
Obšteter et al. Genetics Selection Evolution (2023) 55:31
https://doi.org/10.1186/s12711-023-00798-y

SOFTWARE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

SIMplyBee: an R package to simulate
honeybee populations and breeding programs
Jana Obšteter1* , Laura K. Strachan2, Jernej Bubnič1, Janez Prešern1 and Gregor Gorjanc2,3

Abstract

Background The Western honeybee is an economically important species globally, but has been experiencing
colony losses that lead to economical damage and decreased genetic variability. This situation is spurring additional
interest in honeybee breeding and conservation programs. Stochastic simulators are essential tools for rapid and low-
cost testing of breeding programs and methods, yet no existing simulator allows for a detailed simulation of honey-
bee populations. Here we describe SIMplyBee, a holistic simulator of honeybee populations and breeding programs.
SIMplyBee is an R package and hence freely available for installation from CRAN http:// cran.r- proje ct. org/ packa ge=
SIMpl yBee.

Implementation SIMplyBee builds upon the stochastic simulator AlphaSimR that simulates individuals with their
corresponding genomes and quantitative genetic values. To enable honeybee-specific simulations, we extended
AlphaSimR by developing classes for global simulation parameters, SimParamBee, for a honeybee colony, Colony,
and multiple colonies, MultiColony. We also developed functions to address major honeybee specificities: hon-
eybee genome, haplodiploid inheritance, social organisation, complementary sex determination, polyandry, colony
events, and quantitative genetics at the individual- and colony-levels.

Results We describe its implementation for simulating a honeybee genome, creating a honeybee colony and its
members, addressing haplodiploid inheritance and complementary sex determination, simulating colony events,
creating and managing multiple colonies at the same time, and obtaining genomic data and honeybee quantitative
genetics. Further documentation, available at http:// www. SIMpl yBee. info, provides details on these operations and
describes additional operations related to genomics, quantitative genetics, and other functionalities.

Discussion SIMplyBee is a holistic simulator of honeybee populations and breeding programs. It simulates individual
honeybees with their genomes, colonies with colony events, and individual- and colony-level genetic and breeding
values. Regarding the latter, SIMplyBee takes a user-defined function to combine individual- into colony-level values
and hence allows for modeling any type of interaction within a colony. SIMplyBee provides a research platform for
testing breeding and conservation strategies and their effect on future genetic gain and genetic variability. Future
developments of SIMplyBee will focus on improving the simulation of honeybee genomes, optimizing the simulator’s
performance, and including spatial awareness in mating functions and phenotype simulation. We invite the honey-
bee genetics and breeding community to join us in the future development of SIMplyBee.

*Correspondence:
Jana Obšteter
jana.obsteter@kis.si
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-023-00798-y&domain=pdf
http://orcid.org/0000-0003-1511-3916
http://cran.r-project.org/package=SIMplyBee
http://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info

Page 2 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

Background
The Western honeybee (Apis mellifera) is an economi-
cally important species globally that plays a major role in
pollination and food production. The value of insect pol-
linators is estimated at 150 billion euros per year world-
wide, which is approximately 10 percent of the global
agriculture production [1–3]. In recent decades, wild
and managed honeybee populations have been experi-
encing increased colony losses due to numerous biotic
and abiotic factors [4–6]. Besides the economic loss,
high colony mortality and human-mediated hybridisa-
tion have also driven the loss of within-species diversity
during the last century and put native subspecies at risk
[5, 7–9]. Although honeybees are a diverse species that
are differentiated into seven evolutionary lineages and 33
subspecies [10, 11], two subspecies, A. m. ligustica and
A. m. carnica, dominate the vast majority of commercial
beekeeping operations [12]. The loss of genetic variabil-
ity can decrease the fitness of the populations and further
increases the susceptibility of populations to ecological
and anthropogenic factors [5, 9].

Due to increased colony losses and a decline in genetic
diversity, there has been increasing interest in honey-
bee management programs, either for breeding, con-
servation, or both. Breeding programs aim at improving
honeybee production, behaviour, and resistance to path-
ogens, and managing genetic diversity that enables long-
term response to selection. Conservation programs aim
at preserving populations of endangered or native spe-
cies by managing genetic diversity, reducing inbreed-
ing depression, maintaining locally adaptive traits, and
reducing the prevalence of pathogens.

The increased interest in honeybee breeding has
spurred additional research in quantitative genetics of
honeybees. Stochastic simulators are an essential tool
for in-silico development and testing of quantitative
genetic and statistical methods, and breeding strategies
[13–16]. While simulations rely on many assumptions,
they enable cost-effective and rapid testing of hypotheses
before practical deployment. There are some simulators
available for the most commercially relevant mammalian
and plant species [13, 15, 16]. Due to the differences in
biology and social organisation, these simulators cannot
simulate honeybee populations. Although honeybee sim-
ulators have been developed, they are either too simplis-
tic, do not simulate genomes and genetic and phenotypic
values of individual honeybees, lack the flexibility to sim-
ulate the honeybee colony life cycle or the entire breed-
ing program, or are not available as open source [14,
17]. One such honeybee simulator is BeeSim [14] that
accounts for the quantitative genetics of the honeybees,
but simulates quantitative values at the colony level, does

not account for the colony events, and is also not publicly
available. Another honeybee simulator, BEEHAVE [17],
simulates colony and population dynamics and environ-
mental variation to explore causes of colony failures and
colony performance, but does not include genetics.

The aim of this work was to develop a holistic simu-
lator of honeybee population management programs,
SIMplyBee. SIMplyBee simulates (i) genomes as well as
quantitative genetic and breeding values of individual
honeybees and of whole colonies, (ii) major biological,
reproductive, and organisational specificities of honey-
bees, and (iii) colony events. SIMplyBee is freely available
from CRAN (http:// cran.r- proje ct. org/ packa ge= SIMpl
yBee) with extensive help pages, examples, and vignettes.
See also http:// www. SIMpl yBee. info. We welcome contri-
butions from the community at https:// www. github. com/
Highl ander Lab/ SIMpl yBee. In the following, we describe
the theory and technical implementation of SIMplyBee,
demonstrate its use, and discuss its potential uses and
plans for its future development.

Implementation
SIMplyBee builds upon an established simulator,
AlphaSimR [15, 18], and shares its core simulation prin-
ciples and functionality. AlphaSimR is a stochastic simu-
lator that simulates individuals with their corresponding
genomes and quantitative genetic and phenotypic values.
The most important classes in AlphaSimR are the Sim-
Param class for global simulation parameters and the
Pop class for objects that hold a group of individuals
with their individual identification, parent identifications,
as well as the genomes’ sequence and simulated traits’
values.

To enable a honeybee-specific simulation, SIMplyBee
expands AlphaSimR with three classes: SimParamBee
for global simulation parameters, Colony for a honey-
bee colony, and MultiColony for multiple honeybee
colonies. Associated functions simulate honeybee popu-
lations and their events and facilitate an inspection or
analysis of results. SIMplyBee’s functions address major
honeybee specificities: honeybee genome, haplodiploid
inheritance, complementary sex determination, social
organisation, polyandry, and colony events. SIMply-
Bee includes five function groups related to: genome
and genomic information, caste operations, colony and
multicolony operations, quantitative genetics, and aux-
iliary operations. These functions operate at four lev-
els with respect to the simplest object they return: level
0 being auxiliary functions returning standard R class
objects such as vectors, matrices, and lists; level 1 return-
ing an AlphaSimR Pop class object; level 2 returning a

http://cran.r-project.org/package=SIMplyBee
http://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info
https://www.github.com/HighlanderLab/SIMplyBee
https://www.github.com/HighlanderLab/SIMplyBee

Page 3 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

SIMplyBee Colony class object; and level 3 returning
a SIMplyBee MultiColony class object. SIMplyBee
includes over 16,000 lines of R code, documentation, and
unit tests.

Results
Here, we present the SIMplyBee functionalities by
describing the underlying biological mechanisms behind
the SIMplyBee functionality and by demonstrating its
use. We describe: (i) how to simulate honeybee genomes;
(ii) how to create a honeybee colony and its members;
(iii) haplodiploid inheritance and complementary sex
determination locus CSD; (iv) colony events; (v) how to
work with multiple colonies; and (vi) honeybee genomics
and quantitative genetics. Supplementary vignettes give
further details for these and additional topics (Additional
files 1, 2, 3, 4, 5, 6 and 7; http:// SIMpl yBee. info).

Honeybee genome and initiating a honeybee simulation
To initiate the simulation, we first need to simulate hon-
eybee genomes and set simulation parameters (Fig. 1).
The honeybee genome is small in its physical length, only
250 million bp, but large in its genetic length, 23 Mor-
gans, due to a very high recombination rate of 2.3 x 10

−7
per bp [19]. SIMplyBee generates honeybee genome
sequences with the approximate (Markovian) coalescent
simulator MaCS [20]. It implements a state-of-the-art
honeybee demographic model [21], allowing for the sim-
ulation of three subspecies: A. m. ligustica, A. m. carnica,
and A. m. mellifera.

To start the simulation, the SIMplyBee package must
first be installed and loaded:

The first simulation step consists of generating founder
honeybee genomes using simulateHoneybeeGe-
nomes(). Here, we simulate 10 A. m. carnica honeybees
with three chromosomes, each with 100 segregating sites.
These numbers are not realistic, but enable a fast dem-
onstration. Alternatively, we can import chromosome
haplotypes, say from drones, or from phased queen or
worker genotypes. Further details about initiating a sim-
ulation can be found in the Additional file 1.

The second step is setting the global simulation param-
eters with SimParamBee, which builds upon the
AlphaSimR class SimParam that contains global user-
defined simulation parameters that apply to all individuals
and populations, including genome and trait parameters,
but also global pedigree and recombination events. In
addition, SimParamBee holds honeybee-specific infor-
mation: default numbers of workers (nWorkers), drones
(nDrones), and virgin queens (nVirginQueens) in
a full-size colony, the default number of drones that a
queen mates with (nFathers), default proportions of
workers that leave in a colony swarm (swarmP) or that
are removed in a colony split (splitP), and the default
percentage of workers that are removed during colony
downsize (downsizeP). These default numbers can be
changed according to the needs of a simulation or can be
replaced by providing functions to sample numbers. For
example, variable numbers of fathers, workers, drones,
and virgin queens can be sampled from Poisson or trun-
cated Poisson distributions (Additional file 7). Most
SIMplyBee functions that take the number of individu-
als as an argument can accept these sampling functions
as input, meaning that the output of such functions’ calls
will be stochastic. SimParamBee also holds information
about the CSD locus: the chromosome it is on (csdChr),
its physical position on the chromosome (csdPos), and
the number of alleles (nCsdAlleles). SimParamBee
also holds the caste of each individual in the simulation
that can be queen, father (drones that successfully mated
and died), worker, drone, or virgin queen. The caste can
change during the life of a honeybee. For example, after
successful mating, a virgin queen becomes a queen and
drones become fathers.

Here, we set the SimParamBee with the default num-
ber of workers in a colony being 100, the default number
of drones in a colony being 10, and the CSD locus to have
32 alleles. We save the output to the SP object, which
enables its direct use for other SIMplyBee functions
without explicitly passing it as an argument.

Colony as an operational unit
A honeybee colony consists of individuals of two sexes,
males, which are the drones, and females, which are dif-
ferentiated into two castes, the queen and the workers.

http://SIMplyBee.info

Page 4 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

The queen is a single reproductive diploid female, the
workers are non-reproductive diploid females that per-
form various colony maintenance tasks (collect food,
nurse larvae, clean cells, etc.), and the drones are repro-
ductive haploid males. A single colony can contain up

to 65,000 workers [22] while drones can represent up
to 20% of a honeybee colony [23]. In SIMplyBee, we
accounted for this social organisation by creating a class
Colony that holds all the above-mentioned individu-
als as AlphaSimR populations. For ease of use, all these

Fig. 1 A flow chart of initialising a honeybee simulation in SIMplyBee. The first step is simulating a desired number of founder genomes and
specifying the global simulation parameters in a new SimParamBee object. Next, we create the base virgin queens from the founder genomes.
We can simulate any number (nInd) of virgin queens with the maximum being the number of simulated founder genomes. We choose one virgin
queen as the future queen of the colony (left). On the other side (right), we select n virgin queens to provide drones for the DCA. We could select
more virgin queens as future queens to create more colonies, and more virgin queen to contribute to the DCA. We next cross the virgin queen to
a sample of drones from the DCA and use it to create a colony. We next build-up a colony, which adds in a desired number of workers and drones.
The build-up also results in a productive colony

Page 5 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

groups are referred to as “castes”, including the drones
that the queen mated with (fathers) and the virgin queens
(queen-cells or emerged virgin queens). The Colony fur-
ther contains technical information about the colony, its
identification (id) and its location (location), coded
as (latitude, longitude) coordinates, as well as
logical information about past colony events: split,
swarm, supersedure, or collapse. It also contains
colony’s production status, which indicates whether
production phenotypes can be collected from the colony.
The latter is possible when the colony is built-up to its
full size and has not swarmed. Production is turned off
when a colony swarms, collapses, is downsized, or is split
from another colony.

Here we show how to create a colony in SIMplyBee
(Fig. 1). The createVirginQueens() function cre-
ates a base population of virgin queens (an AlphaSimR’s
Pop class object) by recombining founder genomes. The
isVirginQueen() function checks whether individu-
als are virgin queens. A similar is*() function checks
the caste of each honeybee, where * is the inquired caste.
These functions return TRUE or FALSE when an individ-
ual does or does not belong to the caste.

Here, the createColony() function creates a Col-
ony object from the first virgin queen but can use n
simulated queens to simulate n colonies. Printout of a
Colony object returns its basic information: its id (1),
location (not set, hence NA), queen (not yet available,
hence NA), the number of fathers, workers, drones, and
virgin queens, as well as the colony’s event statuses.

In honeybees, virgin queens mate with multiple
drones, a phenomenon termed polyandry. A honeybee
virgin queen will undergo several mating flights to a
drone congregation area (DCA) that consists of thou-
sands of drones from up to 240 colonies [24]. There, she
will mate with 6 to 24 drones [25] and store the sperm
in her spermatheca for life.

SIMplyBee contains a create*() function for each
of the castes. For example, the createDrones()
function creates drones from either a virgin queen,
to kick-start the simulation in the absence of mated
queens, or from a mated queen in a colony. This func-
tion can use more than one virgin queen to create
a DCA. The simulation of genomes for these indi-
viduals is described in the next section (haplodiploid
inheritance).

Here, the function cross() mates a virgin queen in
the colony to the created drones. This promotes her to a
queen so she can lay eggs for workers and drones. After
the mating, the colony printout shows that the identi-
fication of the queen is “2”, that there are 15 fathers,
and that there are no more virgin queens in the colony.

Page 6 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

SIMplyBee includes additional functionality regarding
open or controlled mating that are described in detail in
the Crossing vignette in Additional file 4. There is a func-
tion to (i) create a DCA for open mating, createDCA(),
or a DCA with drones from sister queens, as commonly
found on honeybee mating stations, createMating-
StationDCA(); (ii) sample a desired number of drones
from a DCA, pullDroneGroupsFromDCA(); (iii)
create a cross plan, which includes information about
which drones will mate with each virgin queen, creat-
eRandomCrossPlan(); (iv) cross a virgin queen to a
selected population of drones or according to a user-
defined cross plan, cross().

Next, the buildUpColony() function builds-up
the colony with a specified number of workers and
drones. Without specifying these numbers, the func-
tion uses default numbers in the SimParamBee object.
Building up the colony always switches the production
status to TRUE.

SIMplyBee also contains n*() functions to count indi-
viduals in each caste.

The get*() functions access individuals. Note that
these functions copy individuals and hence leave indi-
viduals in the colony. Alternatively, the individuals can be
“pulled” (and hence removed) from the colony with the
pull*() functions.

The getCaste() function accesses the caste informa-
tion of every individual.

This function can be very useful when you have a group
of honeybees and you do not know their source.

Additional functions for caste operations include
obtaining the identifications of caste members and set-
ting or getting the year of birth and age of the queen.
The addCastePop(), replaceCastePop(), or

Page 7 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

removeCastePop() functions work with castes
within a Colony object, and each return a modified
Colony object.

Haplodiploidy and CSD
Honeybees belong to the insect order Hymenoptera
that is characterised by haplodiploid inheritance [26–
28]. In SIMplyBee, we accounted for the haplodiploidy
by simulating queens and workers as proper diploids
and males as doubled haploids, which are fully homozy-
gous individuals. However, we only use one (haploid)
genome in all drone operations inside all SIMplyBee’s
functions. Drones’ genomes are generated by recom-
bining and segregating the queen’s genome. Workers’
and virgin queens’ genomes are generated by recom-
bining and segregating the queen’s genome and segre-
gating the fathers’ genomes. Hence, every simulated
individual has a complete genome generated following
the haplodiploid inheritance.

Besides haplodiploidy, sex in honeybees is deter-
mined by the complementary sex determination (CSD)
locus. Fertilised eggs that are heterozygous at the CSD
locus develop into diploid females, while homozygotes
develop into diploid drones that are killed by workers
[29]. In SIMplyBee, we assign a specific genomic region
to represent the CSD gene. This region corresponds to
the position of the CSD locus on chromosome 3 [30].
SIMplyBee simulates the CSD region as a sequence
of non-recombining biallelic SNPs that determine a
CSD allele. To account for balancing selection [31]
at the CSD locus, we edit the initial founder genomes
to achieve the desired number and frequency of CSD
alleles in a population. The user can control the number
of possible CSD alleles (2length) by controlling the length
of the locus (in number of SNPs).

The getCsdAlleles() function retrieves CSD
alleles and reports two non-recombining haplotypes for
diploids as strings of 0s and 1s that represent respec-
tively ancestral and mutation alleles along the CSD
locus. The code below outputs the queen’s CSD alleles.
The first row of the output shows locus identifications
(chromosome_locus) and the first column shows
haplotype identifications (individual_haplo-
type). The two sequences are different, meaning that
the queen is heterozygous, as expected—otherwise her
egg would have developed into a diploid drone that
would have been killed by workers.

Heterozygosity of honeybees at the CSD locus is criti-
cal. The CSD alleles of this queen and the drones she
mated with (compare getCsdAlleles(queen) and
getCsdAlleles(fathers)—not shown) show
no allele matches, which means we do not expect any
homozygous brood in this colony. The pHomBrood()
function calculates the theoretical brood homozygosity
of a queen and the nHomBrood() function returns the
realized number of homozygous offspring.

In the following, we create an inbred colony by mat-
ing a virgin queen from our colony with her brothers,
and inspect the expected brood homozygosity.

In this case, 25% of the diploid brood is expected
to be homozygous. We now add workers to the col-
ony to observe how many of them are homozygous.
Inheritance is a random process, so the realised num-
ber of homozygotes will deviate from the expected
proportion.

Page 8 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

We aimed to add 100 workers, but we only got 71 due
to CSD homozygous brood. The information about the
number of homozygous brood is stored in the queen’s
miscellaneous slot and is updated every time we create
offspring from her.

Colony events
A honeybee colony can experience a series of events dur-
ing its life: swarming, superseeding, splitting, and col-
lapsing. We present the details of colony events and their
simulation in Additional file 3.

In swarming, a proportion of workers leave the
hive with the queen, while the rest of the workers and
the drones stay in the hive. New virgin queens emerge
and compete in the colony. The winner undergoes mating
flights as described above.

The swarm() function swarms a colony (Fig. 2). The
function takes the percentage of workers that leaves
with the swarm, p. This can be either a fixed number or
a function that samples p from either a uniform distri-
bution or from a beta distribution that accounts for the
number of individuals in a colony (colony strength). Fur-
ther details about the sampling functions are described in
Additional file 7. The swarm function returns an R list
with two colonies: swarm, which contains the old queen
and a proportion p of workers, and remnant, which

contains the rest of workers, all the drones, and the vir-
gin queens that are daughters of the queen that swarmed.
The function also changes the swarm status to TRUE and
the production status to FALSE

Fig. 2 A flow chart of the colony swarming event in SIMplyBee. The swarm() function returns an R list with two colonies, swarm and remnant,
both of which are non-productive. Parameter p represent the proportion of workers that leave with the swarm. After the swarm, the user can
cross() the virgin queen of the remnant colony, or use an already mated queen from another source using reQueen(), which mimics the
beekeepers’ options. Refer to the key in Fig. 1

Page 9 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

To build-up the population or prevent swarming, bee-
keepers often split strong colonies by taking away a pro-
portion of the workers and starting a new colony with a
new queen. The rest of the workers stay in the hive with
the old queen. The split() function takes a colony
and a proportion of the workers that are removed with
the split, p. The split function returns an R list with

two colonies: split, which contains the proportion p
of workers taken from the main hive and virgin queens,
and remnant, which contains the queen, the remaining
workers, and drones (Fig. 3). After the split, the remnant
colony is still productive, while the split is not.

Fig. 3 A flow chart of the colony splitting event in SIMplyBee. The split() function returns an R list with two colonies, split and remnant,
where the split is non-productive and the remnant is productive. Parameter p represents the proportion of workers that are removed in a split.
After the split, the user can cross() the virgin queen of the remnant colony, or use an already mated queen from another source using
reQueen(), which mimics the beekeepers’ options. Refer to the key in Fig. 1

Fig. 4 A flow chart of the colony supersedure event in SIMplyBee.
The supersede() function returns a queen-less colony with a
virgin queen. After a supersedure, a colony remains productive since
the colony is still at its full size but a cross() is required for a new
queen. Refer to the key in Fig. 1

Fig. 5 A flow chart of the colony collapse event in SIMplyBee. The
collapse() function keeps all the individuals in a colony, but
turns on the collapse parameter, hence marking the colony as
collapsed and all the individual within it as dead. Further simulation
with a collapsed colony is not allowed in SIMplyBee. Refer to the key
in Fig. 1

Page 10 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

In supersedure, the queen dies or is killed and its work-
ers raise new virgin queens. The supersede() func-
tion removes the queen and produces new virgin queens
from the brood (Fig. 4). After a supersedure, the colony is
still productive because the workers are still present and
working within the colony.

Finally, some colonies can collapse due to the death of
all its members. The collapse() function collapses a
colony by changing the collapse status to TRUE (Fig. 5).
The function keeps the individuals in the colony to enable
the study of genetic and environmental causes that contrib-
uted to the collapse. In reality, dead honeybees would also
be present in a collapsed colony.

SIMplyBee also includes functions to build-up a
colony, as shown above, a downsize() function that
removes a proportion of the workers, all drones, and all
virgin queens, and a function combine() that com-
bines a strong and a weak colony. Additional details
about simulating events are provided in Additional
file 3.

Working with multiple colonies
Beekeepers regularly work with a collection of colonies
at the same time. The MultiColony class collects a
list of colonies to represent an apiary, a region, an age
group, etc. Additional details about working with mul-
tiple colonies are provided in Additional file 2.

The createMultiColony() function creates a
MultiColony object. Here, we create an apiary with
three virgin colonies. The printout of the object returns
basic information, including the number of all, empty,
and NULL colonies, and information about the colony
events for the colonies in the Multicolony object.

All functions for managing a Colony object can also
be applied to a MultiColony object, which streamlines

Page 11 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

simulation scripts. These include functions for cross-
ing, adding or removing individuals, simulating colony
events, etc. Here, we demonstrate how to cross the api-
ary, build-up its colonies, and swarm some of them. The
createDrones function creates a DCA from the base
population virgin queens and the pullDroneGroups-
FromDCA() function samples three groups of drones
to mate the three virgin queens. As already mentioned,
functions that sample individuals can use either fixed
numbers or sampling functions (Additional file 7).

Next, the cross() function crosses the virgin queens
in the apiary with the provided drone groups. To test for
the presence of queens before and after mating to show
that mating was successful, we can use is*Present()
functions, where * is the caste, that check the presence of
a caste in a colony. The buildUp() function builds-up
all colonies in the MultiColony object.

Next, the pullColonies() function samples one col-
ony that will swarm. This returns an R list with two Multi-
Colony objects: pulled with the sampled colonies, and
remnant with the remaining ones. We save the latter back
in the apiary.

Now, the swarm function swarms the pulled colonies and
returns an R list with two MultiColony objects, remnant
and swarm. When applied to MultiColony, all the colo-
nies are swarmed with the same p, unless specified other-
wise. Additional details about simulating colony events for
MultiColony are provided in Additional file 3.

We can combine the colonies that did not swarm with
the swarm remnant(s) into an updated apiary.

Genomics and quantitative genetics
Similar to extracting the CSD genomic sequence, the
functions get*Haplo() or get*Geno() extract
whole-genome information for any set of individuals.
Here, * can be SegSite to extract all segregating/pol-
ymorphic loci tracked in the simulation, Snp to extract
marker loci, or Qtl to extract quantitative trait loci.
There is also getIbdHaplo() to extract identity by
descent information, with IBD alleles defined as those
originating from the base population genomes. These
functions leverage AlphaSimR functionality, but work
with SIMplyBee Colony or MultiColony objects and
in addition take the caste argument to extract informa-
tion only for a specific caste. All this genome information
is a result of haplodiploid inheritance. For example, the
code below extracts genotypes of the first five workers in
the colony at the first five tracked segregating sites. See
further details in Additional file 5.

Honeybee phenotypes are characterized by two impor-
tant phenomena. First, in honeybee keeping and breed-
ing, phenotypes are mostly collected at the colony level as
opposed to at the individual level. Second, phenotypes in
honeybees are a complex interaction between queen and
worker effects that are often negatively correlated [32, 33].
For most traits, the queen indirectly contributes to the col-
ony phenotype by laying eggs [34, 35] and by stimulating
the workers through pheromones [36, 37], while workers
contribute directly by doing the actual work.

SIMplyBee simulates genetic and phenotypic values for
each individual honeybee, but can also calculate colony-
level values from individual-level values. Quantitative
genetic simulation is initiated by specifying the assump-
tions about the genetic architecture of traits in SimPar-
amBee, including the number of quantitative trait loci, the
distribution of their effects, and genetic and environmental

Page 12 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

variances and covariances. In the following, we initiate
another simulation and specify two negatively correlated
traits that represent the queen and worker effect for honey
yield. Additional details and a more extensive explanation
of this simulation are provided in Additional file 6.

This initiation triggers calculation of individual-level
genetic and phenotypic values. Using the AlphaSimR Pop
class object, genetic and phenotypic values are stored in
gv and pheno slots, respectively. They can be accessed
with the getGv() and getPheno() functions, which
both have the caste argument and work on Colony and
MultiColony.

The calcColonyValue() function maps individ-
ual values to colony values using an established map-
ping function from the literature [14, 38, 39], but users
can also provide their own mapping function. Exam-
ples of such quantitative genetic simulations of one
or multiple correlated traits are shown in Additional
file 6.

Here, we compute the colony-level genetic and phe-
notypic values for the colonies in our apiary.

The best colony according to the genetic as well as
the phenotypic value is the colony with ID “12”, hence
we would select it for further reproduction. These
values can be passed into the use parameter of the
selectColonies() function.

Computing time
We tested the computing time needed to perform some
basic actions with SIMplyBee: create drones, and create,
cross, and build-up colonies (Additional file 8: Table S1).
The results show that most operations take seconds but
increase with larger numbers.

Discussion
SIMplyBee is an R package for holistic simulation of
honeybee breeding and conservation programs. In com-
parison to previously developed general genetics and
breeding simulators [15, 16], it simulates honeybee-
specific genomes, social organisation, and behaviours.
SIMplyBee differs from previously developed honeybee-
specific simulators [14, 17] by simulating individual hon-
eybees, individual-level and colony-level quantitative
values, and colony events that can affect genetic and phe-
notypic variation in a population.

Page 13 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

Potential uses of SIMplyBee
SIMplyBee provides a valuable research platform for
testing different population-management decisions and
answering various questions regarding the design of
breeding schemes. SIMplyBee can be used to test the
effect of various decisions in a breeding program on
genetic gain, genetic diversity, and inbreeding; or to test
the accuracy of inferences with competing quantitative
genetic models. For example, users can test the effect of
different phenotyping schemes by varying the frequency
of phenotyping or the measuring scale. Furthermore,
SIMplyBee can be used to test different mating control
designs and the effect of varying the number of sires or
drone-producing queens on a mating station. Users can
also test different selection strategies by varying the
time of selection, the number of selected queens, or the
sources of information (pedigree, genomic, and pheno-
typic data). The list of potential studies is long. SIMply-
Bee is also a valuable platform for answering questions
regarding the conservation of honeybees. Users might be
interested in the effect of mating and management deci-
sions on the genetic diversity in a population along the
whole genome or only at the CSD locus; in comparing
how different migration or import practices and associ-
ated policies affect genetic diversity; or how to design a
conservation program to preserve genetic diversity.

Why simulate individual bees?
Providing individual-level functionality might seem
excessive since colony-level values in honeybees can
be seen as equivalent to individual-level values in other
species, say, mammals. However, there are at least
seven reasons why this functionality supports current
and future honeybee research. First, colonies are made
up of individual honeybees and, thus, simulating indi-
vidual honeybees with associated genomes and values
is the correct thing to do. Second, having individual
workers’ values allows different interactions between
them to be simulated. For example, some phenotypes
might be additive and the combined workers’ contribu-
tion is just a simple sum of individual values. This addi-
tive model has been shown for honey yield once the
colony reaches a certain size to have a surplus of honey
[22]. However, such a model cannot be assumed for all
phenotypes. There is much debate and contradictory
results regarding the contribution of individual bees
to the colony-level phenotypic value. For example, for
defensive behavior, some studies show that a single or
a couple of aggressive workers in a colony can stimu-
late the rest and lead to highly defensive colony behav-
ior [40], while others suggest an additive model [41].
Although this knowledge gap is understandable, given
the considerable number of honeybees in a colony,

future advances in sensor and beekeeping technolo-
gies and data science (machine learning) will provide
ever more fine-grained data. Such data could further
contribute to explaining the relationship between indi-
vidual-level and colony-level phenotypes. To facilitate
different models, SIMplyBee leaves the construction of
the colony-level phenotype to the user, but it provides
the additive model as the simplest example. As such,
it can serve as a research platform for modeling dif-
ferent relationships and interactions. Third, simulating
individuals within a colony enables the study of genetic
relationships within and between colonies. Genetic
variability can be driven by genetic processes and col-
ony events. For example, splitting and swarming can
substantially affect genetic variability within a colony.
Fourth, related to the latter, individual-level simulation
allows studying and developing methods to compute
genetic relationships in honeybees for systems that
deviate from the commonly studied breeding design
[38, 39]. Fifth, having individual genomes allows study-
ing how pooled genotyping samples, commonly used
for honeybees, represent the queen’s or the colony’s
genetics [42], either in parentage testing and discovery,
or for quantitative genetic analyses, such as genomic
prediction and genome-wide association studies. Sixth,
simulating individual drones inherently simulates mul-
tiple patrilines within a colony, a patriline being all off-
spring of a single drone. This simulates a genetically
diverse colony and allows the potential differential
contributions of partilines to colony performance to be
modelled [43]. And seventh, researchers have already
begun to collect individual-level drone phenotypes, for
example, information on drone sperm quality [44].

Genetic values and its statistical components
SIMplyBee can serve as a research platform to test
assumptions about current quantitative genetic models
[14, 38, 39]. Quantitative genetic models can estimate
the joint effect of workers and the effect of the queen on
the colony-level phenotype. However, sometimes simpler
models are used [33, 45]. Based on the worker and queen
effect estimates, the performance, selection, and inherit-
ance criteria can be created [46].

Another challenge that we faced in developing SIM-
plyBee was in providing functionality to calculate statis-
tical genetic values, that is, breeding values, dominance
deviations, and epistasis deviations. Since SIMplyBee
leverages AlphaSimR [15], these values can be calculated
using AlphaSimR’s bv(), dd(), and aa() functions.
However, caution is required since traditional formulae
for these statistical components of genetic values assume
Hardy-Weinberg equilibrium [47] and are computed
“relative” to the population of individuals at hand. The

Page 14 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

latter means that for a honeybee simulation we would
either have to report these values relative to each colony
population, which would make the output relevant only
for each colony, or we would have to create a large “meta”
population object of all currently living honeybees. Fur-
ther development is required to address this aspect in
SIMplyBee.

Future development
Future development of the SIMplyBee package will focus
on additional features and on improving the functionality
and efficiency of existing features. Our immediate focus
is on the following three features. First, on developing a
new honeybee demographic model to include more sub-
species and to improve estimates of model parameters
[48]. While SIMplyBee currently uses MaCS [20] to sim-
ulate the genome, we will consider novel simulators that
may offer more flexibility and computational speed, such
as msprime (backward in time) [49, 50] and SLiM (for-
ward in time) [51] simulators. These simulators rely on a
public library of species’ genome information and demo-
graphic models, named stdpopsim, to which we have
already added the honeybee [52, 53]. Second, we will
further optimize the speed and memory performance of
SIMplyBee. A simulation of a real-size honeybee colony
or a breeding program with such colonies can be compu-
tationally demanding because a single colony can hold up
to several tens of thousands of workers. By timing some
of the basic SIMplyBee functions, we identified that the
current mating implementation is slow (Additional file 8:
Table S1). However, mating a large number of queens
by proving a single drone population and a mating plan
(crossPlan) halves computing times compared to mat-
ing queens to predefined drone populations (“drone pack-
ages”). Users can also decrease the computational burden
by simulating workers and drones only when needed,
for example, drones at the time of mating and workers
at the time of generating and analyzing phenotypes. We
plan to further optimize SIMplyBee by allowing workers’
contributions to colony-level phenotypes to be simulated
without storing the workers, which saves some time, but
mostly memory. Such a solution has already been imple-
mented in AlphaSimR for the simulation of hybrid plant
breeding programs. Running time can also be decreased
by, for example, working with the expectation and vari-
ance of genetic values in progeny [54, 55] instead of sim-
ulating tens of thousands of workers. We will also strive
to optimize functions by leveraging C++ via the Rcpp
package [56]. Third, we will add a geospatial component
to the simulation. Colony location plays a major role in
honeybee mating and colony performance. The current
implementation enables setting the location of every
Colony and MultiColony object. We will develop

functionality to create a DCA or sample the drones for a
virgin queen mating according to the location of colonies,
for example, in a certain radius, since virgin queens are
more likely to mate with drones from nearby colonies.
We will also add spatially-aware simulation of environ-
mental effects. Honeybee colony performance depends
heavily on the environment in terms of food provision,
weather, pests, etc. Such environmental conditions usu-
ally change continuously through space, hence colonies
that are closer together usually experience more similar
environmental conditions than colonies that are further
apart. The framework for such spatially aware simulation
and modelling has already been developed and tested in a
livestock setting [57].

We invite the honeybee genetics and breeding commu-
nity to join us in the future development of SIMplyBee. The
development is hosted on GitHub at https:// github. com/
Highl ander Lab/ SIMpl yBee. We welcome users and develop-
ers to fork this git repository and provide “pull request (PR)”
contributions. Each pull request is reviewed by one of the
developers within the core team. Based on the review, pull
requests will be updated before being merged into the devel-
opment branch. The development branch is periodically
merged into the main branch for publication on CRAN and
for user installation. For each function we request documen-
tation with examples and unit tests to ensure future changes
will not break the functionality.

This work describes the usage of SIMplyBee for simu-
lating honeybee populations. However, other bee species
share a similar organisation and behaviour as the hon-
eybee. Hence, SIMplyBee could also be used to simulate
other Apis species. For example, Apis florea, the dwarf
honeybee, and Apis cerana. Apis florea importantly con-
tributes to pollination in some countries of the Mid-
dle East and Asia. Its range is predicted to increase due
to climate change [58] and SIMplyBee could be used to
model a breeding program for this bee species as well.

Conclusions
This paper presents a stochastic simulator, SIMplyBee,
for holistic simulation of honeybee populations and pop-
ulation management programs. SIMplyBee builds upon
its predecessors by simulating genomes of individual
honeybees and corresponding individual-level genetic
and breeding values. SIMplyBee stores individual hon-
eybees as the caste populations within a colony object,
which enables the simulation of colony events and cal-
culation of colony-level quantitative values. Colonies
can be further organised into multi-colony objects for
ease of use. SIMplyBee provides a valuable research plat-
form for honeybee genetics, breeding, and conservation.
Possible uses include testing the effects of breeding or

https://github.com/HighlanderLab/SIMplyBee
https://github.com/HighlanderLab/SIMplyBee

Page 15 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

conservation decisions on genetic gain and genetic vari-
ability in honeybee populations, testing the performance
of existing and novel statistical methods, etc. Future
directions include improvements to the simulation of
honeybee chromosomes through new demographic
models, the addition of spatial awareness in mating and
phenotype simulation, reducing computational bottle-
necks, and encouraging community engagement. We
invite the honeybee genetics and breeding community to
collaborate with us in improving SIMplyBee.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s12711- 023- 00798-y.

Additional file 1. Honey biology vignette. This vignette introduces
SIMplyBee package by describing anddemonstrating how SIMplyBee
implements honeybee biology. Specifically, itdescribes how to initiate
simulation with founder genomes and simulationparameters, how to
create and build-up a colony, the colony structure, andcomplementary
sex determininglocus [20, 21] This vignette can also be found on https://
cran.r- proje ct. org/ packa ge= SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 2. Multiple colonies vignette. This vignette introduces
working with multiple colonies bydemonstrating how to create and work
with MultiColony objects inSIMplyBee. This vignette can also be found
on https:// cran.r- proje ct. org/ packa ge= SIMpl yBee and http:// www. SIMpl
yBee. info.

Additional file 3. Colony events vignette. This vignette introduces the
colony events and how tosimulate them in SIMplyBee. It shows how to
simulate swarming, splitting,superseding, and collapsing either a Colony
or MultiColony objects[59–61]. This vignette can also be found on https://
cran.r- proje ct. org/ packa ge= SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 4. Crossing vignette. This vignette demonstrated how to
cross virgin queens inSIMplyBee. It demonstrates how to cross a single or
multiple virgin queens,cross either with pre-selected population/group of
drones or according to across plan, and cross queens on an open DCA or
mating station. This vignette can also be found on https:// cran.r- proje ct.
org/ packa ge= SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 5. Genomics vignette. This vignette demonstrates how to
obtain genomic informationof simulated honeybees. It also demonstrates,
how to compute honeybeegenomic relationship matrices in SIMplyBee
[62–67]. This vignette can also be found on https:// cran.r- proje ct. org/
packa ge= SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 6. Quantitative genetics vignette. This vignette describes
and demonstrates how SIMplyBeeimplements quantitative genetics
principles for honeybees. Specifically, itdescribes three different examples
where we simulate a single colony trait,two colony traits, and two colony
traits where one trait impacts the otherone via the number of workers.
This vignette can also be found on https:// cran.r- proje ct. org/ packa ge=
SIMpl yBee and http:// www. SIMpl yBee. info.

Additional file 7. Sampling functions vignette. This vignette introduces
sampling functions that sample eitherthe number of caste individuals or
the proportion of workers that stay orare removed in colony events. This
vignette can also be found on https:// cran.r- proje ct. org/ packa ge= SIMpl
yBee and http:// www. SIMpl yBee. info.

Additional file 8. Computing time. The table shows the mean comput-
ing time for basicSIMplyBee functions of ten replicates. It shows the
time to create ten or amillion drones; create ten or a thousand empty or
virgin colonies; to crossten or a thousand colonies by providing n drone
populations, where n is the number of virgin queens, or by providing a
singledrone population and a cross plan; and to build-up ten or a thou-
sandcolonies to a thousand or 60 thousand workers.

Acknowledgements
The authors would like to thank R. Chris Gaynor for suggestions on how to
leverage AlphaSimR functionality to implement honeybee specificities in SIM-
plyBee, and Philip Greenspoon for suggestions on improving the manuscript.

Author contributions
JO and GG initiated the project, planned the SIMplyBee implementation,
and led the SIMplyBee development. LS, JB, and JP contributed to SIMplyBee
development, documentation, and testing. JO wrote the first draft of this
manuscript. All authors read and approved the final manuscript.

Funding
JO acknowledges support from the Slovenian Research Agency’s research
program P4-0133. JO, LS, JB, JP, and GG acknowledge support from the
Slovenian Research Agency’s research project L4-2624. JB acknowledges sup-
port from the Slovenian Research Agency’s PhD studentship 1000-20-0401.
JB and JP acknowledge the support from the Slovenian Research Agency’s
research program P4-0431. LS and GG acknowledge support from the BBSRC
DTP (EASTBio) CASE PhD studentship with AbacusBio and the BBSRC ISP grant
BBS/E/D/30002275 to The Roslin Institute. For the purpose of open access, the
authors have applied a Creative Commons Attribution (CC BY) license to any
Author Accepted Manuscript version arising from this submission.

Availability of data and materials
The data and material for this study are available at SIMplyBee website http://
www. SIMpl yBee. info, CRAN https:// cran.r- proje ct. org/ packa ge= SIMpl yBee,
and the SIMplyBee GitHub repository https:// github. com/ Highl ander Lab/
SIMpl yBe.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Author details
1 Department of Animal Science, The Agricultural Institute of Slovenia,
Ljubljana, Slovenia. 2 The Roslin Institute and Royal (Dick) School of Veterinary
Medicine, The University of Edinburgh, Edinburgh, UK. 3 Biotechnical Faculty,
Department of Animal Science, The University of Ljubljana, Ljubljana, Slovenia.

Received: 15 December 2022 Accepted: 31 March 2023

References
 1. Breeze TD, Dean R, Potts SG. The costs of beekeeping for pollination

services in the UK—an explorative study. J Apic Res. 2017;56:310–7.
 2. Nicola Gallai, Jean-Michel Salles, Josef Settele, Bernard E.

Vaissière,Economic valuation of the vulnerability of world agriculture con-
fronted with pollinator decline. Ecol Econ. 2009;68:810–21.

 3. Strano A, Stillitano T, De Luca AI, Falcone G, Gulisano G. Profitability
analysis of small-scale beekeeping firms by using life cycle costing (LCC)
methodology. Am J Agric Biol Sci. 2015;10:116–27.

 4. Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chau-
zat MP, et al. Drivers of colony losses. Curr Opin Insect Sci. 2018;26:142–8.

 5. Espregueira Themudo G, Rey-Iglesia A, Robles Tascón L, Bruun Jensen
A, da Fonseca RR, Campos PF. Declining genetic diversity of European
honeybees along the twentieth century. Sci Rep. 2020;10:10520.

 6. Smith KM, Loh EH, Rostal MK, Zambrana-Torrelio CM, Mendiola L, Daszak
P. Pathogens, pests, and economics: drivers of honey bee colony declines
and losses. EcoHealth. 2013;10:434–45.

https://doi.org/10.1186/s12711-023-00798-y
https://doi.org/10.1186/s12711-023-00798-y
https://cran.r-project.org/package=SIMplyBee
https://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info
https://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info
http://www.SIMplyBee.info
https://cran.r-project.org/package=SIMplyBee
https://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info
https://cran.r-project.org/package=SIMplyBee
https://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info
https://cran.r-project.org/package=SIMplyBee
https://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info
https://cran.r-project.org/package=SIMplyBee
https://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info
https://cran.r-project.org/package=SIMplyBee
https://cran.r-project.org/package=SIMplyBee
http://www.SIMplyBee.info
http://www.SIMplyBee.info
http://www.SIMplyBee.info
https://cran.r-project.org/package=SIMplyBee
https://github.com/HighlanderLab/SIMplyBe
https://github.com/HighlanderLab/SIMplyBe

Page 16 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

 7. Lodesani M, Costa C. Bee breeding and genetics in Europe. Bee World.
2003;84:69–85.

 8. Groeneveld LF, Kirkerud LA, Dahle B, Sunding M, Flobakk M, Kjos M,
et al. Conservation of the dark bee (Apis mellifera mellifera): estimating
C-lineage introgression in Nordic breeding stocks. Acta Agric Scand A
Anim Sci. 2020;69:157–68.

 9. Panziera D, Requier F, Chantawannakul P, Pirk CWW, Blacquiere T. The
diversity decline in wild and managed honey bee populations urges for
an integrated conservation approach. Front Ecol Evol. 2022;10:767950.

 10. Ilyasov RA, Lee ML, Takahashi JI, Kwon HW, Nikolenko AG. A revision of
subspecies structure of western honey bee Apis mellifera. Saudi J Biol Sci.
2020;27:3615–21.

 11. Dogantzis KA, Tiwari T, Conflitti IM, Dey A, Patch HM, Muli EM, et al. Thrice
out of Asia and the adaptive radiation of the western honey bee. Sci Adv.
2021;7:eabj2151.

 12. Moritz RFA, Härtel S, Neumann P. Global invasions of the western honey-
bee (Apis mellifera) and the consequences for biodiversity. Ecoscience.
2005;12:289–301.

 13. Sargolzaei M, Schenkel FS. QMSim: a large-scale genome simulator for
livestock. Bioinformatics. 2009;25:680–1.

 14. Plate M, Bernstein R, Hoppe A, Bienefeld K. The importance of controlled
mating in honeybee breeding. Genet Sel Evol. 2019;51:74.

 15. Gaynor RC, Gorjanc G, Hickey JM. AlphaSimR: an R package for breeding
program simulations. G3 (Bethesda). 2021;11:jkaa017.

 16. Pook T, Schlather M, Simianer H. MoBPS—modular breeding program
simulator. G3 (Bethesda). 2020;10:1915–8.

 17. Becher MA, Grimm V, Thorbek P, Horn J, Kennedy PJ, Osborne JL. BEEHAVE:
a systems model of honeybee colony dynamics and foraging to explore
multifactorial causes of colony failure. J Appl Ecol. 2014;51:470–82.

 18. Faux AM, Gorjanc G, Gaynor RC, Battagin M, Edwards SM, Wilson DL, et al.
AlphaSim: Software for breeding program simulation. Plant Genome.
2016;9:3.

 19. Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF,
et al. Exceptionally high levels of recombination across the honey bee
genome. Genome Res. 2003;16:1339–44.

 20. Chen GK, Marjoram P, Wall JD. Fast and flexible simulation of DNA
sequence data. Genome Res. 2009;19:136–42.

 21. Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, et al.
A worldwide survey of genome sequence variation provides insight
into the evolutionary history of the honeybee Apis mellifera. Nat Genet.
2014;46:1081–8.

 22. Farrar CL. The influence of colony populations on honey production. J
Agric Res. 1937;54:945–54.

 23. Allen MD. The effect of a plentiful supply of drone comb on colonies of
honeybees. J Apic Res. 1965;4:109–19.

 24. Koeniger N, Koeniger G, Gries M, Tingek S. Drone competition at drone
congregation areas in four Apis species. Apidologie. 2005;36:211–21.

 25. Neumann P, Moritz RFA, van Praagh J. Queen mating frequency in differ-
ent types of honey bee mating apiaries. J Apic Res. 1999;38:11–8.

 26. Goulet H, Huber JT. Hymenoptera of the world: an identification guide to
families. Ottawa: Agriculture Canada Publication; 1993.

 27. New TR. Hymenoptera and conservation. New York: Wiley; 2012.
 28. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, et al.

Evolutionary history of the hymenoptera. Curr Biol. 2017;27:1013–8.
 29. Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW. The gene csd is

the primary signal for sexual development in the honeybee and encodes
an SR-type protein. Cell. 2003;114:419–29.

 30. Woyke J. Drone larvae from fertilized eggs of the honeybee. J Apic Res.
1963;2:19–24.

 31. Cho S, Huang ZY, Green DR, Smith DR, Zhang J. Evolution of the comple-
mentary sex-determination gene of honey bees: balancing selection and
trans-species polymorphisms. Genome Res. 2006;16:1366–75.

 32. Bienefeld K, Pirchner F. Heritabilities for several colony traits in the honey-
bee (Apis mellifera carnica). Apidologie. 2007;21:175–83.

 33. Andonov S, Costa C, Uzunov A, Bergomi P, Lourenco D, Misztal I. Mod-
eling honey yield, defensive and swarming behaviors of Italian honey
bees (Apis mellifera ligustica) using linear-threshold approaches. BMC
Genet. 2019;20:78.

 34. Korb J, Meusemann K, Aumer D, Bernadou A, Elsner D, Feldmeyer B, et al.
Comparative transcriptomic analysis of the mechanisms underpinning

ageing and fecundity in social insects. Philos Trans R Soc Lond B Biol Sci.
2021;376:20190728.

 35. Remolina SC, Hughes KA. Evolution and mechanisms of long life and
high fertility in queen honey bees. Age (Dordr). 2008;30:177–85.

 36. Hoover SE, Keeling CI, Winston ML, Slessor KN. The effect of queen phero-
mones on worker honey bee ovary development. Naturwissenschaften.
2003;90:477–80.

 37. Kocher SD, Richard FJ, Tarpy DR, Grozinger CM. Queen reproductive state
modulates pheromone production and queen-worker interactions in
honeybees. Behav Ecol. 2009;20:1007–14.

 38. Bienefeld K, Ehrhardt K, Reinhardt F. Genetic evaluation in the honey bee
considering queen and worker effects—a BLUP-Animal Model approach.
Apidologie. 2007;38:77–85.

 39. Brascamp EW, Bijma P. Methods to estimate breeding values in honey
bees. Genet Sel Evol. 2014;46:53.

 40. Taber S. Bee behavior: determining resistance to brood diseases. Am Bee
J. 1982;122:422–5.

 41. Moritz RFA, Southwick EE. Phenotype interactions in group behavior of
honey bee workers (Apis mellifera L.). Behav Ecol Sociobiol. 2005;21:53–7.

 42. Eynard SE, Vignal A, Basso B, Canale-Tabet K, Le Conte Y, Decourtye A,
et al. Reconstructing queen genotypes by pool sequencing colonies in
eusocial insects: statistical methods and their application to honeybee.
Mol Ecol Resour. 2022;22:3035–48.

 43. Graham S, Myerscough MR, Jones JC, Oldroyd BP. Modelling the role of
intracolonial genetic diversity on regulation of brood temperature in
honey bee (Apis mellifera L.) colonies. Insectes Soc. 2006;53:226–32.

 44. Slater GP, Harpur BA. Using genomics to predict drone quality: why are
there so many ‘dud’ male honey bees?. In Proceedings of 12th World
Congress on Genetics Applied to Livestock Production: 3-8 July 2022;
Rotterdam; 2022.

 45. Basso B, Kistler T, Gerez T, Phocas F. Genetic analysis of royal jelly produc-
tion and behaviour traits of honeybees. In Proceedings of 12th World
Congress on Genetics Applied to Livestock Production: 3-8 July 2022;
Rotterdam; 2022.

 46. Du M, Bernstein R, Hoppe A, Bienefeld K. Short-term effects of controlled
mating and selection on the genetic variance of honeybee populations.
Heredity (Edinb). 2021;126:733–47.

 47. Falconer DS. A note on Fisher’s ‘average effect’ and ‘average excess’. Genet
Res. 1985;46:337–47.

 48. Obšteter J, Marinč A, Prešern J, Wragg D, Gorjanc G. Inferring whole-
genome tree sequences and population and demographic parameters
of the Western honeybee. In Proceedings of 12th World Congress on
Genetics Applied to Livestock Production: 3-8 July 2022; Rotterdam; 2022.

 49. Kelleher J, Etheridge AM, McVean G. Efficient coalescent simulation and
genealogical analysis for large sample sizes. PLoS Comput Biol. 2016;12:
e1004842.

 50. Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP, Tsambos
G, et al. Efficient ancestry and mutation simulation with msprime 1.0.
Genetics. 2022;220:iyab229.

 51. Haller BC, Messer PW. SLiM 3: forward genetic simulations beyond the
wright-fisher model. Mol Biol Evol. 2019;36:632–7.

 52. Adrion JR, Cole CB, Dukler N, Galloway JG, Gladstein AL, Gower G, et al. A
community-maintained standard library of population genetic models.
ELife. 2020;9:e54967.

 53. Lauterbur ME, Cavassim MIA, Gladstein AL, Gower G, Pope NS, Tsambos G,
et al. Expanding the stdpopsim species catalog, and lessons learned for
realistic genome simulations. BioRxiv. 2022. https:// doi. org/ 10. 1101/ 2022.
10. 29. 51426 6v1.

 54. Lehermeier C, Teyssèdre S, Schön CC. Genetic gain increases by applying
the usefulness criterion with improved variance prediction in selection of
crosses. Genetics. 2017;207:1651–61.

 55. Werner CR, Gaynor RC, Sargent DJ, Lillo A, Gorjanc G, Hickey JM. Genomic
selection strategies for clonally propagated crops [preprint], 2020. https://
doi. org/ 10. 1101/ 2020. 06. 15. 152017.

 56. Eddelbuettel D, Balamuta JJ. Extending R with C++: a brief introduction
to RCPP. Am Stat. 2018;72:28–36.

 57. Selle ML, Steinsland I, Powell O, Hickey JM, Gorjanc G. Spatial modelling
improves genetic evaluation in smallholder breeding programs. Genet
Sel Evol. 2020;52:69.

 58. Parichehreh S, Tahmasbi G, Sarafrazi A, Tajabadi N, Fard SS, Rezaei H.
Predicting distribution modeling of Apis florea F. in the world. In the 47th

https://doi.org/10.1101/2022.10.29.514266v1
https://doi.org/10.1101/2022.10.29.514266v1
https://doi.org/10.1101/2020.06.15.152017
https://doi.org/10.1101/2020.06.15.152017

Page 17 of 17Obšteter et al. Genetics Selection Evolution (2023) 55:31

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

APIMONDIA International Apicultural Congress: 24–28 August 2022;
Istanbul; 2022.

 59. Rangel J, Seeley TD. Colony fissioning in honey bees: size and significance
of the swarm fraction. Insectes Soc. 2012;59:453–62.

 60. Clemson Cooperative Extension. Frequently asked questions about
honey bee swarms. 2021. https:// hgic. clems on. edu/ facts heet/ frequ ently-
asked- quest ions- about- honey- bee- swarms/. Accessed 11 Nov 2022.

 61. Hamdan K. Natural supersedure of queens in honey bee colonies. Bee
World. 2010;87:52–4.

 62. Druet T, Legarra A. Theoretical and empirical comparisons of expected
and realized relationships for the X-chromosome. Genet Sel Evol.
2020;52:50.

 63. Grossman M, Eisen EJ. Inbreeding, coancestry, and covariance between
relatives for X-chromosomal loci. J Hered. 1989;80:137–42.

 64. Grossman M, Fernando RL. Covariance between relatives for X-chro-
mosomal loci in a population in disequilibrium. Theor Appl Genet.
1989;77:311–9.

 65. Fernando RL, Grossman M. Genetic evaluation with autosomal and
X-chromosomal inheritance. Theor Appl Genet. 1990;80:75–80.

 66. Van Arendonk JA, Tier B, Kinghorn BP. Use of multiple genetic markers in
prediction of breeding values. Genetics. 1994;137:319–29.

 67. Hill WG, Weir BS. Variation in actual relationship as a consequence of
Mendelian sampling and linkage. Genet Res (Camb). 2011;93:47–64.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://hgic.clemson.edu/factsheet/frequently-asked-questions-about-honey-bee-swarms/
https://hgic.clemson.edu/factsheet/frequently-asked-questions-about-honey-bee-swarms/

	SIMplyBee: an R package to simulate honeybee populations and breeding programs
	Abstract
	Background
	Implementation
	Results
	Discussion

	Background
	Implementation
	Results
	Honeybee genome and initiating a honeybee simulation
	Colony as an operational unit
	Haplodiploidy and CSD
	Colony events
	Working with multiple colonies
	Genomics and quantitative genetics
	Computing time

	Discussion
	Potential uses of SIMplyBee
	Why simulate individual bees?
	Genetic values and its statistical components
	Future development

	Conclusions
	Anchor 23
	Acknowledgements
	References

