and pheno-
typic data). The list of potential studies is long. SIMply-
Bee is also a valuable platform for answering questions 
regarding the conservation of honeybees. Users might be 
interested in the effect of mating and management deci-
sions on the genetic diversity in a population along the 
whole genome or only at the CSD locus; in comparing 
how different migration or import practices and associ-
ated policies affect genetic diversity; or how to design a 
conservation program to preserve genetic diversity.

Why simulate individual bees?
Providing individual-level functionality might seem 
excessive since colony-level values in honeybees can 
be seen as equivalent to individual-level values in other 
species, say, mammals. However, there are at least 
seven reasons why this functionality supports current 
and future honeybee research. First, colonies are made 
up of individual honeybees and, thus, simulating indi-
vidual honeybees with associated genomes and values 
is the correct thing to do. Second, having individual 
workers’ values allows different interactions between 
them to be simulated. For example, some phenotypes 
might be additive and the combined workers’ contribu-
tion is just a simple sum of individual values. This addi-
tive model has been shown for honey yield once the 
colony reaches a certain size to have a surplus of honey 
[22]. However, such a model cannot be assumed for all 
phenotypes. There is much debate and contradictory 
results regarding the contribution of individual bees 
to the colony-level phenotypic value. For example, for 
defensive behavior, some studies show that a single or 
a couple of aggressive workers in a colony can stimu-
late the rest and lead to highly defensive colony behav-
ior [40], while others suggest an additive model [41]. 
Although this knowledge gap is understandable, given 
the considerable number of honeybees in a colony, 

future advances in sensor and beekeeping technolo-
gies and data science (machine learning) will provide 
ever more fine-grained data. Such data could further 
contribute to explaining the relationship between indi-
vidual-level and colony-level phenotypes. To facilitate 
different models, SIMplyBee leaves the construction of 
the colony-level phenotype to the user, but it provides 
the additive model as the simplest example. As such, 
it can serve as a research platform for modeling dif-
ferent relationships and interactions. Third, simulating 
individuals within a colony enables the study of genetic 
relationships within and between colonies. Genetic 
variability can be driven by genetic processes and col-
ony events. For example, splitting and swarming can 
substantially affect genetic variability within a colony. 
Fourth, related to the latter, individual-level simulation 
allows studying and developing methods to compute 
genetic relationships in honeybees for systems that 
deviate from the commonly studied breeding design 
[38, 39]. Fifth, having individual genomes allows study-
ing how pooled genotyping samples, commonly used 
for honeybees, represent the queen’s or the colony’s 
genetics [42], either in parentage testing and discovery, 
or for quantitative genetic analyses, such as  genomic 
prediction and genome-wide association studies. Sixth, 
simulating individual drones inherently simulates mul-
tiple patrilines within a colony, a patriline being all off-
spring of a single drone. This simulates a genetically 
diverse colony and allows the potential differential 
contributions of partilines to colony performance to be 
modelled [43]. And seventh, researchers have already 
begun to collect individual-level drone phenotypes, for 
example, information on drone sperm quality [44].

Genetic values and its statistical components
SIMplyBee can serve as a research platform to test 
assumptions about current quantitative genetic models 
[14, 38, 39]. Quantitative genetic models can estimate 
the joint effect of workers and the effect of the queen on 
the colony-level phenotype. However, sometimes simpler 
models are used [33, 45]. Based on the worker and queen 
effect estimates, the performance, selection, and inherit-
ance criteria can be created [46].

Another challenge that we faced in developing SIM-
plyBee was in providing functionality to calculate statis-
tical genetic values, that is, breeding values, dominance 
deviations, and epistasis deviations. Since SIMplyBee 
leverages AlphaSimR [15], these values can be calculated 
using AlphaSimR’s bv(), dd(), and aa() functions. 
However, caution is required since traditional formulae 
for these statistical components of genetic values assume 
Hardy-Weinberg equilibrium [47] and are computed 
“relative” to the population of individuals at hand. The 
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latter means that for a honeybee simulation we would 
either have to report these values relative to each colony 
population, which would make the output relevant only 
for each colony, or we would have to create a large “meta” 
population object of all currently living honeybees. Fur-
ther development is required to address this aspect in 
SIMplyBee.

Future development
Future development of the SIMplyBee package will focus 
on additional features and on improving the functionality 
and efficiency of existing features. Our immediate focus 
is on the following three features. First, on developing a 
new honeybee demographic model to include more sub-
species and to improve estimates of model parameters 
[48]. While SIMplyBee currently uses MaCS [20] to sim-
ulate the genome, we will consider novel simulators that 
may offer more flexibility and computational speed, such 
as msprime (backward in time) [49, 50] and SLiM (for-
ward in time) [51] simulators. These simulators rely on a 
public library of species’ genome information and demo-
graphic models, named stdpopsim, to which we have 
already added the honeybee [52, 53]. Second, we will 
further optimize the speed and memory performance of 
SIMplyBee. A simulation of a real-size honeybee colony 
or a breeding program with such colonies can be compu-
tationally demanding because a single colony can hold up 
to several tens of thousands of workers. By timing some 
of the basic SIMplyBee functions, we identified that the 
current mating implementation is slow (Additional file 8: 
Table  S1). However, mating a large number of queens 
by proving a single drone population and a mating plan 
(crossPlan) halves computing times compared to mat-
ing queens to predefined drone populations (“drone pack-
ages”). Users can also decrease the computational burden 
by simulating workers and drones only when needed, 
for example, drones at the time of mating and workers 
at the time of generating and analyzing phenotypes. We 
plan to further optimize SIMplyBee by allowing workers’ 
contributions to colony-level phenotypes to be simulated 
without storing the workers, which saves some time, but 
mostly memory. Such a solution has already been imple-
mented in AlphaSimR for the simulation of hybrid plant 
breeding programs. Running time can also be decreased 
by, for example, working with the expectation and vari-
ance of genetic values in progeny [54, 55] instead of sim-
ulating tens of thousands of workers. We will also strive 
to optimize functions by leveraging C++ via the Rcpp 
package [56]. Third, we will add a geospatial component 
to the simulation. Colony location plays a major role in 
honeybee mating and colony performance. The current 
implementation enables setting the location of every 
Colony and MultiColony object. We will develop 

functionality to create a DCA or sample the drones for a 
virgin queen mating according to the location of colonies, 
for example, in a certain radius, since virgin queens are 
more likely to mate with drones from nearby colonies. 
We will also add spatially-aware simulation of environ-
mental effects. Honeybee colony performance depends 
heavily on the environment in terms of food provision, 
weather, pests, etc. Such environmental conditions usu-
ally change continuously through space, hence colonies 
that are closer together usually experience more similar 
environmental conditions than colonies that are further 
apart. The framework for such spatially aware simulation 
and modelling has already been developed and tested in a 
livestock setting [57].

We invite the honeybee genetics and breeding commu-
nity to join us in the future development of SIMplyBee. The 
development is hosted on GitHub at https:// github. com/ 
Highl ander Lab/ SIMpl yBee. We welcome users and develop-
ers to fork this git repository and provide “pull request (PR)” 
contributions. Each pull request is reviewed by one of the 
developers within the core team. Based on the review, pull 
requests will be updated before being merged into the devel-
opment branch. The development branch is periodically 
merged into the main branch for publication on CRAN and 
for user installation. For each function we request documen-
tation with examples and unit tests to ensure future changes 
will not break the functionality.

This work describes the usage of SIMplyBee for simu-
lating honeybee populations. However, other bee species 
share a similar organisation and behaviour as the hon-
eybee. Hence, SIMplyBee could also be used to simulate 
other Apis species. For example, Apis florea, the dwarf 
honeybee, and Apis cerana. Apis florea importantly con-
tributes to pollination in some countries of the Mid-
dle East and Asia. Its range is predicted to increase due 
to climate change [58] and SIMplyBee could be used to 
model a breeding program for this bee species as well.

Conclusions
This paper presents a stochastic simulator, SIMplyBee, 
for holistic simulation of honeybee populations and pop-
ulation management programs. SIMplyBee builds upon 
its predecessors by simulating genomes of individual 
honeybees and corresponding individual-level genetic 
and breeding values. SIMplyBee stores individual hon-
eybees as the caste populations within a colony object, 
which enables the simulation of colony events and cal-
culation of colony-level quantitative values. Colonies 
can be further organised into multi-colony objects for 
ease of use. SIMplyBee provides a valuable research plat-
form for honeybee genetics, breeding, and conservation. 
Possible uses include testing the effects of breeding or 

https://github.com/HighlanderLab/SIMplyBee
https://github.com/HighlanderLab/SIMplyBee
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conservation decisions on genetic gain and genetic vari-
ability in honeybee populations, testing the performance 
of existing and novel statistical methods, etc. Future 
directions include improvements to the simulation of 
honeybee chromosomes through new demographic 
models, the addition of spatial awareness in mating and 
phenotype simulation, reducing computational bottle-
necks, and encouraging community engagement. We 
invite the honeybee genetics and breeding community to 
collaborate with us in improving SIMplyBee.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12711- 023- 00798-y.

Additional file 1. Honey biology vignette. This vignette introduces 
SIMplyBee package by describing anddemonstrating how SIMplyBee 
implements honeybee biology. Specifically, itdescribes how to initiate 
simulation with founder genomes and simulationparameters, how to 
create and build-up a colony, the colony structure, andcomplementary 
sex determininglocus [20, 21] This vignette can also be found on https:// 
cran.r- proje ct. org/ packa ge= SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 2. Multiple colonies vignette. This vignette introduces 
working with multiple colonies bydemonstrating how to create and work 
with MultiColony objects inSIMplyBee. This vignette can also be found 
on https:// cran.r- proje ct. org/ packa ge= SIMpl yBee and http:// www. SIMpl 
yBee. info.

Additional file 3. Colony events vignette. This vignette introduces the 
colony events and how tosimulate them in SIMplyBee. It shows how to 
simulate swarming, splitting,superseding, and collapsing either a Colony 
or MultiColony objects[59–61]. This vignette can also be found on https:// 
cran.r- proje ct. org/ packa ge= SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 4. Crossing vignette. This vignette demonstrated how to 
cross virgin queens inSIMplyBee. It demonstrates how to cross a single or 
multiple virgin queens,cross either with pre-selected population/group of 
drones or according to across plan, and cross queens on an open DCA or 
mating station. This vignette can also be found on https:// cran.r- proje ct. 
org/ packa ge= SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 5. Genomics vignette. This vignette demonstrates how to 
obtain genomic informationof simulated honeybees. It also demonstrates, 
how to compute honeybeegenomic relationship matrices in SIMplyBee 
[62–67]. This vignette can also be found on https:// cran.r- proje ct. org/ 
packa ge= SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 6. Quantitative genetics vignette. This vignette describes 
and demonstrates how SIMplyBeeimplements quantitative genetics 
principles for honeybees. Specifically, itdescribes three different examples 
where we simulate a single colony trait,two colony traits, and two colony 
traits where one trait impacts the otherone via the number of workers. 
This vignette can also be found on https:// cran.r- proje ct. org/ packa ge= 
SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 7. Sampling functions vignette. This vignette introduces 
sampling functions that sample eitherthe number of caste individuals or 
the proportion of workers that stay orare removed in colony events. This 
vignette can also be found on https:// cran.r- proje ct. org/ packa ge= SIMpl 
yBee and http:// www. SIMpl yBee. info.

Additional file 8. Computing time. The table shows the mean comput-
ing time for basicSIMplyBee functions of ten replicates. It shows the 
time to create ten or amillion drones; create ten or a thousand empty or 
virgin colonies; to crossten or a thousand colonies by providing n drone 
populations, where n is the number of virgin queens, or by providing a 
singledrone population and a cross plan; and to build-up ten or a thou-
sandcolonies to a thousand or 60 thousand workers.
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