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Abstract 

Background  Low-pass sequencing followed by sequence variant genotype imputation is an alternative to the 
routine microarray-based genotyping in cattle. However, the impact of haplotype reference panels and their inter‑
play with the coverage of low-pass whole-genome sequencing data have not been sufficiently explored in typical 
livestock settings where only a small number of reference samples is available.

Methods  Sequence variant genotyping accuracy was compared between two variant callers, GATK and DeepVari‑
ant, in 50 Brown Swiss cattle with sequencing coverages ranging from 4- to 63-fold. Haplotype reference panels of 
varying sizes and composition were built with DeepVariant based on 501 individuals from nine breeds. High-coverage 
sequence data for 24 Brown Swiss cattle were downsampled to between 0.01- and 4-fold to mimic low-pass sequenc‑
ing. GLIMPSE was used to infer sequence variant genotypes from the low-pass sequencing data using different haplo‑
type reference panels. The accuracy of the sequence variant genotypes that were inferred from low-pass sequencing 
data was compared with sequence variant genotypes called from high-coverage data.

Results  DeepVariant was used to establish bovine haplotype reference panels because it outperformed GATK in all 
evaluations. Within-breed haplotype reference panels were more accurate and efficient to impute sequence variant 
genotypes from low-pass sequencing than equally-sized multibreed haplotype reference panels for all target sample 
coverages and allele frequencies. F1 scores greater than 0.9, which indicate high harmonic means of recall and preci‑
sion of called genotypes, were achieved with 0.25-fold sequencing coverage when large breed-specific haplotype 
reference panels (n = 150) were used. In absence of such large within-breed haplotype panels, variant genotyping 
accuracy from low-pass sequencing could be increased either by adding non-related samples to the haplotype refer‑
ence panel or by increasing the coverage of the low-pass sequencing data. Sequence variant genotyping from low-
pass sequencing was substantially less accurate when the reference panel lacked individuals from the target breed.

Conclusions  Variant genotyping is more accurate with DeepVariant than GATK. DeepVariant is therefore suitable 
to establish bovine haplotype reference panels. Medium-sized breed-specific haplotype reference panels and large 
multibreed haplotype reference panels enable accurate imputation of low-pass sequencing data in a typical cattle 
breed.
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Background
More than one million cattle are genotyped every 
year using the microarray technology for the purpose 
of genomic prediction [1]. Access to whole-genome 
sequence variants can improve the accuracy of genomic 
predictions and facilitates the monitoring of trait-asso-
ciated alleles [2]. However, costs are still too high to 
sequence all individuals from a population to a sufficient 
coverage for calling variants.

Low-coverage whole-genome sequencing (lcWGS) fol-
lowed by genotype imputation has emerged as an alterna-
tive with comparable costs to genotyping microarrays but 
with substantially higher marker density (tens of millions 
versus tens of thousands) to obtain genotypes for a target 
population [3–6]. Sequencing coverage as low as 0.1-fold 
can be used to infer sequence variant genotypes that are 
as accurate as those obtained from genotyping microar-
rays, especially for rare variants, while sequencing cover-
age greater than 1-fold can have much higher accuracy 
[5]. For many imputation methods, reference panels that 
are representative for the target populations are a pre-
requisite for the accurate imputation of genotypes from 
lcWGS [7–9]. The 1000 Genomes Project (1KGP) and 
the Haplotype Reference Consortium (HRC) established 
such reference panels for several human ancestry popula-
tions [10, 11] and made them available through dedicated 
imputation servers [12]. A bovine imputation reference 
panel established by the 1000 Bull Genomes project is 
frequently used to infer sequence variant genotypes for 
large cohorts of genotyped taurine cattle, thus enabling 
powerful genome-wide analyses at the nucleotide level 
[13]. Sequenced reference panels are available for other 
animal species [14, 15], but they lack diversity as they 
were established mainly using data from mainstream 
breeds and thus are depleted for individuals from local or 
rare populations.

An exhaustive set of variants and accurate genotypes 
are crucial to compile informative haplotype reference 
panels. The Genome Analysis Toolkit (GATK) has been 
frequently applied to discover and genotype sequence 
variants in large reference populations of many livestock 
species [3, 14]. DeepVariant has recently emerged as an 
alternative machine learning-based variant caller [16]. 
Several studies suggest that DeepVariant has superior 
genotyping accuracy compared to GATK [17–20]. How-
ever, DeepVariant has rarely been applied to call variants 
in species other than humans [21, 22].

In this study, we benchmark sequence variant geno-
typing of DeepVariant and GATK in a livestock popu-
lation. Then, we build haplotype reference panels of 
varying sizes and composition with DeepVariant, and use 
GLIMPSE to impute sequence variant genotypes for cat-
tle that had been sequenced at between 0.01- and 4-fold. 

We show that within-breed haplotype reference panels 
outperform multibreed reference panels across all tested 
scenarios, provided that a sufficient number of sequenced 
samples is available.

Methods
Data availability and code reproducibility
Short paired-end whole-genome sequencing reads from 
501 cattle from nine breeds were used: 327 Brown Swiss 
(BSW), 50 Fleckvieh, 13 Hereford, 57 Holstein, 2 Nordic 
Red, 14 Rätisches Grauvieh, 10 Simmental, 25 Tyrolean 
Grauvieh and 3 Wagyu cattle. Accession numbers for the 
raw data are available in Additional file 1.

Computational workflows were implemented using 
Snakemake [23] (version 7.5.0 or newer). The R software 
environment (version 4.0.2) and ggplot2 package [24] 
(version 3.3.2) were used to create figures and perform 
statistical analyses.

Scripts and workflows are available online:
https://​github.​com/​Anima​lGeno​micsE​TH/​Low_​pass_​

imput​ation

Alignment, mapping quality and depth of coverage
Raw short sequencing reads were filtered with fastp 
[25] (version 0.23.1), and MultiQC [26] (version 1.11) 
was applied to collect the quality metrics across sam-
ples. Reads were split per read groups with gdc-fastq-
splitter [27] (version 1.0.) and subsequently aligned with 
bwa-mem2 [28] using the -M and -R flags to a manually 
curated version of the current bovine Hereford-based 
reference genome (ARS-UCD1.2) [29] that included a Y 
chromosome as described in [30].

Samblaster [31] (version 0.1.26), Sambamba [32], sam-
tools [33, 34] (version 1.12), and Picard tools [35] (version 
2.25.7) were used to deduplicate and sort the BAM files.

We calculated average coverage with mosdepth [36] 
(version 0.3.2) considering all aligned reads that had a 
mapping quality (MQ) ≥ 10.

Comparison between variant callers
Testing set
Fifty BSW cattle with coverages ranging from 4 to 63-fold 
were selected as testing set for a comparison between 
GATK and DeepVariant.

GATK
We used the BaseRecalibrator module of GATK [37, 38] 
(version 4.2.2.0) to adjust the base quality scores of the 
deduplicated bam files using 115,815,224 unique posi-
tions from the Bovine dbSNP version 150 as known 
variants. Multi-sample variant calling was performed 
with the GATK HaplotypeCaller, GenomicsDBImport 
and GenotypeGVCFs modules according to the best 

https://github.com/AnimalGenomicsETH/Low_pass_imputation
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practice guidelines [39, 40]. We applied the VariantFiltra-
tion module for site-level filtration using the thresholds 
indicated in [30] to retain high-quality single nucleotide 
polymorphisms (SNPs) and insertion/deletion variants 
(INDELs).

DeepVariant + GLnexus
DeepVariant [16] (version 1.2) was run on the dedupli-
cated bam files using the WGS Illumina-trained model, 
producing a gVCF output per sample. The gVCF files 
were then merged and filtered using GLnexus [41] (ver-
sion 1.4.1) with the DeepVariantWGS configuration but 
with the revise_genotypes flag set to false.

VCF imputation and statistics
We used Beagle 4.1 [42] (27Jan18.7e1) to improve geno-
type calls and impute sporadically missing genotypes 
from genotype likelihoods (gl mode). INDELs were left-
normalised using bcftools [34] (version 1.12 or 1.15) 
norm. Variant and genotype counts, and Ti:Tv ratios were 
calculated with bcftools stats and bcftools query. VCF 
files were indexed with tabix [43, 44].

Variant annotation
Functional consequences of SNPs were predicted based 
on the Ensembl (release 104) annotation of the bovine 
reference assembly using the Variant Effect Predictor tool 
(VEP) [45] (version 106) with default parameter settings.

Evaluation of the accuracy of variant calling
Microarray-derived genotypes from 33 cattle that 
also had sequence-derived genotypes (see Additional 
file 1) were our truth chip set. We intersected the truth 
(microarray) and query (WGS variants) VCF files using 
bcftools isec with both the -c none (exact—only match-
ing REF:ALT alleles are allowed) and -c all (position—all 
coordinate matches are allowed) flags, and retained bial-
lelic SNPs with bcftools view to compare the genotypes. 
Three-way intersection overlaps were counted with bed-
tools multiinter [46] and visualised with UpSetR [47, 48]. 
Since the microarray data contains fewer sites than WGS, 
we intersected the truth and query sets. Only positions 
where the truth genotypes were not homozygous for the 
reference allele (i.e., the variants that segregate within 
the target samples) were retained. We calculated recall 
(percentage of true positives in the query set), precision 
(proportion of matching genotypes in both truth and 
query sets), and F1 scores (harmonic mean of precision 
and recall) using hap.py [49] (version 0.3.9) on a per-
sample basis. Agreement between the imputed variant 
alleles/genotypes and raw sequencing reads was assessed 
with Merfin’s k-mer-based filtering method [50] (com-
mit fc4f89a). A k-mer database was prepared using Meryl 

(commit 51fad4b) with a k-mer size of 21 and minimum 
k-mer occurrence of 2 in the short sequencing reads. 
Variants that were poorly supported, i.e., the alternate 
sequence (variant and flanking regions) appeared less 
often in k-mers than the reference sequence did in a gen-
otype-aware proportion, were filtered out.

We assessed Mendelian consistency in filtered but not-
imputed data from parent-offspring pairs and trios (see 
Additional file  2) using the bcftools +mendelian plugin 
[34]. We calculated discrepancy rate as the number of 
inconsistent sites divided by the total number of non-
missing sites. For duos (dam-offspring or sire-offspring) 
only homozygous sites were considered. Assessing dis-
crepancy was only possible when the parent genotype 
was homozygous (0/0 or 1/1).

Imputation of low‑pass sequencing data
Generation of the haplotype panels
The BSW reference panels contained 150, 75 and 30 sam-
ples that were randomly selected from 303 BSW samples. 
The non-BSW panels contained 150, 75 and 30 samples 
that were randomly selected from 174 non-BSW sam-
ples. The multibreed panels were randomly selected from 
a combination of the above, and they contained 150 sam-
ples of which 50%, 25%, and 10% were BSW samples and 
the remaining were non-BSW. Three random replicates 
for each panel were created. Sequence variant genotypes 
were called for each panel with DeepVariant and spo-
radically missing genotypes were imputed with Beagle 4.1 
[42] (27Jan18.7e1) as described above.

Truth sequencing set, truth variants and subsampling
Variants were called with DeepVariant and GLnexus as 
described previously for 24 BSW samples with a coverage 
higher than 20-fold to generate a truth set for assessing 
imputation accuracy. The raw whole-genome sequencing 
reads of the 24 BSW samples were then downsampled 
with seqtk [51] to mimic 4x, 2x, 1x, 0.5x, 0.25x, 0.1x, and 
0.01x coverage, and subsequently aligned to ARS-UCD12 
as described previously.

Genotype likelihoods for the variants that are present 
in the haplotype reference panel were estimated from the 
subsampled read alignments with bcftools mpileup and 
bcftools call. These were then imputed using the different 
haplotype panels and GLIMPSE [52] (version 1.1.1). We 
used 2-Mb windows and 200-kb buffer sizes during the 
chunk step followed by phasing and ligation to produce 
the final imputed variant calls.

Comparison of true and imputed variants
The accuracy of the imputed sequence variant geno-
types was assessed with hap.py as described above. The 
minor allele frequency (MAF) of the imputed sequence 
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variants was calculated with PLINK [53] (version 1.9). 
The estimated imputation quality was retrieved from 
the INFO flag from the VCF files produced by GLIMPSE 
with bcftools query. Pearson squared correlation between 
expected and actual dosages ( r2 ) was calculated with the 
bcftools stats.

Results
Variant calling with GATK and DeepVariant
We compared sequence variant calling between GATK 
and DeepVariant for 50 Brown Swiss (BSW) cattle for 
which the sequencing depth ranged from 4 to 63-fold 
(19.26 ± 11.09) along the autosomes. GATK and Deep-
Variant identified 18,654,649 and 18,748,114 variants, 
respectively, of which 7.79% and 8.38% were filtered out 
because of their low quality (Table 1). In total, 16,147,567 
filtered variants were identified by both callers, but 
1,053,716 and 1,292,671 variants were private to GATK 
and DeepVariant, respectively (Fig.  1a). Overall, Deep-
Variant had more private SNPs than GATK, but GATK 
had more private INDELs than DeepVariant (see Addi-
tional file  3: Table  S1). 416,642 variants had the same 
coordinates but different alternative alleles. These dis-
crepant sites were primarily INDELs (83%, as opposed 
to the 12% of INDELs in all shared variants). Multiallelic 

sites accounted for 3.44% and 3.31% of the variants 
(0.33% and 0.28% of the SNPs, and 23.22% and 23.94% 
of the INDELs) that passed the quality filters of GATK 
and DeepVariant, respectively. Multiallelic sites were 
enriched among the variants private to either GATK or 
DeepVariant (see Additional file 3: Table S2).

The biallelic variants called by GATK had a higher 
percentage of homozygous reference (HOMREF) and 
heterozygous (HET) genotypes whereas the biallelic vari-
ants called by DeepVariant had a higher percentage of 
homozygous alternative (HOMALT) genotypes (Fig.  1b 
and see Additional file  4: Fig. S1a). Missing genotypes 
were very rare (<0.01%) for GATK-called biallelic vari-
ants but accounted for 2.72% of the DeepVariant-called 
genotypes (see Additional file 4: Fig. S1b). Beagle phasing 
and imputation increased the number of HET genotypes 
for both GATK (mostly transitioning from HOMREF) 
and DeepVariant (mainly due to the refinement of miss-
ing genotypes) (see Additional file 4: Fig. S1c).

Functional consequences on the protein sequence 
were predicted for all biallelic variants. DeepVariant 
identified 9% more SNPs that were predicted to have a 
high impact on protein function than GATK (Table  1 
and see Additional file  3: Table  S3). Around one fourth 
of the high impact SNPs detected by DeepVariant (24%) 

a
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Fig. 1  Comparison of the variants called between DeepVariant (DV) and GATK. a Intersection of variants called with each variant caller (or both) 
and the Ti:Tv ratio of the biallelic SNPs of each set. b Percentage of imputed genotypes called by each variant caller. c Intersection of variant calls 
with truth genotyping arrays, where only variants at intersecting positions are retained. Variants with a low, moderate and high predicted impact 
from the intersecting sets are indicated

Table 1  Summary of the variants called by GATK and DeepVariant (DV)

Multiallelic sites are presented in parentheses. Ti:Tv ratios are restricted to biallelic SNPs. Functional consequences are predicted for biallelic SNPs / biallelic INDELs

Variant caller Sets Variants SNPs INDELs Ti:Tv ratio High impact predicted
SNPs / INDELs

GATK Raw 18,654,649 (831,391) 16,135,130 (58,049) 2,617,546 (773,342) 2.16 2680 / 4493

GATK Filtered-out 1,453,366 (239,008) 1,271,522 (8577) 279,871 (230,431) 1.66 428 / 500

GATK Filtered 17,201,283 (592,383) 14,863,608 (49,472) 2,337,675 (542,911) 2.20 2252 / 3993

DV Raw 18,748,114 (702,173) 16,554,438 (54,438) 2,401,933 (647,735) 2.24 3530 / 2778

DV Filtered-out 1,571,454 (270,963) 1,174,815 (11,834) 393,927 (259,108) 2.19 1061 / 612

DV Filtered 17,440,238 (577,997) 15,361,785 (42,899) 2,240,627 (535,098) 2.24 2474 / 2240
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were not detected by GATK. GATK identified 78% more 
INDELs that were predicted to have a high impact on 
protein function than DeepVariant. More than half of the 
high impact INDELs detected by GATK (52%) were not 
detected by DeepVariant.

We investigated the ratio of transitions to transver-
sions (Ti:Tv) to assess variant quality. Deviations from 
an expected genome-wide Ti:Tv ratio of ∼ 2.0−2.2 indi-
cate random genotyping errors or sequencing artifacts 
[17, 20, 38, 54]. The Ti:Tv ratio was 2.16 and 2.24 for raw 
SNPs identified by GATK and DeepVariant, respectively 
(Table 1). While the Ti:Tv ratio was higher (2.20) for the 
GATK variants that met the quality filters, variant filtra-
tion had no impact on the Ti:Tv ratio for SNPs called by 
DeepVariant. The Ti:Tv ratio of the filtered-out SNPs was 
substantially lower for GATK (1.66) than for DeepVari-
ant (2.19). SNPs private to GATK had lower Ti:Tv ratios 
than those private to DeepVariant (Fig.  1a). Substantial 
differences in the Ti:Tv ratio (0.81 points) were observed 
between overlapping and GATK-private SNPs but were 
smaller (0.18 points) between overlapping and DeepVari-
ant-private SNPs.

Accuracy of variant calling
Thirty-three sequenced cattle also had between 17,575 
and 490,174 SNPs genotyped with microarrays. The fil-
tered biallelic SNPs called with GATK and DeepVariant 
(query sets) were compared to those genotyped with the 
microarrays (truth chip set). The vast majority (98.82%) 
of the SNPs present in the truth chip set was called by 
both tools (Fig. 1c). The number of overlapping SNPs pre-
sent in the truth chip set was slightly larger for DeepVari-
ant than for GATK. 1.06% (n = 5309) of the SNPs present 
in the truth chip set were not called by any of the soft-
ware as biallelic SNPs. However, 3497 of these SNPs were 
present at the same position but had different alternative 
alleles (e.g., multiallelic SNPs or INDELs) in DeepVariant 
versus GATK while the other 1812 positions were truly 
missing. Most of the biallelic SNPs private to the chip set 
(5265) were also missing in the raw calls from the variant 
callers. DeepVariant filtered out more variants present in 
the truth chip set than GATK.

The analysis of variant effect predictions for the filtered 
variants revealed that most low/moderate/high impact 
variants were called by both GATK and DeepVariant 
(99.4%, 98.8%, and 92.8%, respectively). However, Deep-
Variant additionally called 5/2/4 biallelic SNPs predicted 
as low/moderate/high impact respectively, while GATK 
only called 0/1/1 (Fig.  1c). Some of the low/moderate/
high impact biallelic SNPs private to GATK (1 out of the 
2) and DeepVariant (5 out of the 11) were called either 
as multiallelic SNPs or as INDELs by the other caller 
(see Additional file  3: Table  S4). Only half (1 out of 2) 

of GATK’s private variants have a MAF higher than 0.5, 
while most (9 out of 11) of the DeepVariant’s private vari-
ants do, which suggests that GATK misses more variants 
that might have a larger impact in populations.

Genotyping accuracy of variant calls
GATK and DeepVariant called 492,265 and 493,145 vari-
ants from the truth chip set, respectively. GATK missed 
(8.13%) and miscalled (10.13%) more truth variants than 
DeepVariant. Around 90.6% of the discrepancies between 
the sequence variant genotypes and the truth chip set 
in both variant callers were due to missing genotypes in 
the sequence set. Of those, GATK missed proportion-
ally more HOMALT than DeepVariant, and DeepVari-
ant missed proportionally more HET variants. For the 
remaining ∼ 9.4% of mismatching genotypes (miscalled), 
GATK miscalled proportionally more HOM variants, 
and DeepVariant significantly miscalled proportionally 
more HET variants (see Additional file 4: Fig. S2). How-
ever, after imputation, the proportion of HET positions 
miscalled was higher in the GATK set and the proportion 
of HOMREF positions miscalled as HET was significantly 
higher in the DeepVariant set.

Recall, precision and F1 score of the filtered query sets 
were calculated to assess the genotyping accuracy for 
both variant callers. DeepVariant had strictly better F1 
scores than GATK for the filtered data (mean of 0.9719 
versus 0.9694, Fig.  2a and b). The difference was small 
but significant (Wilcoxon signed-rank test, p=2.3x10−10 ). 
As expected, lower coverage (<20x) samples benefited 
from imputation, improving their F1 scores to values 
that were comparable to high-coverage samples. Imputa-
tion improved GATK genotypes more than DeepVariant 
genotypes at lower coverages, which could be due to bet-
ter calibration of genotype likelihoods, but DeepVariant 
was still strictly better for coverage-folds higher than 7x. 
Overall, DeepVariant still had a significantly higher mean 
F1 score for the imputed data (0.9912 versus 0.9907, Wil-
coxon signed-rank test p=4.2x10−05 , Fig. 2c).

We examined variant genotyping accuracy through 
Merfin [50]. Merfin filters out variants when the propor-
tion of “reference” and “alternate” k-mers for that variant 
from the sample’s short sequencing reads does not match 
the genotype and thus is likely incorrect. HET geno-
types obtained with both GATK and DeepVariant had 
less support from the sequencing reads, as they are more 
difficult to genotype correctly than HOM genotypes. 
For both HET and HOMALT, more of the genotypes of 
DeepVariant than of GATK were supported (Fig.  3a). 
The difference between the tools was statistically signifi-
cant for both genotypes (two-sided paired Wilcoxon test, 
pHET=3.6x10−19 , pHOMALT=1.8x10−19).
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In addition, we compared Mendelian concordance 
rate between the sequenced duos and trios across the 
two variant callers. There were only two family rela-
tionships in the previously examined 50 samples, and 
so we evaluated the concordance on a separate set of 
206 samples (see Additional file 2) forming seven trios 
(both parents available) and 142 duos (one parent avail-
able). DeepVariant had less genotypes that are in con-
flict with Mendelian inheritance compared to GATK 
(2.3% versus 3.8%, Fig.  3b, one-sided paired Wilcoxon 
signed-rank test p=1.3x10−24 ). This was due to Deep-
Variant calling both more genotypes that were com-
patible as well as fewer that were incompatible with 
parent-offspring relationship.

Generation of a sequencing validation set for lcWGS 
imputation
We benchmarked the accuracy of low-pass sequence 
variant imputation in a target population consisting of 24 
BSW samples with a mean autosomal coverage of 28.12 
± 9.07-fold. DeepVariant identified 15,948,663 variants 
(87.77% SNPs and 12.23% INDELs) in this 24-sample 
cohort of which we considered 13,854,932 biallelic SNPs 
as truth set.

The sequencing reads of these 24 samples were ran-
domly downsampled to mimic medium (4x and 2x), low 
(1x, 0.5x, 0.25x, and 0.1x), and ultralow (0.01x) sequenc-
ing coverage. We then aligned the reads to the reference 
sequence and produced genotype likelihoods from the 

Fig. 2  Comparison of the F1 values obtained with hap.py from GATK and DeepVariant (DV) variant calls against the truth chip set for 33 samples. 
a Imputation improves genotype accuracy for sequence coverages lower than 20x but has little impact for sequence coverages higher than 20x. b 
DV has a higher F1 score for every sample than GATK for post-filter variants. The high confidence set indicates the 17 microarray genotyped samples 
out of the 24 samples used later as a truth set for GLIMPSE imputation. c Similar to (b) but for post-imputation variants

Fig. 3  Genotyping accuracy of variant calls validated with sequencing reads and Mendelian relationships. a Filtering rate of heterozygous (0/1) and 
homozygous alternate (1/1) variant calls post-imputation for GATK and DV. Higher filtering rate indicates the genotype/allele is not consistent with 
k-mers from the same-sample sequencing reads. b Mendelian violation rate for 206 separate samples, with either 2 family members (Duo) or all 3 
(Trio). Mendelian violations are defined as genotypes in the offspring that could not have been inherited from the parents. In the case of duos, only 
variants homozygous in the parent can be confirmed as violations of Mendelian inheritance
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pileup files. Subsequently, genotypes were imputed with 
GLIMPSE considering nine haplotype reference panels, 
and compared to the truth set to determine the accuracy 
of imputation.

The nine haplotype reference panels varied in size and 
composition. Five haplotype reference panels contained 

150 cattle (full panels) of which either 0%, 10%, 25%, 50% 
or 100% were from the BSW breed (i.e., the breed of the 
target samples). The other four panels contained either 
75 or 30 cattle (reduced panels) that were either from the 
BSW breed or from breeds other than BSW. DeepVariant 
identified between 17,035,514 and 28,755,400 sequence 

Fig. 4  Genotyping accuracy from low-pass whole-genome sequencing. a F1 score between truth and imputed variants. b GLIMPSE INFO score 
achieved with different sequencing coverages and haplotype panels. c Differences (subtraction) between F1 and GLIMPSE INFO average scores for 
different sequencing coverages and haplotype panels. d Squared dosage correlation (r2 ) between imputed data and truth set, stratified by MAF for 
lcWGS at 0.5x. Panels are indicated with colours and number/percentages of BSW samples are indicated with different shapes of points. Multibreed 
panels contain 150 samples. Points indicate the average of the results for all variants in three replicates

Table 2  General overview of the haplotype reference panels: number of samples, coverage and number of variants called

Shared and private variants are considered through exact matching (position and alleles). Values are the mean of 3 replicas per haplotype panel

Panel Samples Coverage Variants Biallelic SNPs SNPs shared 
truth-query sets

Truth SNPs missing in 
haplotype panel

SNPs private to 
haplotype panel

BSW 150 9.40 22,493,568 19,682,362 13,537,126 317,806 6,145,236

BSW 75 9.65 19,883,488 17,345,201 13,373,462 481,470 3,971,739

BSW 30 9.42 17,035,514 14,839,600 12,810,541 1,044,391 2,029,059

Multibreed (50%) 150 10.48 27,710,504 24,325,185 13,568,744 286,188 10,756,441

Multibreed (25%) 150 10.86 28,755,400 25,266,484 13,531,721 323,211 11,734,763

Multibreed (10%) 150 11.44 28,608,506 25,126,433 13,427,451 427,481 11,698,982

Non-BSW 150 11.78 28,303,738 24,850,237 13,075,827 779,105 11,774,410

Non-BSW 75 11.78 25,059,239 21,968,792 12,868,909 986,023 9,099,883

Non-BSW 30 11.45 21,011,311 18,402,870 12,283,284 1,571,648 6,119,586
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variants in the nine haplotype reference panels (Table 2). 
The full BSW panel contained 5,167,875 fewer biallelic 
SNPs than the full non-BSW panel. The 50% multibreed 
panel had the largest number of variants shared with the 
truth set and the smallest number of variants present in 
the truth set but missing in the reference panel, closely 
followed by the BSW panel. The reduced non-BSW panel 
(30 samples) had the smallest number of shared variants 
and the largest number of variants that were present in 
the truth but missing in the reference set.

Assessment of lcWGS imputation with the different 
haplotype panels
Increasing the number of reference haplotypes enabled 
higher F1, recall and precision scores in all tested sce-
narios (Fig. 4a and see Additional file 3: Table S5). Impu-
tation accuracy also improved with increasing lcWGS 
coverage, with the biggest change between 0.01x and 
1x coverage, and continued to improve with diminish-
ing returns between 1x and 4x coverage. The difference 
in accuracy between panels also decreased as coverage 
increased.

The largest BSW haplotype reference panel (n = 150) 
performed better than any of the multibreed panels at all 
sequencing coverages. Multibreed panels outperformed 
BSW panels with a larger number of BSW samples, espe-
cially at low coverage. For instance, a large multibreed 
panel containing 10% BSW samples (n = 15) produced 
higher F1 scores than a smaller breed-specific panel con-
taining two times more BSW samples (n = 30). Similarly, 
a large multibreed panel containing 25% BSW samples 
(n = 37) provided higher F1 scores than a smaller breed-
specific panel containing two times more BSW samples 
(n = 75) for lcWGS below 1-fold coverage. Accuracies 
were similar between large multibreed panels and smaller 
breed-specific panels when the coverage of the lcWGS 
was higher than 1-fold. All results were validated by three 
different conformations of the haplotype reference panels 
(replicas). Standard errors accounting for all the replicas 
did not overlap for any of the haplotype panels (see Addi-
tional file 4: Fig. S3a).

The INFO score [55] was higher for all BSW pan-
els than for the multibreed panels across all coverages 
(Fig. 4b). A higher proportion of variants were imputed 
with an INFO score greater than 0.6 in the BSW than in 
non-BSW or multibreed panels (see Additional file 4: Fig. 
S3b). Therefore, panels for which the average INFO score 
was higher had also a major proportion of variants with 
high imputation quality, potentially selected for down-
stream analyses. The differences between BSW panels 
and the others were larger than those between multi-
breed and non-BSW panels. The average values of F1 
and the average INFO scores were closer for the variants 

imputed with BSW panels (Fig.  4c). The differences 
between both metrics decreased as the coverage of the 
lcWGS increased (see Additional file 4: Fig. S3c and d).

The variants were then stratified by MAF, and the 
squared correlation of genotype dosages (r2 ) was calcu-
lated (Fig. 4d). The correlations increased along with the 
MAF similarly for all the panels. The highest correla-
tions were for BSW panel (150 samples) and multibreed 
panels (50% and 25%). The values increased substantially 
between 0 −0.1 MAF and continued to increase slowly 
until the MAF reached 0.5 for all panels.

Discussion
Higher F1 scores against a microarray truth set, improved 
k-mer based variant filtering, and the fewer Mendelian 
errors suggest that DeepVariant is a superior variant 
caller to GATK for bovine short read sequencing. These 
results extend the evidence of the DeepVariant’s greater 
accuracy that was established in multiple human stud-
ies [17–20]. Ti:Tv ratios in the expected range of 2 −2.2 
[38, 54] suggest that variant calls private to DeepVari-
ant contain genuine variants, whereas the lower Ti:Tv 
ratio in variants private to GATK indicate an excess of 
false positives. DeepVariant revealed more SNPs that 
have an impact based on their annotation, likely provid-
ing additional putative trait-associated candidates for 
downstream analyses. DeepVariant was approximately 
3.5x faster in end-to-end variant calling compared to 
GATK, due to greater multithreading potential and to the 
fact that it does not require pre-processing like GATK’s 
base recalibration step (see Additional file  3: Table  S6). 
The peak memory usage was approximately 65% higher 
for DeepVariant than for GATK (81 GB versus 49 GB). 
Although our work focused on CPU-only machines, 
DeepVariant also offers GPU acceleration (roughly 1.9x 
faster overall), while GATK has no official GPU support, 
although there are third-party developments (roughly 
1.4x faster overall) [56].

To the best of our knowledge, our study is the first to 
establish bovine haplotype reference panels with Deep-
Variant. A within-breed panel consisting of 75 samples 
enabled us to genotype more than 13 million sequence 
variants in animals sequenced at a 0.5-fold sequencing 
coverage with F1 scores greater than 0.9. Larger haplo-
type reference panels (n = 150) from the same breed as 
the lcWGS data outperform multibreed panels across 
the whole low coverage spectrum (from 0.1- to 1-fold) 
and MAF, including rare variants. The development of 
such panels is a feasible alternative to using much larger 
multibreed panels, such as the 1000 Bull Genomes pro-
ject imputation reference panel [13]. Such large panels, 
encompassing huge within- and across-breed diversity, 
may be regarded as the most complete and thus best 
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genomic resources available in bovine genomics. How-
ever, using such large panels may be detrimental for 
breed-specific imputation (also described by Nawaz et al. 
[57]), as we observed many relevant sites were filtered 
out before imputation due to being multiallelic, result-
ing in a lower F1 score than the 75 sample BSW panel at 
1-fold coverage and higher. The use of within-breed pan-
els is also more computationally efficient and are 18 to 
33% faster than that of multi- or different-breed panels of 
the same size (see Additional file 4: Fig. S4), and approxi-
mately 7 times faster than using the 1000 Bull Genomes 
Project panel.

In absence of an adequately sized breed-specific panel 
(e.g., less than 30 animals), F1 scores of 0.9 can also be 
reached either by increasing the coverage of the lcWGS 
or by adding distantly related samples from other breeds 
to the haplotype panels as even animals from seemingly 
unrelated breeds may share short common haplotypes. 
Both options will provide accurate sequence variant gen-
otypes at affordable costs for samples from rare breeds, 
where large breed-specific haplotype reference pan-
els cannot be easily established. For instance, F1 scores 
> 0.92 are observed at a 2-fold sequencing coverage for 
all tested haplotype panels with small differences among 
them. This is likely because higher coverages provide 
more information for imputation from the own sequenc-
ing reads, while lower coverages rely on the informa-
tion from haplotypes in the panels. We also achieved F1 
scores of 0.9 with large multibreed panels containing only 
10% of within-breed samples (n = 15). However, refer-
ence panels that contain only few samples from the target 
breed are in general less informative as evidenced by the 
lack of about 100K truth SNPs that were present in same-
size breed-specific panels. Additionally, a threshold of 
non-related haplotypes from which only marginal gains 
to imputation accuracy are observed have been described 
[15, 57, 58]. Overall results are compatible with similar 
studies with haplotype panels of both larger and smaller 
sample sizes [15, 57, 59]. Genotypes imputed from 
lcWGS enable the prediction of genomic breeding values 
and facilitate powerful genome-wide association studies 
at nucleotide resolution [3, 60].

Although imputation accuracy (F1) and GLIMPSE’s 
predicted imputation accuracy (INFO score) are respec-
tively averaged over each sample and each variant, we 
note that F1 (truth) is strictly higher than INFO (estima-
tion). The differences appear to be more pronounced for 
reference haplotype panels that are constituted from a 
different breed to the target sample and at lower cover-
ages (i.e., less than 0.25-fold coverage, where GLIMPSE’s 
INFO scores are inaccurate [6]). While, for example, 
multibreed panels are nearly as equally accurate as the 
150 sample BSW panel, the INFO scores are notably 

lower. Similarly, the INFO score drops more rapidly for 
lower coverages, suggesting that a fixed threshold may 
be unnecessarily conservative given the slower decay in 
F1. The GLIMPSE INFO score is also positively corre-
lated with variant MAF, and thus filtering based on INFO 
predominantly removes low-frequency variants. While 
INFO and other imputation accuracy scores are still 
useful, additional care should be taken in determining a 
constant filtering threshold as more and different panels 
become available for use.

Conclusions
DeepVariant outperforms GATK for calling variants 
from bovine short sequencing reads and can be readily 
used to establish informative haplotype reference panels. 
Medium-sized breed-specific haplotype reference panels 
enable accurate imputation of millions of sequence vari-
ant genotypes from low-pass (0.5-fold) sequence data. 
The same degree of accuracy of the imputed genotypes 
is achieved from larger multibreed reference panels that 
lack individuals from the target breed but contain indi-
viduals from distantly related breeds. Increasing the 
sequencing coverage compensated to a certain extent the 
lack of representative animals in the reference panels. 
Nevertheless, suboptimal haplotype reference panels lack 
variants private to the breed under study, especially rare 
variants.
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