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practices
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Abstract 

Background In breeding programmes, the observed genetic change is a sum of the contributions of different selec-
tion paths represented by groups of individuals. Quantifying these sources of genetic change is essential for identify-
ing the key breeding actions and optimizing breeding programmes. However, it is difficult to disentangle the contri-
bution of individual paths due to the inherent complexity of breeding programmes. Here we extend the previously 
developed method for partitioning genetic mean by paths of selection to work both with the mean and variance of 
breeding values.

Methods First, we extended the partitioning method to quantify the contribution of different paths to genetic vari-
ance assuming that the breeding values are known. Second, we combined the partitioning method with the Markov 
Chain Monte Carlo approach to draw samples from the posterior distribution of breeding values and use these 
samples for computing the point and interval estimates of partitions for the genetic mean and variance. We imple-
mented the method in the R package AlphaPart. We demonstrated the method with a simulated cattle breeding 
programme.

Results We show how to quantify the contribution of different groups of individuals to genetic mean and variance 
and that the contributions of different selection paths to genetic variance are not necessarily independent. Finally, we 
observed that the partitioning method under the pedigree-based model has some limitations, which suggests the 
need for a genomic extension.

Conclusions We presented a partitioning method to quantify sources of change in genetic mean and variance in 
breeding programmes. The method can help breeders and researchers understand the dynamics in genetic mean 
and variance in a breeding programme. The developed method for partitioning genetic mean and variance is a pow-
erful method for understanding how different selection paths interact within a breeding programme and how they 
can be optimised.

Background
Analysing genetic trends is essential for identifying key 
breeding actions and optimising breeding programmes. 
The observed genetic change is a sum of contributions 
from different selection paths represented by groups of 
individuals. However, these contributions are difficult to 
quantify due to the inherent complexity of breeding pro-
grammes. Contributions of selection paths differ because 
of differences in selection intensity, accuracy, genetic 
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variation, generation interval, and dissemination. To 
quantify the contributions, García-Cortés et al. [1] devel-
oped a method for analysing the change in the genetic 
mean by partitioning the breeding values into the con-
tributions of several paths. The method uses the stand-
ard partitioning of an individual’s breeding value ak into 
parent breeding values 1

2
af (k) and 1

2
am(k) and a Mendelian 

sampling term wk.
Furthermore, the method assigns parent breeding val-

ues and Mendelian sampling terms to analyst-defined 
paths, such as sex, origin, selection path, etc. By aggregat-
ing these partitions by other variables, such as year, the 
method summarises the contributions of different groups 
of individuals to the overall genetic trend. This approach 
has been used to quantify the contributions of differ-
ent countries to the overall genetic trend in the global 
Brown Swiss population [2], global and local Holstein 
populations [2], and Croatian Simmental cattle [3], Croa-
tian Landrace, and Large-White pigs [4]. More recently, 
the method was used to estimate the starting point of 
adopting genomic selection by quantifying differences in 
genetic trends estimated with pedigree-based and single-
step genomic best linear unbiased prediction (BLUP) [5].

In addition to the contribution of paths to changes in 
genetic mean, breeding programmes should also consider 
analysing changes in genetic variance to fully understand 
the source of genetic change in a population [6, 7]. Further-
more, managing the change in genetic mean and variance 
in breeding programmes is essential to ensure a long-term 
genetic gain [8, 9]. Therefore, we must quantify the contri-
bution of different selection paths in a breeding programme 
to the genetic mean and variance. For example, in several 
economically important species, male selection and dissem-
ination represent a crucial lever that has the largest impact 
on a population’s genetic mean and variance.

The aim of this paper is to extend the method of 
García-Cortés et al. [1] to (i) partition the genetic mean 
and variance, (ii) implement the method in AlphaPart 
R package, and (iii) apply the partitioning method to esti-
mated breeding values following the work of [6] and [7]. 
We used simulation to demonstrate the methodology and 
provide insights on how to use the AlphaPart R pack-
age [10] to analyse real data.

Methods
Partitioning theory
In this section, we delve into the theory of partitioning 
breeding values and the computation of their mean and 
variance.

Let a be a vector of breeding values following a normal 
distribution with mean 0 and pedigree-based covariance 
Aσ 2

a  . Then, we can write a as a linear combination of the 

individual’s ancestor breeding values and the individu-
al’s deviation from the ancestors a = Tw, where T is a 
lower-triangular matrix of expected gene flow between 
ancestors and individuals following a pedigree, and 
w ∼ N

(
0,Wσ 2

a

)
 are Mendelian sampling terms repre-

senting the deviations, with W being a diagonal matrix 
of variance coefficients and σ 2

a  the base population 
(additive) genetic variance [11–14].

Assuming a factor with p levels, representing our 
paths of interest, and for any set 

∑p
j=1

Pj = I , García-
Cortés et  al. [1] partitioned the gene flow matrix into 
contributions of each path by defining Tj = TPj , 
j = 1, 2, . . . , p , and further partitioned the contribu-
tion of each path to breeding values a priori using the 
equality:

García-Cortés et al. [1] further showed that these contri-
butions can be estimated from data collected in breed-
ing programmes (a posteriori). They first calculated the 
conditional expectation of breeding values given pheno-
type data ( y ), EBV = â = E

(
a|y

)
 . Then they plugged the 

estimated breeding value (EBV), represented by â , and 
estimated Mendelian sampling terms (ŵ) into Eq. (1). 
This approach enabled them to estimate the conditional 
expectation of partitions, i.e., âj = E

(
aj|y

)
:

By summarising the breeding value partitions over 
time, García-Cortés et  al. [1] quantified the contribu-
tion of each path (for example, males vs females, differ-
ent countries, etc.) to genetic mean over time: µat with 
t = 1, 2, . . . ,m . Technically this is achieved by sub-setting 
the â1, â2, . . . , âp and averaging each subset to obtain µ̂ajt

 
where 

∑p
j=1

µ̂ajt
= µ̂at.

This method has been implemented in the AlphaPart 
R package [10, 15]. The AlphaPart R package efficiently 
calculates the partitions by leveraging the sparse T−1 
[11–14], and enables a straightforward summary by one 
variable, such as year, or combination of variables (inter-
action), such as year and sex. We refer to this variable as 
x∗t  , with t = 1, 2, . . . ,m , and m representing the number 
of distinct categories. Importantly, AlphaPart enables 
the use of any function to summarise the partitions of 
breeding values, i.e., f

(
aj
)
.

To enable the use of variance as one of the summary 
functions in AlphaPart, we extend the partition-
ing method to analyse the contribution of paths to 
genetic variance. Variance of breeding values is, a priori, 

(1)
a =

(
T1 + T2 + · · · + Tp

)
w = a1 + a2 + · · · + ap.

(2)
â =

(
T1 + T2 + · · · + Tp

)
ŵ = â1 + â2 + · · · + âp.
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Var(a) = Var(Tw) = TWT⊤σ 2
a  . Using Eq. (1), we can 

further partition the genetic variance by paths as:

where Aj = TjWT⊤
j  and Aj,j′ = TjWT⊤

j′  . Note that Aj and 
Ajj′ are different from the regular numerator relationship 
matrix A ; for example, some diagonals in Aj and Aj,j′ have 
zero values. Note also that this partitioning of the genetic 
variance is similar to the multi-breed partitioning of the 
genetic variance [16]—we parameterise the model with 
one base population genetic variance. In contrast, García-
Cortês and Toro [16] parameterised the model with mul-
tiple base population genetic variances and covariances.

While this partitioning by paths may involve dense 
matrices such as Aj and Aj,j′ , we can efficiently calculate 
the partitions a1, a2, . . . , ap by working with the sparse T−1 
[11–14, 17]. Again variable x∗t  with m distinct categories, 
t = 1, 2, . . . ,m , is used to summarise the paths. Thus, we 
can define the genetic variance for the partition j given cat-
egory t that has nk ≤ nI individuals, k∗ = 1, 2, . . . , nk , as:

where ajt is a column for partition j, but only considering 
individuals in category t, nk is the number of individuals 
in category t, and µajt

= 1
nk

∑nk
k∗=1

ajt ,k∗ . Similarly, 
the  genetic covariance between the partitions j and j′ , 
j  = j′ , given category t is then:

Note that the formulation of variance Eq. (4) and covari-
ance Eq. (5) are similar to the definition in [6] but applied 
to breeding value partitions. By sub-setting the partitions 

(3)

Var(a) = Var
��
T1 + T2 + · · · + Tp

�
w
�
,

=
p�

j=1

Var
�
Tjw

�
+ 2

p−1�

j=1

p�

j′=j+1

Cov
�
Tjw,Tj′w

�
,

=
p�

j=1

TjWT
⊤
j σ

2
a + 2

p−1�

j=1

p�

j′=j+1

TjWT
⊤
j′ σ

2
a ,

=




p�

j=1

aj + 2

p−1�

j=1

p�

j′=j+1

aj,j′



σ 2
a ,

(4)

Var
(
ajt

)
= E

(
a2jt

)
− E2

(
ajt

)
,

=
1

nk

nk∑

k∗=1

(
ajt ,k∗ − µajt

)2
,

= σ 2
ajt
,

(5)

Cov
(
ajt , aj′ t

)
= E

(
ajt aj′ t

)
− E

(
ajt

)
E
(
aj′ t

)
,

=
1

nk

nk∑

k∗=1

(
ajt ,k∗ − µajt

)(
aj′ t ,k∗ − µaj′ t

)
,

= σajt ,aj′ t
.

a1, a2, . . . , ap by the variable x∗t  , such as year, we can cal-
culate Eqs. (4) and (5) for each category.

It is worth noting that there is a difference between Eq. (3) 
and Eq. (4) or (5). The σ 2

a in Eq. (3) represents the base popu-
lation genetic variance, while the expression (∑p

j=1
Aj + 2

∑p−1

j=1

∑p
j′=j+1

Aj,j′

)
σ 2
a describes how the 

variance changes through a given pedigree and how it parti-
tions by paths. Equations (4) and (5) represent the variance 
and covariance of breeding value partitions a1, a2, . . . , ap, 
that contribute to the total genetic variance but calculated 
just for individuals in the category t. Therefore, we can parti-
tion a population’s genetic variance into path contributions, 
which can be summarised in the same ways as genetic mean 
[1, 18]. Such analyses can quantify the contribution of differ-
ent paths to changes in genetic mean and variance over time, 
µat and σ 2

at
 . For example, to quantify how selection paths by 

sexes contribute to changes in genetic mean and variance in 
a breeding programme, as shown in the “Results” section, or 
to quantify the contribution of different countries (when 
importing), artificial insemination centres, or breeders.

The presented partitioning of genetic variance holds for 
true breeding values. However, when EBV are available, we 
cannot substitute a1, a2, . . . , ap with their expectations 
â1, â2, . . . , âp in Eqs. (4) and (5) as García-Cortés et al. [1] 
could do it for the partitioning of the genetic mean. To see 
this, imagine a situation where EBV are based on very lim-
ited phenotype information. Such EBV will be shrunken 
strongly towards zero and will have a low accuracy [14]. As 
such, these EBV will not be a good representation of true 
breeding values, and their variance, 
Var( EBV) = Var

(
E
(
a|y

))
 will be much smaller than the 

variance of breeding values σ 2
a  and its time trajectory σ 2

at
 . 

To address this issue, we use the approach from Sorensen 
et al. [6], and Lara et al. [7] that involves three steps. First, 
sample breeding values from their posterior distribution 
[17]. Second, for every sample of breeding values, calculate 
desired quantities. In our case, the desired quantities are 
mean and variance of breeding values over time: µat and 
σ 2
at

 ; breeding value partitions: a1, a2, . . . ap ; and mean, vari-
ance, and covariance of the partitions over time: µajt

 , σ 2
ajt

 , 
and σajt ,aj′t . Multiple samples of these quantities represent 
their posterior distributions: p

(
µat |y

)
 , p

(
σ 2
at
|y
)
 , 

p
(
a1, a2, . . . ap|y

)
 , p

(
µajt

|y
)
 , p

(
σ 2
ajt
|y
)
 , and p

(
σajt ,aj′t

|y
)
 . 

Third, summarise the samples to describe the posterior 
distributions of interest.

Statistical model and computational approaches
In the previous subsection, we assumed that  the true 
breeding values were known. However, in reality, we infer 
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breeding values from phenotype data. To this end, we fit-
ted the standard pedigree-based model to data described 
in the “Simulation” section:

where y is a vector of observed phenotypes, b is a vector 
of fixed effects with the design matrix X , a is a vector of 
breeding values with the design matrix Z , σ 2

e  is a residual 
variance, A is pedigree-based relationship matrix and 
σ 2
a  is genetic variance in the base population. Additional 

file 1: Figs. S1 and S2 provide more information about the 
model definition.

We sampled from the posterior distribution of all 
model parameters with the Gibbs algorithm (a Markov 
Chain Monte Carlo (MCMC) method) as implemented 
in [19]. First, we constructed one chain with 80,000 sam-
ples, of which 20,000 were considered burn-in, while 
the remaining 60,000 were stored and thinned by sav-
ing every 40-th sample. Then, we assessed the burn-in 
convergence by inspecting the trace and auto-correla-
tion plots. Consequently, 1500 samples of breeding val-
ues were stored, representing the posterior distribution 
p
(
a|y

)
 . These samples were passed as input to the Alp-

haPart R package.
It is imperative to note that the proposed partitioning 

method requires samples from the posterior distribution 
p
(
a|y

)
 to enable inference of the path contributions to 

both genetic mean and variance. While we have used the 
full Bayesian approach with MCMC [17], an alternative is 
to use the empirical Bayesian approach; estimating vari-
ance components with restricted maximum likelihood 
(REML) and sampling breeding values assuming that 
variance components are known [7, 17]. The full Bayesian 
approach is recommended to account for uncertainty in 
estimating all model parameters.

Frequentist measures of model fit and agreement
The partitioning methodology depends on well-cali-
brated estimates of breeding values. If the used model (6) 
does not adequately describe the data, estimates of a and 
derived quantities might be miss-calibrated [20]. Work-
ing with simulation, we have the benefit of knowing the 
true breeding value of individuals ( a ) and can hence eval-
uate how our estimates of breeding values are calibrated.

First, we evaluated the agreement between true and esti-
mated mean and variance of breeding values over genera-
tions using the concordance correlation coefficient defined 
by [21]. Let t be the index for the generation with 
t = 1, 2, . . . ,m . Recall the mean and variance of true 

(6)
y|b, a ∼ N

(
Xb+ Za, Iσ 2

e

)
,

a ∼ N
(
0,Aσ 2

a

)
,

breeding values at generation t respectively as µat and σ 2
at

 . 
Moreover, let â = E

(
a|y

)
 be the vector of posterior means 

of individual breeding values in p
(
a|y

)
 , and E

(
ât
)
 and 

Var
(
ât
)
 , respectively, be the mean and variance of these 

posterior means at generation t. We then evaluated the 
agreement between the variables Y∗

1t
=

(
µa1 ,µa2 , . . . ,µam

)⊤ 
and Y∗

2t
=

(
E
(
â1t

)
,E

(
â2t

)
, . . . ,E

(
âmt

))⊤ and between the 
variables Y∗

1t
=

(
σ 2
a1
, σ 2

a2
, . . . , σ 2

am

)⊤ and Y
∗
2t

=
(
Var

(
â1t

)
,

Var
(
â2t

)
, . . . ,Var

(
âmt

))⊤ . Assuming that the pairs of (
Y ∗
1t
,Y ∗

2t

)
 are independent draws from a bi-variate popula-

tion with means µ1 and µ2 and a covariance matrix:

we can evaluate the agreement between Y∗
1t

 and Y∗
2t

 with 
the concordance correlation coefficient [21]. This coeffi-
cient lies between −1 and 1, and is given by:

where µ1 = E

(
Y∗
1t

)
 , µ2 = E

(
Y∗
2t

)
 , σ 2

1
= Var

(
Y∗
1t

)
 , 

σ 2
2
= Var

(
Y∗
2t

)
 , and σ12 = Cov

(
Y∗
1t
,Y∗

2t

)
 . It can be 

shown that ρc = ρ × Cb , where ρ is the Pearson correla-
tion coefficient, and Cb is the bias correction factor. Here, 
ρ measures how far each observation deviates from the 
best-fit line, and Cb ∈ [0, 1] measures how far the best-fit 
line deviates from the identity line y = x and is defined as 
Cb = 2

(
v + v−1 + u2

)−1 , where v = σ 2
1
/σ 2

2
 is a scale shift 

and u = (µ1 − µ2)/
√
σ1σ2 is a location shift relative to 

the scale. When Cb = 1 , there is no deviation from the 
identity line, consequently, the quantity of interest is 
close to the ‘truth’. We also used root mean square devia-
tion (RMSD) to measure the bias between Y∗

2t
 and Y∗

1t
 , 

which is given by:

We also evaluated the distribution of the difference 
between true and estimated quantities of interest. We 
show this evaluation for mean and variance of breeding 
value partitions over various categories (sex and genera-
tion in the example described in the following). Let nr be 
the number of simulation replicates, r = 1, 2, . . . , nr and 
ajt ,r the partition of breeding values for the path j cate-
gory of individuals t in replicate r. We obtained the pos-
terior distribution of our quantities of interest for the 
partitions and categories in each replicate: p

(
µajt ,r

|yr
)
 , 

Cov(Y ∗
1t
,Y ∗

2t
) =

(
σ 2
1

σ12
σ12 σ 2

2

)
,

ρc =
2σ12

σ 2
1
+ σ 2

2
+ (µ1 − µ2)

2

RMSD =
[
1

m

(
Y∗
2t
− Y∗

1t

)⊤(
Y∗
2t
− Y∗

1t

)]1/2
.
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p
(
σ 2
ajt ,r

|yr
)
 , and p

(
σajt ,r , aj

′
t ,r
|yr

)
 , summarised these 

posterior distributions with the posterior mean, and cal-
culated the difference between this posterior mean and 
the corresponding true value, for example, 
µajt ,r

− E
(
µajt ,r

|yr
)
 . With a good model fit, we expect 

that the difference is centred around zero.

AlphaPart implementation
The partitioning method is implemented in the Alp-
haPart R package [10, 18]. The main input for the anal-
ysis is a data frame (data) with:

• pedigree information for individual (id), sire (Fid) 
and dam (Mid);

• partition variable (path)—colPath;
• breeding values for one or multiple traits—colBV;
• grouping variable ( x∗t  ) used to compute the condi-

tional expectations such as generation, birth year, 
location, etc.

We partition the breeding values (BV) by paths using:

We summarise the partitions using the grouping vari-
able (time) using:

where object is an object of class AlphaPart with 
breeding value partitions, by represents the column by 
which summary function FUN is applied. For this work, 
we included an extra argument cov that controls how 
the covariances are displayed in the output. If cov = 
FALSE, the default, all covariances are returned in a sin-
gle column as 2

∑p−1

j=1

∑p
j′=j+1

Cov(aj , aj′) , otherwise, if 
cov = TRUE, the summary method returns p(p− 1)/2 
columns, where each column represents covariances as 
2Cov(aj , aj′).

We further describe how to use the posterior samples 
of breeding values from the “Statistical model and com-
putational approaches” section in AlphaPart. Let T be 
the number of traits and S be the number of samples of 

breeding values. Suppose data is a data frame contain-
ing columns for individual (id), father (Fid), mother 
(Mid), path (path), and generation (Gen). Now suppose 
a more general case where bv_samples represents a 
data frame containing a column for the individual (id) 
identification and S columns for the samples of breed-
ing values, as shown in Fig. 1. To prepare the input data 
for AlphaPart, we can merge the data frames called 
data and bv_samples into a new data frame called 
newData (Fig.  1). We can then use the function Alp-
haPart() to calculate breeding value partitions with 
the difference that we now should pass the names of the 
samples to the argument colBV (Fig. 1). Afterwards, the 
summary() function can be called to summarise the 
partitions using an explanatory variable, such as gen-
eration (Gen). Since we work with posterior samples of 
breeding values, we obtain posterior samples for the 
summaries of the partitions (see the accompanying code). 
Finally, in the case with more than one trait, we suggest a 
for loop (possibly parallelised) to create one output per 
trait, as shown in Fig.  1. In an extreme case with more 
traits than samples, an alternative approach would be to 
save one sample of breeding values for multiple traits in 
one data frame and loop over the samples.

Simulation
To evaluate the method and AlphaPart implementa-
tion, we simulated a simple cattle breeding programme 
over 40 generations with 1000 individuals per generation. 
The first 20 years represented a burn-in phase, where we 
selected the best 5 males (out of 500) as sires based on 
their phenotype and mated them with all 500 females 
from the previous generation and all 500 females from 
the current generation. These matings produced 1000 
selection candidates for the next generation. After the 
burn-in phase, we tested two selection scenarios over 
a further 20 generations: we selected  the 5 best males 
from 500 male candidates based on (i) their phenotypes 
(‘medium-accuracy’ scenario, r = 0.3 ) or (ii) true breed-
ing values (‘high-accuracy’ scenario, r = 1 ), as shown in 
Fig.  2. We replicated the simulation 30 times with the 
same founding genomes.

The simulation was done with the AlphaSimR R pack-
age version 1.0 [22]. We simulated a cattle genome from 
the coalescent model with recombination and Holstein 
demography [23]. The genome had 30 chromosomes 
and 30,000 quantitative trait loci (QTL). The QTL were 
randomly sampled from segregating sites and had an 
additive effect sampled from a normal distribution for 
a single-trait phenotype with a heritability of 0.3. The 
above-described breeding programme has a low effective 
population size (ignoring that we use females for two gen-
erations Ne ∼ (4 × nSires × nDams)/(nSires + nDams)
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= (4 × 5× 1000)/(1005) < 20 ) because our aim was to 
generate an intense selection situation that would show 
changes in genetic mean and variance. We split the 
gene-flow matrix T by specifying male and female paths (
Pm + Pf = I

)
 . Furthermore, we split the male path into 

selected and non-selected path 
(
Ps
m + Pn

m = Pm

)
 , where 

Pm is a diagonal matrix with 1s in rows for males and 
zeros otherwise; Pf = I− Pm ; Ps

m is a diagonal matrix 
with ones in rows for selected males, and Pn

m = Pm − Ps
m 

is a diagonal matrix with 1s in rows for non-selected 
males. To facilitate interpretation, we scaled the genetic 
mean and variance of the base population, respectively, 
to 0 and 1.

Software implementation
We simulated the cattle breeding programme using 
AlphaSimR R package [22]. We fitted the model in Eq. 
(6) using the BLUPF90 family of programs [19], while 
all post-processing was done in R [15]. To compute and 
summarise the partitions, we used the AlphaPart 
R package [10], to prepare data and present results, we 
used the collection of tidyverse R packages [24] 
and patchwork R package [25]. The simulation and 
analysis code is fully available at the GitHub reposi-
tory https://github.com/HighlanderLab/
toliveira_alphapart_variance.

Results
Partitioning of true breeding values
Analysing true breeding values is essential to demon-
strate how the partitioning of breeding values and their 
means and variances works without the uncertainty of 
estimating breeding values. Figure 3 shows distributions 
of true breeding values and partitions over generations 
for the medium-accuracy scenario. While we partitioned 
true breeding values, simulation was driven by selection 
with medium or high accuracy. The accuracy impacted 
true trends in genetic mean and variance, and we ana-
lysed these simulation outputs.

Figure 3a shows partitions for female and male paths. 
As expected, the male path contributed the most to 
genetic gain, almost twice as much as the female path. 
Even though there was no selection between females (all 
females contributed progeny for two generations), the 
contribution of the female path was significantly different 
from zero. This shows that nevertheless  the female path 
contributed to the genetic gain, as we will analyse further 
below.

We now turn attention to the summary of the parti-
tions from Fig.  3 with a mean and variance shown in 
Fig. 4, focusing on the medium-accuracy scenario. Means 
of partitions followed the centre of distributions shown 
in Fig.  3. In contrast, partitioning variances indicated a 
smaller variation for the male path than for the female 

Fig. 1 Flowchart representing a possible algorithm to evaluate contributions of paths to genetic mean and variance using samples of breeding 
values with the AlphaPart R package in a multi-trait case

https://github.com/HighlanderLab/toliveira_alphapart_variance
https://github.com/HighlanderLab/toliveira_alphapart_variance
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Fig. 2 Simulation scheme illustrating an overview of the medium- and high-accuracy scenarios

Fig. 3 Distribution of breeding value partitions by sex and by sex and selection status [selected males (M(S)), non-selected males (M(N)), and 
females (F)] over generations for medium-accuracy scenario
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path, in line with only male selection in our example. 
However, trends of partitioned variances in Fig. 4a sug-
gest that the variance of both male and female paths are 
very similar. This observation raises a question: “How can 
male and female paths contribute similarly to the genetic 
variance over time if we were selecting only between 
males?”. The answer to this question is shown in Figs. 3b 
and 4b, where we partitioned breeding values by sex and 
selection status. Clearly, non-selected males do not con-
tribute to the change in the genetic mean because their 
Mendelian sampling terms are distributed around zero in 
their generation and do not contribute to future genera-
tions. However, non-selected males still contribute to the 
genetic variance in their generation, yet this variation is 
not passed to the next generation. To separate this tem-
porary contribution to genetic variance, we must define 
path variables by sex and selection status. By doing this, 
we see that the main source of change in genetic variance 
are the five selected males, as expected (Fig. 4b).

The higher accuracy scenario expectedly drove more 
significant changes in genetic mean and variance than 
the medium accuracy scenario (Fig. 4). This comparison 
shows that the contribution of paths to genetic variance 
is a function of selection accuracy, with higher accu-
racy driving more changes in genetic variance. Nota-
bly, with medium accuracy, we saw a smaller difference 
between partitions of genetic variance for selected and 
non-selected males. The main reason for this is that the 

medium accuracy likely did not enable the selection of 
the top males from the tail of the distribution, which 
would have had a much smaller variance. We show the 
full distribution of the partitioned breeding values in 
Additional file 2: Fig. S3 and Additional file 3: Fig. S4 over 
40 generations.

Splitting the male path into selected and non-selected 
paths also showed that the negative covariance between 
male and female partitions in Fig.  4a was driven by the 
covariance between female and selected male partitions 
(F:M(S), Fig. 4b). This covariance was consistently nega-
tive from generation 8 to 20 in the high-accuracy sce-
nario (Fig.  4b), resulting in a mean correlation of −0.33 
( ±0.15 ) for those generations. As a result, the total 
genetic variance in a generation t can be smaller than 
the sum of genetic variances for partitions. This non-
independence of partitions of genetic variance is more 
evident in the high-accuracy scenario from generations 
8 to 20, where the correlation decreased even more than 
in the medium-accuracy scenario (see Additional file  4: 
Fig. S5). The non-independence of partitions of genetic 
variance is yet another reason why individual partitions 
of genetic variance must be interpreted with caution. We 
return to this point in the discussion.

To further clarify why female partition had a non-zero 
contribution to the genetic gain, in spite of the absence 
of selection among females, Fig. 5 shows the histogram 
of breeding value partitions and Mendelian sampling 

Fig. 4 Partitions of genetic mean and variance by a sex (males and females) and b by sex and selection status [selected males (M(S)), non-selected 
males (M(N)), and females (F)] using true breeding values for one simulation replicate
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terms by the path in generation 39 for medium-accu-
racy (Fig. 5a) and high-accuracy (Fig. 5b) scenarios. We 
can see that the female partition contributed signifi-
cantly to genetic gain (red distribution), although less 
than the selected males’ partition (blue distribution), in 
each group of individuals (females, non-selected males, 
and selected males). Expectedly, Mendelian sampling 
terms for females and non-selected males were dis-
tributed around zero (gray distribution), while selected 
males had consistently positive Mendelian sampling 
terms. However, females were the progeny of previously 
selected males, and their sons were subject to selection, 
which created a non-zero contribution for the female 
partition (red distribution)—through the dissemina-
tion of genes selected in their sires and through their 
(dam’s) sons.

The presented results showed one replicate of the 
simulation. In Additional file  5: Fig. S6, we show the 

partitioning analysis for each of the 30 replicates that all 
used identical founding genomes. Our aim was to show 
that the above results are consistently observed across 
many replicates but also to show the magnitude of vari-
ation between replicates. The solid line represents the 
median, and the ribbon represents the distribution of 
true partitions of genetic mean and variance and the cor-
relation between selected male and female partitions.

Estimating the partitions of genetic mean and variance
Model fit
The data were analysed with model (6) using the complete 
pedigree that enabled accurate estimation of residual and 
base population genetic variance. However, we slightly 
overestimated base population genetic variance in the 
high-accuracy scenario (Table  1). Evaluating the model 
further in terms of estimating the quantities of interest, 
we observed that estimates under the medium accuracy 

Fig. 5 Distribution of breeding value partitions and Mendelian sampling terms by path in generation 39 for medium-accuracy (a) and high 
accuracy (b) selection scenarios
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scenario for genetic means over generations were bet-
ter calibrated than for genetic variance over generations 
(Table 2). Under the high-accuracy scenario, the genetic 
mean over generations was also well estimated, but there 
was considerable miss-calibration for the genetic vari-
ance over generations (Table 2). The estimated and true 
genetic means and variances over 40 generations are 
shown in Additional file 6: Fig. S7 and Additional file 7: 
Fig. S8. One reason for a worse performance of model 
(6) under the high-accuracy  scenario was that it gener-
ated significant genetic change both in mean and vari-
ance (Fig. 4, which was also manifested by a higher level 
of inbreeding than the medium-accuracy scenario (see 
Additional file  8: Fig. S9). As inbreeding increases over 
generations, it generates variation between individu-
als that is challenging to represent using only pedigree-
based relationships and better approaches are needed, 
such as genomic relationships.

Genetic means and its partitions
Now that the adequacy of model (6) has been assessed 
and its impact on the estimates of genetic means and var-
iances over generations has been evaluated, we show the 
partitioning results when breeding values are estimated 
from phenotypes. First, we illustrate partitioning results 
from a single replicate, then extend it by showing results 
from 30 replicates. Figure 6 shows the true and estimated 
genetic mean over 40 generations for the medium- and 

high-accuracy scenarios considering the total genetic 
mean (Sum), the path for selected males (M(S)), non-
selected males (M(NS)), and females (F). For the 
medium-accuracy scenario, although the point estimate 
for the mean of selected males partition showed under-
estimation), the true means of partition of each path was 
within the 95% credible interval. For the high-accuracy 
scenario, we observed underestimation for females and 
selected males partition. Consequently, the underestima-
tion of the total genetic mean was even higher because it 
is the sum of those two contributions, while non-selected 
males had a zero contribution. Figure  7 confirms this 
result by showing the difference between true and esti-
mated means of partition over 30 replicates. Additional 
file  9: Fig. S10 shows that the observed deviations in 
both scenarios do not come from inadequately estimated 
Mendelian sampling terms. Hence, the source of error 
must be due to the inadequate estimation of the parent 
average terms.

Genetic variance and its partitions
The partitioning of genetic variance by paths in the 
medium- and high-accuracy scenarios in a single repli-
cate are shown in Fig. 8. While we correctly estimated the 
overall trends in the total genetic variance and its parti-
tions, we observed a slight overestimation for the female’s 
and non-selected male’s paths and its total in either the 
medium- or high-accuracy scenarios. However, from 
generation 1 to 20 in the high-accuracy scenario, the 
overestimation increased compared to the medium-accu-
racy scenario. These observations were also confirmed 
across 30 replicates for both scenarios (Fig.  9). Impor-
tantly, distribution over 30 replicates did not include zero 
in later generations indicating significant differences in 
the estimates from the true values. Figure  9 also shows 
an underestimation of genetic variance for the selected 
male’s path in early generations (− 19 to 2), which leads 
to the underestimation of the total genetic variance in the 
high-accuracy scenario.

Table 1 Variance components (VC) true values, point estimates 
(posterior mean), and 95% highest posterior density (HPD) 
interval

Scenario VC True Estimate 95% HPD

Lower Upper

Medium accuracy σ 2
a

0.3 0.27 0.25 0.30

σ 2
e

0.7 0.69 0.68 0.71

High accuracy σ 2
a

0.3 0.35 0.33 0.38

σ 2
e

0.7 0.66 0.64 0.67

Table 2 Estimate and 95% confidence interval for the concordance correlation coefficient ( ̂ρ c ) between the true and estimated 
statistic, and point estimates for the Pearson correlation coefficient ( ̂ρ  ); bias correction factor ( ̂Cb ); and root mean square deviation 
(RMSD) in each case within scenario

Scenario Statistic Concordance correlation ρ̂ Ĉb
RMSD

ρ̂ c Lower Upper Est. Lower Upper

Medium accuracy µat vs. E
(
ât

)
1.00 1.00 1.00 1.00 1.00 0.10 0.08 0.15

σ 2
at

 vs. Var
(
ât

)
0.95 0.93 0.96 0.96 0.99 0.11 0.09 0.14

High accuracy µat vs. E
(
ât

)
1.00 1.00 1.00 1.00 1.00 0.15 0.11 0.20

σ 2
at

 vs. Var
(
ât

)
0.87 0.83 0.90 0.97 0.89 0.18 0.15 0.21
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Fig. 6 Partitioning of the total genetic mean (Sum) over generations by selected males (M(S)), non-selected males (M(N)), and females (F) paths 
in the medium-accuracy (a) and high-accuracy (b) selection scenario, considering one replicate (true value is denoted with a dashed line and 
posterior mean denoted with a solid line and 95% credible interval is denoted with a ribbon)

Fig. 7 Distribution of the difference between true and estimated genetic means over generations for the total (Sum) partitioned by selected males 
(M(S)), non-selected males (M(N)), and females (F) paths in the medium-accuracy (a) and high-accuracy (b) selection scenario, considering 30 
replicates (zero value is denoted with a dashed line and mean difference over replicates is denoted with a solid line and 95% quantile of differences 
over replicates is denoted with a ribbon)
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Fig. 8 Partitioning of the total genetic variance (Sum) over a generation by selected males (M(S)), non-selected males (M(N)), and females (F) path 
in the medium-accuracy (a) and high-accuracy (b) selection scenario, considering one replicate (true value is denoted with a dashed line and 
posterior mean denoted with a solid line and 95% credible interval is denoted with a ribbon)

Fig. 9 Distribution of the difference between true and estimated genetic variances over generations for the total (Sum) partitioned by selected 
males (M(S)), non-selected males (M(N)), and females (F) paths in the medium-accuracy (a) and high-accuracy (b) selection scenario, considering 30 
replicates (zero value is denoted with a dashed line and mean difference over replicates is denoted with a solid line and 95% quantile of differences 
over replicates is denoted with a ribbon)
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We have initially observed even larger differences 
but have addressed these by adequately accounting for 
inbreeding in setting up the A−1 . Ignoring inbreeding 
significantly impacted the estimates of genetic means and 
variances and their partitions (see Additional file 10: Fig. 
S11, Additional file  11: Fig. S12, Additional file  12: Fig. 
S13).

Discussion
We developed a method for partitioning the trends in 
genetic variance into contributions of different paths 
as an extension of the previous work with trends in the 
genetic mean of García-Cortés et  al. [1] and Obsteter 
et  al. [18]. The method used to infer the path contribu-
tions over generations is illustrated using a single-trait 
model; however, extension to multiple traits is straight-
forward and already implemented in AlphaPart. The 
extension presented here allows researchers to quan-
tify the drivers of genetic variance in their breeding 
programmes in addition to the drivers of the genetic 
mean. Consequently, it could help quantify the dynam-
ics between genetic mean and variance in global animal 
breeding [2, 4], how different breeding schemes impact 
their long-term sustainability [26, 27], and how much 
variability is introgressed in pre-breeding programmes 
[28, 29]. Therefore, it is a powerful and valuable method 
for retrospective analysis and understanding how differ-
ent groups of breeding individuals contribute to change 
in genetic mean and variance, a topic that has been dis-
cussed in the last few years [5, 7, 30]. Moreover, the par-
titioning analysis can contribute to future decisions in 
breeding strategies through analysis of past real data or 
by analysing a combination of real and simulated data to 
make inferences about future results. For this reason, we 
implemented this method in the AlphaPart R package. 
The extension has been available since version 0.9.3, and 
is freely available from CRAN.

The simulated cattle breeding programme with the 
medium- and high-accuracy scenarios illustrated the 
power of the partitioning method to summarise genetic 
trends in mean and variance. However, some care is 
needed when using the proposed method. We have 
shown that the path variable must be considered carefully 
because a specific choice can lead to a misinterpretation 
of the contributions, especially regarding the partition of 
genetic variance. To this end, we recommend plotting the 
distribution of partitioned breeding values, where parti-
tions can be done with different variables of interest, like 
sex and selection status, in our study.

By partitioning the genetic mean and variance, we 
showed that in the high-accuracy scenario, the covari-
ance between contributions of females and selected 
males plays an important role when partitioning 

the genetic variance. Consequently, in this case 
Var(a) < Var(aF )+ Var(aM) , where F and M represent 
the female and male paths. Furthermore, most of the 
(additive) genetic variance in the breeding programme 
pertained to female and non-selected male paths, which 
were not the most relevant individuals for disseminat-
ing genetic gain, indicating that the selected male path 
drove changes in genetic mean. While this is an obvious 
result, it shows the power of the method for more com-
plex cases. A negative correlation between female and 
selected male partitions in Fig.  4 and Additional file  4: 
Fig. S5 means that the partitions of genetic variance are 
not independent. Since the male partition contributes 
more and more over generations, the female partition 
has to contribute less, which induces negative covariance 
between them. In this sense, we demonstrated that vari-
ance partitions are not necessarily independent; there-
fore, they should not be analysed separately.

A negative covariance between breeding value parti-
tions is expected in some cases. We are aware of two 
cases. The first is when paths represent sexes, as in this 
study. The second is when paths represent a foreign 
and a domestic breeding programme. Covariance arises 
from the proportional relationship between contribution 
of paths as well as their values, as shown in Additional 
file 13: Fig. S14 (case A). To illustrate this in the context 
of sex paths, assume we are mating the best male with a 
female. In this case, it is expected that the male path will 
contribute more to the next generation due to the higher 
intensity (and sometimes accuracy) of selection. Conse-
quently, sires are often the main drivers of genetic change 
in a population. On the other hand, since the proportion 
of gene contribution from male and female paths to an 
offspring must sum to 1, if males contribute more to the 
value of the next generation, then females must contrib-
ute less. This relationship induces negative covariance. 
The same happens with foreign and domestic paths, 
assuming that we are importing individuals with high 
breeding values into a population. Suppose these individ-
uals are well adapted to the environment of the popula-
tion. In that case, the contribution of the foreign path will 
increase over time, and the contribution of the domestic 
path will decrease. This relationship will also induce neg-
ative covariance.

A positive covariance is not likely to happen when 
paths represent sexes in a target population for a reason 
explained in the previous paragraph. However, it can 
happen when we import individuals that are not well-
adapted to the domestic environment. Such individuals 
contribute negatively to the next generation of offspring 
(Additional file 13: Fig. S14 case B). In this case, the best 
genetic material from both domestic and imported paths 
is expected to contribute more to the next generation, 
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which generates a positive covariance between the two 
paths that move in tandem in the same direction. There-
fore, a positive covariance could be used to alert breed-
ers about the negative impact of introgression since some 
imported animals are harming domestic genetic gain.

The results showed the overestimation of estimated 
partitions for genetic variance in the high-accuracy sce-
nario, which originated from the model’s lack of fit to the 
data as quantified by the too-high estimate of the base 
population genetic variance (Table  1) and low concord-
ance correlation coefficient for estimates of genetic vari-
ance over generations (Table  2). While our example is 
extreme with a low effective population size, it shows the 
importance of accurately estimating model parameters in 
populations under selection [31, 32]. Namely, the quality 
of model parameters estimates impacts the downstream 
analyses, such as the partitioning of breeding values in 
this study.

This overestimation of the base population genetic 
variance and its partitions in the high-accuracy sce-
nario is likely impacted by the lack of information in the 
pedigree-based model for such an intense selection and 
low effective population size ( Ne < 20 ) simulated in our 
study [12]. Namely, we have observed significant changes 
in the genetic variance of up to 75% over 40 generations. 
While the pedigree-based model can account for selec-
tion [31, 32], it does not seem to account appropriately 
for such a significant change in genetic variance [6, 7, 
12]. Therefore, our next step is to develop an extension 
of the partitioning method considering genomic data to 
overcome the issue of working with the expected prob-
ability of identity by descent from pedigrees by using the 
realised identity by descent or state from genomic data 
[33, 34]. We have recently already extended the Sorensen 
et al. [6] method for temporal estimation of genetic vari-
ance with a pedigree-based model to work with genomic 
data. This extension enables quantifying changes in 
genetic variance due to changes in allele frequencies 
caused by drift and selection and changes in linkage-
disequilibrium caused by selection (the Bulmer effect). 
Extending the partitioning method of García-Cortés et al. 
[1] and current work with such genomic insights is a nat-
ural next step.

Conclusions
We developed a method to quantify the drivers of 
genetic variance in breeding programmes by partition-
ing the genetic variance by analyst-defined paths. The 
method developed can provide a comprehensive over-
view of breeding practises, either based on past results 
or through simulated scenarios, as shown in this study. 
Moreover, the covariance between paths can inform 

the breeder about the dynamics of contributions and 
can be used to identify potential pitfalls of the breeding 
programme.

The method can be easily applied to real data by lever-
aging established software to draw posterior breeding val-
ues samples given the observed phenotype data. Working 
with the posterior sample of breeding values also enables 
straightforward uncertainty quantification in evaluated 
partitions and their summaries, mean and variance.

We observed some overestimation of genetic variance 
and its partitions, but this was caused by the extreme 
selection in our simulation study and the pedigree-
based model, which showed a lack of fit with respect to 
the observed genetic change in mean and variance. Our 
future research will extend the proposed method using 
genomic data to overcome the limitations of the pedi-
gree-based model under such extreme selection settings.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12711- 023- 00804-3.

Additional file 1: Figure S1. Definition of the statistical model, priors and 
posteriors: Directed acyclic graph of the pedigree-based model with nI 
individuals and nY phenotypic records;" title="Click here to edit">) with 
explicit representation of Mendelian sampling terms;" title="Click here 
to edit">) and error term;" title="Click here to edit">), where σ 2

a
 is the 

additive genetic variance, af  and am are the parent’s breeding value, 1 
represents a vector of ones, µi the linear predictor, and σ 2

e
 the residual 

variance. Figure S2. Definition of the statistical model, priors and posteri-
ors: representation of gender as the path variable.

Additional file 2: Figure S3. Distribution of breeding value partitions 
by sex and selection status [selected males), non-selected males), and 
females] over generations for medium-accuracy scenario [35].

Additional file 3: Figure S4. Distribution of breeding value partitions 
by sex and selection status [selected males), non-selected males), and 
females] over generations for high-accuracy scenario.

Additional file 4: Figure S5. Correlation between females (F) and 
selected males (M(S)) partitions using true breeding values for the 
medium- and high-accuracy scenarios and one simulation replicate.

Additional file 5: Figure S6. Partitions of genetic mean and variance 
bysex,by sex and selection status [selected males), non-selected males), 
and females], andthe Pearson correlation between F and Mpartitions for 
the medium- and high-accuracy scenarios by sex and selection status 
using true breeding values for 30 simulation replicates.

Additional file 6: Figure S7. Estimated and true genetic means and 
variances over 40 generations by selected males), non-selected males), 
and femalesin the medium-accuracy scenario. The solid line represents 
the equality line y = x , and the dots are the Cartesian coordinates of 
estimated and true values.

Additional file 7: Figure S8. Estimated and true genetic means and vari-
ances over 40 generations by selected males), non-selected males), and 
femalesin the high-accuracy scenario. The solid line represents the equal-
ity line y = x , and the dots are the Cartesian coordinates of estimated and 
true values.

Additional file 8: Figure S9. Pointand intervalestimates for inbreeding 
over generation considering all animals in a specific generation.

Additional file 9: Figure S10. The difference between true and estimated 
Mendelian sampling termsis distributed over generations. The totalis 
partitioned by selected males), non-selected males), and femalespaths in 
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the medium- and high-accuracy selection scenario. We are considering 30 
replicates (zero value is denoted with a dashed line and mean differenceo-
ver replicates is denoted with a solid line, and 95% quantile of differences 
over replicates is denoted with a ribbon).

Additional file 10: Figure S11 Partitioning of the total genetic meanover 
generations by selected males), non-selected males), and femalespaths 
in the medium-accuracy and high-accuracy scenario. We considered one 
replicate without accounting for inbreeding in the model (true value is 
denoted with a dashed line and posterior mean denoted with a solid line, 
and 95%credible interval is denoted with a ribbon).

Additional file 11: Figure S12. Partitioning of the total Mendelian Sam-
pling termover generations by selected males), non-selected males), and 
femalespaths in the medium-accuracy and high-accuracy scenario. We 
considered one replicate without accounting for inbreeding in the model 
(true value is denoted with a dashed line and posterior mean denoted 
with a solid line,and 95% credible interval is denoted with a ribbon).

Additional file 12: Figure S13. Partitioning of the total genetic varian-
ceover a generation by selected males), non-selected males), and females-
path in the medium-accuracy and high-accuracy scenario. We considered 
one replicate without accounting for inbreeding in the model (true value 
is denoted with a dashed line and posterior mean denoted with a solid 
line, and 95%credible interval is denoted with a ribbon).

Additional file 13: Figure S14. Example ofnegative andpositive covari-
ance partitions.

Author contributions
GG initiated and supervised the project. TO extended AlphaPart, simulated 
and analysed the data, and drafted the manuscript. JO, IP, NH, and GG contrib-
uted to the discussion of results and revised the manuscript. All authors read 
and approved the final manuscript.

Funding
The authors acknowledge support from the BBSRC Institute Strategic Pro-
gramme Grant to The Roslin Institute (BBS/E/D/30002275). TPO acknowledges 
funding from Limagrain and the European Union’s Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grant agreement 
No. 801215 and the University of Edinburgh Data-Driven Innovation pro-
gramme part of the Edinburgh and South East Scotland City Region Deal. JO 
acknowledges funding from the Slovenian Research Agency (Grant P4-0133). 
For the purpose of open access, the authors have applied a Creative Com-
mons Attribution (CC BY) license to any Author Accepted Manuscript version 
arising from this submission.

Availability of data and materials
Project name: AlphaPart; Project home page: https:// cran.r- proje ct. org/ 
packa ge= Alpha Part; Operating system(s): Windows, MacOS, Linux; Program-
ming language: R & C++; Licence: GPL-3; Data and Code: https:// github. com/ 
Highl ander Lab/ toliv eira_ alpha part_ varia nce.

Declarations

Ethics approval and consent to participate
Not applicable.  

Consent for publication
All authors read and approved the publication of the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 26 September 2022   Accepted: 17 April 2023

References
 1. García-Cortés LA, Martínez-Ávila JC, Toro MA. Partition of the genetic 

trend to validate multiple selection decisions. Animal. 2008;2:821–4. 
 2. Gorjanc G, Potocnik K, García-Cortés LA, Jakobsen J, Dürr J. Partitioning of 

international genetic trends by origin in brown swiss bulls. Interbull Bull. 
2011;44:81–6.
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