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How economic weights translate 
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and vice versa
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Abstract 

Background This paper highlights the relationships between economic weights, genetic progress, and phenotypic 
progress in genomic breeding programs that aim at generating genetic progress in complex, i.e., multi-trait, breeding 
objectives via a combination of estimated breeding values for different trait complexes.

Results Based on classical selection index theory in combination with quantitative genetic models, we provide a 
methodological framework for calculating expected genetic and phenotypic progress for all components of a com-
plex breeding objective. We further provide an approach to study the sensitivity of the system to modifications, e.g. to 
changes in the economic weights. We propose a novel approach to derive the covariance structure of the stochastic 
errors of estimated breeding values from the observed correlations of estimated breeding values. We define ‘realized 
economic weights’ as those weights that would coincide with the observed composition of the genetic trend and 
show, how they can be calculated. The suggested methodology is illustrated with an index that aims at achieving a 
breeding goal composed of six trait complexes, that was applied in German Holstein cattle breeding until 2021.

Conclusions Based on the presented results, the main conclusions are (i) the composition of the observed genetic 
progress matches the expectations well, with predictions being slightly better when the covariance of estimation 
errors is taken into account; (ii) the composition of the expected phenotypic trend deviates significantly from the 
expected genetic trend due to the differences in trait heritabilities; and (iii) the realized economic weights derived 
from the observed genetic trend deviate substantially from the predefined ones, in one case even with a reversed 
sign. Further results highlight the implications of the change to a modified breeding goal based on the example of 
a new index comprising eight, partly new, trait complexes, which is used since 2021 in the German Holstein breed-
ing program. The proposed framework and the analytical tools and software provided will be useful to define more 
rational and generally accepted breeding objectives in the future.
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Background
Modern livestock breeding programs aim at improving 
several traits at the same time. Typically, the considered 
traits have a polygenic background and, with few excep-
tions (see e.g. [1]), the aim is to shift the population in a 
certain direction, rather than keeping a trait in an optimal 
range.

Following [2], the definition of breeding goals addresses 
the question ‘where to go’, while breeding programs 
describe ‘how to get there’. According to the conceptual 
definition of breeding programs suggested by Simianer 
et  al. [3], defining the breeding goal is not considered as 
an intrinsic part of a breeding program, but as an external 
input. The natural framework for the proportional alloca-
tion of genetic progress among a set of breeding objectives 
is incorporated in the theory of selection indices [4], in 
which weights to the different traits in the breeding goals 
are allocated on an economic basis [5]. Determination of 
those economic weights is challenging and can be achieved 
with various methodological approaches, as reviewed 
by [6]. However, how does the composition of economic 
weights affect the composition of the genetic and pheno-
typic trend? While in a simple setting (e.g. when selection 
is based on the selection candidates’ own performance) 
the derivation of the composition of the expected genetic 
progress with a given set of economic weights is rather 
straightforward, things become slightly more complicated 
in real life settings, as illustrated, e.g. for a pig breeding 
scenario by [7].

In this contribution, we will consider the case of genomic 
selection in dairy cattle breeding, where genetic progress 
is mainly driven by the selection of young bulls based on 
their genomic breeding values. All candidate bulls have 
genomic breeding values for the same set of traits and 
with very similar reliability, because most of the informa-
tion stems from genomic sources which is uniform among 
genotyped individuals. The reliability of genomic breeding 
values is primarily a function of population parameters 
and technical parameters of the genomic breeding value 
estimation scheme, like training set size and marker den-
sity [8], and depends only to a small extent on the char-
acteristics of the actual individual. Minor differences in 
reliabilities of individual breeding values may result from 
differences in the amount of ancestral information in a 
two-step or single-step [9] approach. In most dairy cattle 
breeding programs, breeding values of different traits are 
combined into an overall index, which reflects the breed-
ing goal in the respective breeding program, and it is 
assumed that this overall index is the main criterion used 
for selection [10]. Often, other traits exist, which are not 
included in the index, but for which the correlated selec-
tion response might still be of interest.

The main questions, which we want to address here are:

• Given a certain index, and assuming that genetic pro-
gress is primarily due to the selection of young bulls 
based on this index, which composition of genetic 
and phenotypic progress do we expect (both for the 
traits in the index and additional traits)?

• Given an observed pattern of genetic progress for a 
set of traits, what are the ‘realized’ economic weights 
that would coincide with the observed composition 
of the genetic trend?

• How sensitive is the composition of the genetic trend 
to variations in the composition of the index?

• What are the consequences of a change in the breed-
ing goal?

We will study this problem with a classical selection index 
approach, in which we assume that each individual has two 
sets of traits: for n different traits, it has a true breeding value, 
and for a subset of m of these traits, it also has an estimated 
breeding value. We call those m traits ‘index traits’ hereafter. 
The main focus will be the specification of the appropriate 
variance and covariance matrices for the described setting 
based on classical quantitative genetics theory [11]. With 
those, we construct a selection index for which we assume 
that selection will be on a combined index of the estimated 
breeding values, and we will derive the selection response 
in the set of true breeding values, which is the genetic trend, 
and the corresponding phenotypic trend. We further present 
an approach to study the sensitivity of the index to changes 
in the composition of economic weights. With this and the 
provision of a corresponding R package, our aim is to expand 
the toolkit for applied animal breeders, in particular to help 
them assess the practical consequences of a change in breed-
ing objective.

Methods
Specification of the model
We consider the case where we have n traits that are part 
of the breeding goal. These traits, which we call ‘breeding 
goal traits’, are assigned an economic value in the defini-
tion of the total merit, which is the true, but unobserva-
ble, genetic value of an individual. We further assume that 
for all these traits, or a subset comprising m ≤ n of these 
traits, estimated breeding values are available, which con-
ceptually are considered as observable traits with a relia-
bility as estimated by the genetic evaluation system. These 
quasi-phenotypes can be combined appropriately to pro-
vide an estimate of the unobservable total merit via clas-
sical selection index theory. These traits are thus called 
‘index traits’.

For the n breeding goal traits, the unobservable true 
breeding values of an individual are distributed as 
u ∼ (0,Ŵ) , where Ŵ is the n× n additive genetic variance–
covariance matrix.
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To provide a general approach to select m index traits 
out of a total of the n breeding goal traits represented in 
vector u , we define an m× n matrix D with element dij 
being 1 if trait j in the set of breeding goal traits is iden-
tical to index trait i , and 0 otherwise. With this, the vec-
tor of true breeding values for the index traits is v = Du 
and the genetic variance–covariance matrix of the index 
traits can be constructed from the variance–covariance 
matrix of all traits as VCV (v) = DŴD

′
. Note that if the 

set of index traits is identical to the set of breeding goal 
traits ( n = m ), D is the identity matrix.

Estimated breeding values have a reliability lower 
than 1, which must be taken into account [12]. To do 
this, we model the vector of estimated breeding val-
ues for the index traits in two steps: first, we introduce 
an ‘unscaled’ proxy of the estimated breeding value, 
which already has the correct correlation with the true 
breeding value, and in the second step, we rescale this 
unscaled breeding value so that it has the correct distri-
butional properties. We model the vector of ‘unscaled’ 
estimated breeding values q as sum of the true breeding 
value plus an estimation error, i.e., q = v + e , where e 
is a vector of m residual errors with e ∼ (0,E) where E , 
for the time being, is assumed to be a diagonal matrix 
so that the errors for different traits are uncorrelated. 
We further assume that, in general, the errors are inde-
pendent of the true breeding values (i.e., Cov(v, e) = 0 ), 
for a detailed discussion of this assumption see [13].

The reliability of a breeding value is defined as the 
squared correlation between true and estimated breeding 
values, i.e., ρ2

vi ,qi
= γ 2

ii
γii×(γii+εii)

= γii
γii+εii

 , where γii and εii 
are the diagonal elements of DŴD′ and E pertaining to 
index trait i , respectively. From this follows that 

εii =
1−ρ2vi ,qi
ρ2vi ,qi

γii , assuming the reliability and the true 

genetic variance for trait i are known. Consequently, the 
variance of the unscaled estimated breeding value is:

Note that with this, Var(qi) > Var(vi) , while quantita-
tive genetics theory suggests that, through regression to 
the mean [14], the variance of estimated breeding values 
must be smaller than the variance of the true breeding val-
ues, or, more precisely, the variance of the estimated breed-
ing values for trait i must be equal to the product of the 
reliability of the estimated breeding value i times Var(vi).

This can be achieved by re-scaling the estimated 
breeding values in the form c = Rq , where R is an 

Var(qi) = Var(vi)+ Var(ei) = γii +
1− ρ2

vi ,qi

ρ2
vi ,qi

γii =
1

ρ2
vi ,qi

γii.

m×m diagonal matrix with the respective reliabilities 
on the diagonal, i.e., diagonal element i,i of matrix R 
being rii = ρ2

vi ,qi
.

Then, Var(c) = C = R

(
DŴD

′ + E

)
R with diagonal 

elements cii = (ρ2
vi ,qi

)
2 × 1

ρ2vi ,qi
γii = ρ2

vi ,qi
γii . Note that all 

phenotypic correlations under this model are exclusively 
due to genetic covariances between traits.

With this, the total genetic merit can be defined as 
T = w

′ × u , where w is a vector of length n comprising 
relative economic weights for the breeding goal traits. An 
estimate of the total genetic merit can be obtained with 
the index I = b

′ × c , where b is a vector of length m com-
prising the unknown index weights for all index traits. 
Selection index theory [4, 15] suggests that the optimal 
index weights, such that the correlation between T  and I 
( ρTI ) is maximized, are obtained from the selection index 
normal equations:

With Cov(c,u) = Cov(R(Du + e),u) = RDŴ , we 
obtain the selection index normal equations:

from which the optimum index weights can be calculated 
as:

Note that the matrices resulting from this derivation 
are identical to those suggested by Miesenberger [16], 
which, however, is a PhD-thesis in German language, 
published to our knowledge solely on paper and thus is 
not generally accessible.

Estimation of the variance–covariance matrix of residuals
Remember that it was assumed that the residuals of the 
estimated genomic breeding values are uncorrelated, i.e., 
that E is a diagonal matrix. It has been previously argued 
[7, 13, 17] that this is not necessarily the case, and we 
provide in the following an approach to derive this covar-
iance structure from empirical data and how to integrate 
it into the model.

Let us assume that we have an empirical set of estimated 
breeding values ĉ for the m index traits for an unselected 
sample of contemporary breeding animals. The variance–
covariance-matrix of these breeding values Var

(
ĉ
)
= H 

Var(c)× b = Cov(c,u)× w.

R
(
DŴD′ + E

)
R × b = RDŴ × w,

(1)b =
(
R
(
DŴD

′ + E
)
R

)−1

RDŴ × w.
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can be empirically determined. Under the model defined 
above, E(H) = R

(
DŴD

′ + �

)
R , where � is the variance–

covariance matrix of the residuals of the estimated genomic 
breeding values without the restriction that these are 
uncorrelated. From this, we can obtain an estimate of the 
residual variance–covariance matrix � by de-regressing the 
empirical variance–covariance matrix H and subtracting 
the genetic variance–covariance matrix, which is assumed 
to be known:

The matrix E now can be replaced by �̂ in Eq.  (1), 
yielding:

Note that due to this modification, the resulting index 
weights in b and all downstream results are no longer 
fully equivalent to those presented by [16].

Expected composition of the genetic trend
Following classical selection index theory, the variance of 
the index is:

and the vector of the expected genetic progress, when 
individuals are selected based on the index with selection 
intensity i , is:

Applying the general rule in matrix algebra 
(A × B)−1 = B−1 × A−1 , where A and B are invertible 
quadratic matrices, this simplifies to:

Here d is a vector of length n containing the expected 
changes in the true breeding values in v from one round 
of selection. Note that the expected total genetic progress 
in economic terms then is �G = d′w.

Expected composition of the phenotypic trend
A further aspect of practical relevance is how the 
expected genetic trend translates into a phenotypic trend, 
i.e., what changes in phenotypes can actually be expected 
for the different traits and what is the overall composi-
tion of the phenotypic trend. The expected genetic trend 
in trait i is the i-th element of vector d obtained from 

(2)�̂ = R−1HR−1 −DŴD
′
.

(3)b =
(
R

(
DŴD

′ + �̂

)
R

)−1

RDŴ × w.

(4)σ 2
I = Var

(
b′c

)
= b

′
R
(
DŴD

′
+ �̂

)
Rb,

d =
i

σI

ŴD
′
R b =

i

σI

ŴD
′
R
(
R
(
DŴD

′
+ �̂

)
R
)−1

RDŴ × w.

(5)d =
i

σI

ŴD
′
(
DŴD

′
+ �̂

)−1
DŴ × w.

Eq. (5), and since the regression of the phenotype on the 
breeding value is 1, we also would expect the phenotypic 
trend to be di . Since traits may be expressed on very dif-
ferent scales, a fair comparison of the composition of the 
expected phenotypic trend should be scaled in pheno-
typic standard deviations of the respective traits. Let us 
assume, trait i has heritability h2i  . Then, the phenotypic 
variance for this trait is σ 2

pi
= γii

h2i
 and the genetic progress 

expressed in phenotypic standard deviations in this trait 
is:

Sensitivity of genetic progress to changes in economic 
weights
We might also be interested in the question of how a 
change in the economic weight of some traits would 
affect the composition of the genetic trend. In princi-
ple, this could be studied by taking the first derivative of 
d with respect to w . However, results may be mislead-
ing since the approach ignores the constraint that the 
weights in w must sum to 1, which means that increas-
ing the weight of one trait must be accompanied by a 
decrease in the weight of some other traits.

Thus, we propose to calculate an approximate empiri-
cal derivation by contrasting the genetic trend obtained 
with a modified weight vector and the optimal genetic 
trend for each trait separately. For trait i , we calculate a 
modified vector wi with elements wi

i = wi + θ for trait i 
and wi

j = (1− θ
1−wi

)w
j
for all other traits j �= i , where θ is 

a small constant. In this way, the weights of all other 
traits are reduced proportionally while all weights still 
sum to 1.

By using wi in Eqs. (3), (4) and (5), respectively, we 
obtain new values for the vector of index weights, the 
variance of the index, and the vector of genetic changes 
in all traits, which we call di . By multiplying this modified 
vector of genetic changes with the original weight vector 
w , we obtain a new estimate of the overall genetic trend 
�Gi = di

′
w . Note, that �Gi ≤ �G because the selection 

index maximizes the genetic trend by design and there-
fore a deviation from the optimal index cannot lead to an 
increased overall genetic trend.

Realized economic weights
In an ongoing breeding program, we can measure the 
empirical genetic progress in the set of relevant traits, i.e., 
those traits that have a non-zero economic weight in w 
(several examples for this are addressed in [18]). Again, 
we are more interested in the proportional composition 

(6)dpi =
di

σpi
=

di × hi√
γii

.
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of the realized genetic progress, rather than in the abso-
lute values, so the observed vector δ reflects the propor-
tion of the overall genetic progress (scaled in genetic 
standard deviations) that is attributed to the different 
traits, such that 

∑
|δ| = 1.

For the case of matrix D having rank n , i.e., if the num-
ber of index traits is equal to the number of breeding 
goal traits, we can derive the vector of realized economic 
weights ω , which is the set of hypothetical economic 
weights that would have led to the observed composi-
tion of genetic trend, if selection was strictly based on an 
index constructed with these realized economic weights.

Based on the equation:

and omitting the scalar coefficient we can calculate 
the realized index weights β , which correspond to the 
observed composition of genetic progress in δ as:

Putting these realized index weights in Eq.  (3) we can 
solve for the realized economic weights ωu:

which simplifies to:

Since we have dropped the scalar factor i/σI , the results 
must not be interpreted in absolute terms, but reflect 
the relative weights and might also be rescaled such that ∑

|ω| = 1 . Our approach is similar to an index-in-ret-
rospect, which was originally introduced by Dickerson 
et  al. [19] and later used, for example, to analyze selec-
tion practices among North American dairy farmers [20] 
or to document the historical selection applied by Nguni 
breeders in South Africa [21], but the approach proposed 
here is conceptually more general.

Remember that a unique solution for ω only is available 
if the matrix D has rank n . If m < n , regular inverses in 
Eqs. (7) and (8) do not exist, and consequently a unique 
solution for ω cannot be obtained.

Software
The described framework was implemented in the R 
package “IndexWizard”, which can be accessed from 
GitHub (https:// github. com/ johan nesge ibel/ Index Wiz-
ard) and will be submitted to CRAN soon. This allows 
researchers and professionals to easily explore the 
expected outcome of potential changes of the economic 

d =
i

σI
ŴD

′
R b,

(7)β = (ŴD′R )
−1

δ.

ω = (RDŴ)−1
(
R
(
DŴD

′
+ �̂

)
R
)
(ŴD′R )−1δ,

(8)ω = (DŴ)−1
(
DŴD

′
+ �̂

)
(ŴD′)

−1
δ.

weights of an index and to post-hoc analyze whether the 
expected trend matches the observed trend.

Results and discussion
We illustrate the concept with real data from the Ger-
man Holstein Friesian breeding program. Here, breed-
ing values are estimated for entire trait complexes (such 
as ‘milk’ or ‘fertility’), which in most cases are composed 
of several traits. Details can be found in the respective 
documentation [22]. The trait complexes are expressed as 
deviations from a moving population mean (set to 100), 
which is updated once per year, and for each trait com-
plex, the genetic standard deviation is set to 12. Breed-
ing values are scaled such that high values are favorable 
from the breeder’s perspective. For most trait com-
plexes, estimated breeding values of individual traits 
are first combined to a sub-index, and then, an over-
all index is calculated from these combined breeding 
values for the trait complex. To give an example: first, 
breeding values for milk yield, protein yield and fat yield 
are estimated, then protein yield and fat yield are com-
bined into a sub-index reflecting the trait complex ‘milk’, 
which, after appropriate scaling, yields the RZM. Finally, 
the RZM is combined with other trait complexes to the 
total merit index, which is called RZG. The overall index 
reflects the total genetic merit with respect to the breed-
ing goal. Here, we consider two versions of such a total 
merit index: the ‘old index’, which was used until April 
2021 and is comprised of six trait complexes. The ‘new 
index’, which was implemented from April 2021 onwards 
and comprises eight trait complexes [22]. Since the two 
sets of trait complexes overlap, we have in total 10 trait 
complexes, which are presented in Table 1 together with 
the respective index weights in the two indices and the 
respective parameters.

Four of the trait complexes (RZM, RZN, RZE and 
RZKm) are present in both indices, albeit with different 
weights, conformation traits appear in both indices, but 
with a slightly modified trait complex definition (RZEn 
vs. RZEo), and three new trait complexes, mainly provid-
ing a better representation of health and welfare related 
traits, have been added in the new index. The former 
trait complex RZS, representing somatic cell score as an 
auxiliary trait for udder health, is now included directly 
in the trait complex ‘Health’ (RZH). The change of index 
weights reflects the increased emphasis on health and 
welfare in the breeding goal: while in the old index, milk 
yield (RZM) had a weight of 45%, it now has a weight of 
36% and much of this weight has been relocated to wel-
fare related trait complexes, especially by assigning 18% 
of the total weight to the new health trait complex (RZH).

https://github.com/johannesgeibel/IndexWizard
https://github.com/johannesgeibel/IndexWizard
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We first apply the suggested methodology in detail to 
the old index, and later analyze the expected effects of 
the change from the old to the new index.

The old index with six trait complexes was continu-
ously used since August 2010, when genomic breed-
ing value estimation was officially implemented for the 
Holstein breed in Germany, with only minor modifica-
tions in trait complex definitions and technical details 
of the trait-specific evaluation procedures since then. 
For these six trait complexes, we calculated observed 
genetic trends by regressing the average breeding values 
of bulls used in a certain year on the average birth year 
of those bulls, interpreting the slope of this regression as 
the genetic trend. This was done with data from 2010 to 

2020, comprising bulls of the average birth years 2003 to 
2016. The composition of the observed trend is displayed 
in the right column of Fig. 1.

Estimation of the variance–covariance matrix of residuals
We estimated the variance–covariance matrix of the 
residual errors �̂ for the old index using the empirical 
covariance of sets of genomic breeding values of 108,458 
German Holstein cows born in 2018. We preferred to use 
the covariance of breeding values of cows rather than that 
of bulls since breeding values for cows are much more 
numerous and arguably are less subject to bias caused 
by pre-selection. The correlation structure for the esti-
mated genomic breeding values of cows is in the upper 

Table 1 Trait complex names and abbreviations, economic weights in the old and the new index, reliability of genomic breeding 
values ( ρ2

i
 ), heritabilities ( h2i  ) and genetic correlations among all traits

a Trait complexes in the old index
b Trait complexes in the new index

Trait complex names Abbreviation Economic weights ρ
2

i
h
2

i
Genetic correlations

Old index New index RZN RZEo RZEn RZR RZKm RZKd RZH RZC RZS

Milk  yielda,b RZM 0.45 0.36 0.743 0.314 0.13 0.13 0.07 − .15 0.11 0.07 0.09 − .02 0.04

Functional herd  lifea,b RZN 0.20 0.18 0.673 0.090 0.23 0.28 0.43 0.25 0.22 0.78 0.13 0.46

Conformation  olda RZEo 0.15 – 0.638 0.194 0.92 0.02 0.09 −.05 0.25 − .10 0.19

Conformation  newb RZEn – 0.15 0.717 0.194 0.06 0.08 − .03 0.31 − .10 0.25

Fertilitya,b RZR 0.10 0.07 0.541 0.013 0.32 0.19 0.41 0.04 0.15

Calving traits  maternala,b RZKm 0.03 0.015 0.635 0.049 0.00 0.25 0.04 0.13

Calving traits  directb RZKd – 0.015 0.604 0.033 0.23 0.05 0.10

Healthb RZH – 0.18 0.720 0.061 0.10 0.57

Young stock  survivalb RZC – 0.03 0.499 0.014 0.02

Somatic cell  scorea RZS 0.07 – 0.764 0.273

Fig. 1 Expected composition of genetic trend without (E uncorrelated) and with (E correlated) accounting for the covariance between residuals, 
and observed composition of genetic trend for the six index trait complexes. Within one category, all proportions sum up to 1. For abbreviations of 
trait complexes see Table 1
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triangle of Table 2. From this, we calculated the residual 
variance–covariance matrix �̂ using Eq.  (2), the residual 
correlations corresponding to this covariance matrix are 
in the lower triangle of Table 2. Note that 7 out of 15 cor-
relations of the residual errors are negative and some are 
distinctly different from 0 (e.g. 0.47 or 0.36 for the cor-
relation of residual errors between RZN and RZS or RZN 
and RZR, respectively).

Composition of expected vs. observed genetic trend
We used Eq. (5) to calculate the expected composition 
of genetic progress with or without accounting for the 
covariance of residual errors. The results are displayed 
in Fig.  1. Overall, the expected and observed compo-
sition of genetic progress appear to match reasonably 
well, the largest discrepancies being observed for the 
functional trait complexes fertility (RZR) and mater-
nal calving traits (RZKm). We observe that there are 
a number of differences between the two approaches 
used to derive the expected composition, with bet-
ter overall agreement between expected and observed 
values when the covariance of residual errors is taken 
into account. Therefore, and because it is conceptually 
more appealing, we focus below on the results obtained 
with this approach. The largest discrepancies between 
expected and observed values are seen for the confor-
mation and fertility traits, both of which show more 
genetic progress than expected, while genetic progress 
in calving traits lags behind expectations.

There are several possible reasons that explain these 
differences between the expected and the observed 
composition of the genetic trend:

• The main assumption underlying the calculation of 
the expected genetic progress is that all selection 
decisions are made based on the combined index. 
However, in real life, other criteria can be used: for 
each bull, not only the estimated breeding value for 
the combined index is published, but also estimated 

breeding values for each trait category as well as 
average daughter performances. Hence, breed-
ers may decide to use a certain bull based on such 
detailed information, e.g. they may strive to focus 
on a specific trait complex, or they may prefer bulls 
from a certain line or origin, regardless of their 
actual breeding values.

• In mating software, breeders can configure their 
own overall index, whereby the official total merit 
index is preset. Internal evaluations of breeders’ 
individual total indices in such mating software 
have shown that breeders give on average a greater 
weight to conformation traits (RZE) in their own 
index than in the official total merit index RZG.

• Furthermore, not all genetic progress comes from 
the selection of young bulls. In modern dairy cattle 
breeding programs, a small proportion of the over-
all genetic progress comes from the selection of 
cows [23, 24]. This proportion tends to increase as 
the number of genotyped cows increases. Especially 
the within-herd replacement of cows is often based 
on ad-hoc criteria—possibly linked to fitness-
related traits—rather than on elaborated genomic 
breeding values. In the dataset used, there is also a 
certain proportion of progeny-tested bulls with sig-
nificantly higher reliability. However, their impact 
decreased over time.

• We can even assume some effect of natural selec-
tion in fitness-related traits [25], especially on the 
cow selection paths, since, e.g. cows with poor fer-
tility or inferior longevity will contribute less to the 
next generation.

• Finally, the expected values are derived under the 
assumption that the assumed parameters are cor-
rect; if this is not the case, the predictions may be 
biased [26]. This concerns especially the assumed 
correlations and reliabilities of the breeding values, 
which are estimated statistically and may therefore 
be subject to estimation errors.

Table 2 Empirical correlations between estimated breeding values (above the diagonal) and estimated correlations between 
residuals of estimated breeding values (below the diagonal)

For trait complex abbreviations see Table 1

RZM RZN RZEo RZR RZKm RZS

RZM 0.06 0.06 −.20 0.05 0.03

RZN −.11 0.14 0.40 0.20 0.46

RZEo −.10 −.03 −.03 0.03 0.15

RZR −.31 0.36 −.10 0.30 0.13

RZKm −.08 0.11 − .08 0.27 0.11

RZS 0.00 0.47 0.06 0.10 0.07
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However, it is very clear that there is no immedi-
ate link between the predefined weights in w and the 
genetic trend in d . While e.g. milk was assigned 45% of 
the weight in the breeding goal until 2021, only about 
28% of both, the expected and observed genetic trend 
pertain to this trait complex. On the other side of the 
spectrum, maternal calving traits are assigned just 3% 
of the total economic weight, but account for 8 or 12% 
of the observed and expected genetic trend, respec-
tively. These discrepancies are inevitably caused by 
the construction of the index from breeding values of 
varying reliability. Nevertheless, in practice, it is often 
mistakenly assumed that the weights of vector w reflect 
the composition of the expected genetic progress in the 
trait complexes.

Sensitivity of results to changes in economic weights
When designing an index, it may be of interest to see 
what effect it has on the composition of the genetic trend 
if a particular trait complex is weighted more or less. 
Obviously, we would expect a greater share of the genetic 

trend in a given trait complex if we assign more weight to 
it. However, due to the covariance structure and to the 
fact that assigning more weight to one trait reduces the 
relative weight of the other traits, we also expect a cor-
related response in other trait complexes. Tables  3 and 
4 show these changes for the old and the new index, 
respectively, obtained as the approximated first deriva-
tive of the genetic trend with respect to the vector of eco-
nomic weights calculated as described in the Methods 
section, using a marginal change by θ = 0.001 . Results 
are reported in a standardized form, such that the abso-
lute values in each line sum up to 1.

Interestingly, on average across all trait complexes, 
just about half (49.1% for the old index, Table 3) or even 
less than half (41.2% for the new index, Table  4) of the 
expected changes in genetic trend are expected in the 
trait complex for which the economic weight is modi-
fied, ranging from 21% for milk to 67% for conformation 
trait complexes (both in Table 3). Furthermore, increas-
ing the relative weights of the two trait complexes, milk 
and confirmation, is found to have a negative effect on 

Table 3 Approximate change of genetic trend in all considered trait complexes when the relative economic weight of a single trait 
complex is marginally increased, as obtained by the approach described in the methods section with θ = 0.001 for the old index

Results are scaled such that all absolute values in each line sum up to one. Diagonal values in italics represent the direct change in the modified trait complex, all other 
values are indirect changes in other trait complexes. For trait complex abbreviations see Table 1

Change in wu for trait 
complex

Relative expected change of genetic trend in trait complex

RZM RZN RZEo RZR RZKm RZS

RZM 0.21 −.22 −.14 −.18 −.08 −.17

RZN −.23 0.38 −.01 0.18 0.04 0.16

RZEo −.21 −.01 0.67 −.05 −.03 0.04

RZR − .18 0.16 − .03 0.45 0.13 0.04

RZKm −.10 0.05 −.02 0.17 0.64 0.01

RZS −.18 0.14 0.02 0.04 0.01 0.60

Table 4 Approximate change of genetic trend in all considered trait complexes when the relative economic weight of a single trait 
complex is marginally increased, as obtained by the approach described in the methods section with θ = 0.001 for the new index

Results are scaled such that all absolute values in each line sum up to one. Diagonal values in italics represent the direct change in the modified trait complex, all other 
values are indirect changes in other trait complexes. Note that residual correlations for the new index were assumed to be zero, as they could not be estimated from 
the data. For trait complex abbreviations see Table 1

Change in wu for trait 
complex

Relative expected change of genetic trend in trait complex

RZM RZN RZEn RZR RZKm RZKd RZH RZC

RZM 0.26 −.17 −.11 −.17 −.04 −.04 −.18 −.03

RZN −.24 0.24 −.03 0.17 0.03 0.05 0.19 0.05

RZEn −.16 −.03 0.50 −.05 −.05 −.10 −.01 −.10

RZR −.18 0.12 −.03 0.34 0.12 0.07 0.12 0.02

RZKm −.07 0.03 −.05 0.19 0.56 −.05 0.03 0.02

RZKd −.06 0.05 −.11 0.10 −.05 0.54 0.06 0.03

RZH −.26 0.19 −.01 0.16 0.03 0.06 0.27 0.04

RZC −.07 0.07 −.13 0.03 0.02 0.04 0.05 0.59
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the genetic trends of nearly all the other trait complexes, 
while increasing the weights of all other trait complexes 
has a positive effect on the genetic trend of most other 
trait complexes, except milk and conformation. The 
results also reflect nicely the ‘composite’ structure of the 
longevity trait complex: a greater economic weight for 
this trait complex affects RZN directly to 38 (24)% in the 
old (new) index, but has substantial positive effects on 
other trait complexes, such as fertility and udder health, 
which are known to be major causal factors for longevity 
[27].

As expected, the overall expected genetic progress 
with the marginally changed weight vector was found 
to be reduced (results not shown). Note that changes in 
the economic composition of an index can have a nega-
tive effect on the overall efficiency of a breeding program, 
especially, if important trait complexes are omitted or 
unimportant trait complexes are given importance, or 
when the direction of selection is reversed for an impor-
tant trait complex [28].

Expected composition of the phenotypic trend
The composition of the genetic trend cannot be directly 
converted into the composition of the phenotypic trend, 
because genetic progress by one genetic standard devia-
tion has a smaller effect on the phenotypic trend for 
a trait complex with a low heritability than for a trait 
complex with a high heritability. The composition of 
the expected phenotypic trend, scaled in phenotypic 
standard deviations and resulting from the application 
of Eq.  (6) is displayed in Fig.  2. Here, we see that 40% 
of the expected phenotypic trend caused by selection is 
accounted for by the trait complex  ’milk’, while the phe-
notypic trends in the trait complexes longevity (16.1%) 

and, in particular, fertility (2.2%) lag behind the compo-
sition of the expected genetic trend. These results illus-
trate that for trait complexes with a low heritability, the 
leverage of selection is very limited because most of the 
observed phenotypic variance is not genetically deter-
mined and thus cannot be influenced by breeding. This 
underlines the role of other fields of action such as man-
agement, feeding and hygiene when it comes to improv-
ing lowly heritable traits. However, even if the amount 
of phenotypic progress per year or generation through 
breeding is small, it must be remembered that genetic 
progress is cumulative and therefore sustainable pheno-
typic progress can be achieved over time.

Realized economic weights
The empirically observed genetic trend in the six traits 
of the index applied over the last 10  years can be used 
to derive the realized economic weights ω [Eq.  (8)], 
which are the weights that correspond best with the 
observed composition of the genetic trend. These effec-
tive economic weights are contrasted with the predefined 
economic weights in Fig. 3. On the one hand, not surpris-
ingly, realized weights are greater than the predefined 
weights for trait complexes for which the observed trend 
is clearly exceeding the expected one, and especially for 
RZE and RZR  ;  for the latter the realized weight is 75% 
more than the predefined one. On the other hand, the 
realized weight for longevity is only 70% of the prede-
fined one, and that for maternal calving ability is even 
negative. These results suggest that the relative value that 
is implicitly assigned to some of the trait complexes by 
breeders through their actual selection decisions devi-
ates considerably from the predefined values, which are 
based on an economic analysis of the production system 

Fig. 2 Expected composition of the phenotypic progress through selection in the six considered trait complexes. The values sum up to 1. For 
abbreviations of trait complexes see Table 1
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in combination with strategic decisions of the breeding 
associations.

Expected effects of the change from the old to the new 
index
Finally, the suggested methodology was applied to assess 
the impact of modifications in the construction of an 
index. Starting in April 2021, a new total merit index was 
introduced, which comprises eight trait complexes (see 
Table 1). We used the suggested framework to compare 
the expected genetic trend in the new set of trait com-
plexes when we either apply the old or the new index, 
basically revealing the impact of the change to the new 
index. Since we do not have comprehensive sets of 
empirical breeding values for all new trait complexes, 
and thus cannot estimate the covariance matrix of the 
estimation errors applying Eq. (2), this is done based on 

the assumption that residual errors of estimated breeding 
values are uncorrelated.

Figure 4 contrasts the composition of expected genetic 
trend in the eight new traits when either the old or the 
new index is applied for selection. With the old index (the 
solid bars), we predict exactly the same genetic trend in 
absolute terms for the four traits that are represented in 
both indices, however, their proportion in the composi-
tion of the total genetic trend is reduced because the new 
index is made up by more  -  eight instead of six  -  traits 
than the old one. For the new index traits that are not 
present in the old index, we predict a correlated selection 
response.

Changes when switching to the new index can be 
attributed to several reasons: all eight traits are consid-
ered directly as index traits in the new index, different 
economic weights are applied, and more information 

Fig. 3 Predefined vs. effective economic weights for the six considered trait complexes. Within one category, all absolute values sum up to 1. For 
abbreviations of trait complexes see Table 1

Fig. 4 Expected composition of the genetic trend for the eight traits of the new index, when selection was done based on the old or the new 
index, respectively. Within one category, all values sum up to 1. For abbreviations of trait complexes see Table 1
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on fitness-related traits is directly used for selection. 
As a consequence, productivity (RZM) loses impor-
tance (from 25.4 to 17.5% of expected genetic gain), 
which presumably is mainly due to the lower economic 
weight. The new fitness-related traits, RZH, RZKd and 
RZC, gain importance in the new index since they are 
directly observed and have been assigned an economic 
weight. Expected genetic gain in both RZN and RZR 
increase in spite of the fact that their relative economic 
weight has been reduced compared to the old index. Pre-
sumably, this is due to the inclusion of the health trait 
RZH, which shows a strong positive genetic correlation 
both with RZN (+ 0.78) and RZR (+ 0.41). As shown in 
Table 4, a change in weight of RZH has substantial effects 
on genetic trend in other traits, especially for RZN: when 
increasing the weight for RZH, the indirect effect (+ 0.19) 
on the genetic trend in longevity (RZN) is almost as high 
as the direct effect (+ 0.27) in RZH (actually, this phe-
nomenon can be observed in both directions).

Conclusions
We present a general framework for analyzing the effects 
of setting an overall breeding objective in genomic 
selection in complex breeding programs. The proposed 
approach is based entirely on classical selection index 
theory [4], but adopts some more recent concepts, such 
as combining estimated breeding values for some trait 
complexes into an overall breeding value, which requires 
consideration of the precision and covariance structure 
of lower-level estimates. We present a new approach to 
estimate the covariance structure of estimation errors 
from the empirical covariance structure of estimated 
breeding values and to derive realized economic weights 
from observed genetic trends. It should be noted that the 
determination of weights for complex breeding objectives 
cannot be considered a purely economic exercise, but in 
practice also takes into account whether the resulting 
genetic trends are acceptable to stakeholders, i.e., farm-
ers, breeding associations, consumers or society. There-
fore, the proposed framework and the analytical tools 
provided and implemented in the R package “IndexWiz-
ard”, may be helpful to define more rational and generally 
accepted breeding objectives in the future.
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