
Zhou et al. Genetics Selection Evolution           (2023) 55:46  
https://doi.org/10.1186/s12711-023-00820-3

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution
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Abstract 

Background Genome‑wide association studies (GWAS) are an effective way to explore genotype–phenotype 
associations in humans, animals, and plants. Various GWAS methods have been developed based on different genetic 
or statistical assumptions. However, no single method is optimal for all traits and, for many traits, the putative single 
nucleotide polymorphisms (SNPs) that are detected by the different methods do not entirely overlap due to the diver‑
sity of the genetic architecture of complex traits. Therefore, multi‑tool‑based GWAS strategies that combine different 
methods have been increasingly employed. To take this one step further, we propose an ensemble‑like GWAS strategy 
(E‑GWAS) that statistically integrates GWAS results from different single GWAS methods.

Results E‑GWAS was compared with various single GWAS methods using simulated phenotype traits with differ‑
ent genetic architectures. E‑GWAS performed stably across traits with different genetic architectures and effectively 
controlled the number of false positive genetic variants detected without decreasing the number of true positive 
variants. In addition, its performance could be further improved by using a bin‑merged strategy and the addition of 
more distinct single GWAS methods. Our results show that the numbers of true and false positive SNPs detected by 
the E‑GWAS strategy slightly increased and decreased, respectively, with increasing bin size and when the number 
and the diversity of individual GWAS methods that were integrated in E‑GWAS increased, the latter being more effec‑
tive than the bin‑merged strategy. The E‑GWAS strategy was also applied to a real dataset to study backfat thickness 
in a pig population, and 10 candidate genes related to this trait and expressed in adipose‑associated tissues were 
identified.

Conclusions Using both simulated and real datasets, we show that E‑GWAS is a reliable and robust strategy that 
effectively integrates the GWAS results of different methods and reduces the number of false positive SNPs without 
decreasing that of true positive SNPs.

Background
Genome-wide association studies (GWAS) have been 
widely used to detect genetic variants that influence com-
plex traits in humans, animals, and plants [1–4] and con-
tribute to deciphering the genetic architecture underlying 
target traits [5]. However, the detection of false positive 
variants has been an ever-lasting issue in the develop-
ment of GWAS methods. False positive variants can be 
caused by non-causal associations, including population 
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structure or unequal kinship among individuals [6, 7]. 
Different methods have been developed to address this 
issue. Initially, the general linear models (GLM) that were 
used treated population structure as a fixed effect but 
failed to decipher the cryptic kinship among individuals 
[8]. Subsequently, the mixed-effect linear model (MLM) 
incorporated population stratification as a fixed effect 
and individual relatedness as a random effect, which 
provides greater control over false positive variants [9]. 
Based on MLM, a series of GWAS methods has been 
developed, with the main focus on improving computa-
tional efficiency [10–12]. However, most of these meth-
ods are still based on the single-locus test, which may 
be inappropriate for complex traits that are controlled 
by major loci and polygenes, due to the intrinsic limita-
tion of the model hypothesis [13]. Alternatively, multi-
locus methods and Bayesian methods can provide better 
solutions for investigating complex traits. Multi-locus 
methods mainly include the multi-locus mixed model 
(MLMM) [14], the fixed and random model circulat-
ing probability unification (FarmCPU) method [15], the 
multi-locus random effect mixed linear model (mrMLM) 
[13], and the Bayesian-information and linkage-disequi-
librium iteratively nested keyway (BLINK) method [16]. 
Representatives of the Bayesian methods include Bayes-
ian regression models [17] and the Bayesian sparse linear 
mixed model (BSLMM) [18].

Although different GWAS methods have been widely 
used, no single method is ideal for all traits due to the 
diversity of their genetic architectures. For many traits, 
the putative single nucleotide polymorphisms (SNPs) 
that are detected by different GWAS methods do not 
completely overlap. As a result, multi-tool-based GWAS 
strategies that combine different methods have been 
increasingly employed. For example, Muhammad et  al. 
[19] used four multi-locus and three single-locus GWAS 
models to study the genetic architecture of agricultural 
traits in wheat. Liu et  al. [20] suggested that multiple 
GWAS methods, especially single-locus and multi-locus 
methods, can be mutually complementary for the iden-
tification of quantitative trait loci (QTL). Nida et al. [21] 
emphasized the drawbacks of employing multiple models 
for GWAS because some loci may be overlooked or mar-
ginalized in certain GWAS models in spite of their sig-
nificant contribution to the trait of interest.

Previous studies have shown that the combination 
of different GWAS methods can improve the detec-
tion rate and statistical robustness of major QTL and 
the use of multiple statistical methods to detect major 
QTL in GWAS is becoming more common for complex 
traits. However, to date, most studies have simply con-
ducted different GWAS methods separately and reported 
the results in parallel mode without proper statistical 

integration. Such treatment does not represent a real 
integration analysis and cannot effectively control the 
number of false and true positive variants detected.

The stacked ensemble method [22] represents a poten-
tial solution to the issue of integrating the outcomes from 
multiple single GWAS methods although, to date, it has 
not been used for this purpose. Previous studies have 
applied stacked ensemble methods in genomic predic-
tion to improve prediction accuracy [23–25]. Recently, 
ensemble learning methods have been used to investi-
gate gene–gene (environment) interactions and the pri-
oritization of disease genes in GWAS [26, 27]. There are 
several types of ensemble learning methods, such as bag-
ging [28], boosting [29], and stacking [22], among which 
the stacked ensemble method results in a higher predic-
tion accuracy than each single base model by integrating 
the outputs of different base models into a meta model 
[22]. Thus, the stacked ensemble method provides an 
effective tool for integrating the results from different 
single GWAS methods. Based on this, in this study, we 
developed an ensemble-like strategy to integrate multi-
ple GWAS results and named it E-GWAS (ensemble-like 
GWAS). Our main objective was to systematically con-
firm the effectiveness of E-GWAS by statistically inte-
grating a set of GWAS results from different types of 
GWAS methods.

Methods
Real dataset
In this study, we used a pig dataset that included 4555 
individuals and one backfat thickness trait. All pigs were 
genotyped with the Illumina PorcineSNP50 Bead Chip. 
We excluded SNPs that had a minor allele frequency 
lower than 1%, a missing position, and/or a call rate lower 
than 95%. After filtering, 41,078 SNPs remained for fur-
ther analysis. Missing genotypes were imputed by the 
Beagle 5.0 software [30].

Simulated datasets
We generated simulated data based on the observed 
genotypes of the pig population in the real dataset. Phe-
notypes were simulated by the simulated phenotype 
generation function in the Genome Association and Pre-
diction Integrated (GAPIT) Tool [31], which randomly 
samples m SNPs as quantitative trait nucleotides (QTN) 
and generates the effect of each QTN ( β ) from a stand-
ard normal distribution or from a geometric distribution. 
Subsequently, it calculates the genetic value of each indi-
vidual as g =

∑m
j xjβj , where x is coded as 0, 1, and 2 for 

genotypes aa, Aa, and AA, respectively. Finally, it gener-
ates the residual effects ( e ) from N (0, var(g)(1− h2)/h2) 
and calculates the simulated phenotype as y = g + e.
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We used different values for trait heritability ( h2 = 0.2, 
0.6, and 0.8) and for the number of QTN ( m = 20, 100, 
500, and 1000). The effect of each QTN ( β ) was generated 
from a normal distribution (for m = 20 and 100) or from 
a geometric distribution (for m = 500 and 1000). For each 
setting, we repeated the simulation 100 times, randomiz-
ing the positions of the QTN in each replicate.

Workflow of the E‑GWAS strategy
The E-GWAS strategy relies on the stacked ensemble 
method [22] by constructing the meta-processor for inte-
grating the GWAS results from different single GWAS 
methods. Specifically, the E-GWAS strategy consists of 
three steps, as outlined below and visualized in Fig.  1, 
which aim at selecting putative SNPs that are truly asso-
ciated with target traits based on the results of different 
GWAS methods.

(i) GWAS step. Five tools that are known to have high 
statistical power were chosen for separate GWAS, includ-
ing one Bayesian method (BSLMM) and four multi-
locus linear models (MLMM, mrMLM, FarmCPU, and 
BLINK). SNPs with Bonferroni-corrected p-values lower 
than the threshold ( α/M , α = 0.01, where M is the num-
ber of SNPs) were defined as putative SNPs. The results 
of each GWAS were saved as lists of SNPs.

(ii) Intersection-joining step. We combined the over-
lapping SNPs between lists (intersections) from each pair 
of GWAS methods and joined together 10 intersections 
to obtain a preliminary combined list with m SNPs. Con-
sidering that some putative SNPs from different meth-
ods might be close to each other, a within-bin merged 
method was used to expand the intersection ranges (i.e., 
10 and 50  kb). To avoid multicollinearity, the m SNPs 
are simultaneously integrated into a mixed-effect linear 
model as fixed effects, kinship among individuals as a 
random effect, and their p-values are calculated based on 
this model (Fig. 1b). Among the m putative SNPs, SNPs 
with a Pearson correlation coefficient of their genotypes 
greater 0.7 are clustered together and the j remaining 

SNPs are retained, those with the lowest p value in each 
of the j clusters (Fig. 1c).

(iii) Meta-processor step. To further control the num-
ber of false positive SNPs, the j SNPs were simultane-
ously integrated into a mixed-effect linear model again 
as fixed effects, and the j p-values corresponding to SNPs 
from the preliminary combined list were re-estimated 
together. We used the permutation test method to define 
the threshold for the j p-values corresponding to SNPs 
from the preliminary combined list. A null hypothesis of 
no association between SNP and trait was established. 
Let P0 denote any probability under the null hypothesis. 
The distribution under P0 of the j p-values was estimated 
by the following resampling procedure:

1. : Set n = 1

2. : Generate permutated phenotypes yn by random 
shuffling

3. : Apply a GLM by taking yn as the phenotypes to 
compute the j p-values

4. : Store the smallest of the j computed p-values as 
p
(n)
min

5. : Let n = n + 1 , repeat steps (2) to (4) 10,000 times
6. : Order the p(n)min , and return the vector pordered as P0

Finally, the 0.01-quantile of the smallest of these k 
p-values ( p0.01∗10000ordered  ) was defined as the threshold.

Results
E‑GWAS outperformed all single methods tested 
in analysis of the simulated traits
We compared the performances of different methods 
based on simulated traits. Figure 2 displays the numbers 
of detected SNPs, true QTN, and false QTN obtained 
with the different methods under various simulated sce-
narios. Before running the permutation test, the number 
of true QTN obtained with E-GWAS was comparable to 
that of the five other single methods, and the rate of false 
positive variants detected in E-GWAS was higher than 
that of BSLMM, MLMM, and BLINK for several simu-
lated traits. After running the permutation test, most of 

Fig. 1 The procedure of E‑GWAS. No single method can be entirely optimal for all traits due to the diversity of the genetic architectures of complex 
traits. For many traits, the putative SNPs detected by different methods do not completely overlap. Our proposed E‑GWAS strategy integrates 
different GWAS methods to adapt different traits through a three‑step procedure. First, we identify the overlapping SNPs between lists of SNPs for 
each pair of N GWAS methods and combine them to obtain a preliminary combined list with m SNPs. Because some putative SNPs identified by 
the different methods might be close to each other, a within‑bin merged method can be used to expand the size of the intersection windows (i.e., 
10 and 50 kb) (a). Then, the m SNPs are simultaneously integrated into a mixed‑effect linear model as fixed effects, and their p‑values are calculated 
(b). Among the m putative SNPs, SNPs with a Pearson correlation coefficient of their genotypes greater than 0.7 are clustered together and the j 
remaining SNPs are retained, those with the lowest p value in each of the j clusters (c). The j SNPs are again fitted in a mixed‑effect linear model (d). 
The permutation test method is used to define the threshold for the j p‑values corresponding to the fitted SNPs. The phenotype (y) is shuffled n 
times and the p‑values of the j SNPs are re‑calculated. Then, the 0.01‑quantile of the n minima of the j p‑values in n times is defined as the threshold 
(e). Finally, i SNPs with p‑values below the threshold are retained

(See figure on next page.)
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the true QTN were retained, and the rate of false posi-
tive variants detected in E-GWAS declined considerably, 
occasionally even reaching zero. These results show that 

the E-GWAS strategy provides effective control over the 
number of false positive variants without decreasing the 

Fig. 1 (See legend on previous page.)
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number of true positive variants and outperforms the five 
others single GWAS methods.

Due to the differences between the various GWAS meth-
ods and to the complexity of the genetic architecture of 
complex traits, the QTN that were unique to a particular 
method were omitted in the intersection-joining step of 
E-GWAS (Fig. 3a). For comparison, we also ran permuta-
tion tests to filter the SNPs that were detected by BSLMM, 
MLMM, mrMLM, BLINK, and FarmCPU under one of the 
simulated scenarios, i.e. a simulated trait with a heritability 

of 0.6 controlled by 100 QTN. The p-values for the same 
SNP differed between methods. After running the permu-
tation test, the numbers of true and pseudo QTN obtained 
by the different methods (except BSLMM, BLINK and 
FarmCPU) showed various degrees of reduction (Fig.  3b, 
c). Overall, compared with the five single GWAS methods, 
E-GWAS provided tight control over the rate of false posi-
tive variants and retained a large number of true QTN.

Fig. 2 Comparison between E‑GWAS and BSLMM, MLMM, mrMLM, BLINK, and FarmCPU using simulated phenotypes. Three levels of heritability 
were used in the simulations: 0.2 (left), 0.6 (middle), and 0.8 (right). Four gradients of QTN numbers were set for each level of heritability: 20 (a), 
100 (b), 500 (c), and 1000 (d). The number of true QTN (crimson) and the number of false QTN (dark cyan) were recorded. For the E‑GWAS‑U, the 
permutation test was not used and for the E‑GWAS‑P, it was used. As the heritability increased, more true QTN were detected by the different 
methods and the E‑GWAS retained a large number of true QTN. After the permutation test, compared with the single methods, E‑GWAS resulted in 
a smaller number of false positives in each simulated scenario
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E‑GWAS stably controlled the rate of false positive 
variants across scenarios for traits with different genetic 
architectures
To verify the stability of E-GWAS across various sce-
narios, the abilities of E-GWAS, BSLMM, MLMM, 
mrMLM, BLINK, and FarmCPU in controlling the 
number of true and false positive variants were com-
pared for traits with different genetic architectures 
across 100 replicates. The numbers of true and false 
positive variants detected in each scenario were 
recorded. Figures  4a and 5a show the number of true 
QTN detected by each method, which increased with 
increasing trait heritability, but E-GWAS outperformed 
all five individual GWAS methods across all scenarios 
with varying genetic architectures (Figs. 4a and 5a) and 
(see Additional file 1: Fig. S1a and Additional file 2: Fig. 
S2a).

Figures 4b and 5b show the rates of false positive vari-
ants detected by the different methods. Compared with 
E-GWAS, BSLMM had a higher rate of false positive 
variants for all simulated phenotypes (Figs.  4b and 5b) 
and (see Additional file 1: Fig. S1b and Additional file 2: 
Fig. S2b), except for phenotypes with a low heritability 
(0.2) (Fig.  4b) and (see Additional file  2: Fig. S2b). The 
rate of false positive variants detected by MLMM clearly 
fluctuated across scenarios for traits with different herit-
abilities and different numbers of true QTN (Fig. 5b) and 
(see Additional file 2: Fig. S2b). For the simulated pheno-
types with a low (0.2) and moderate (0.6) heritability that 
were controlled by 500 or 1000 QTN, the rate of false 
positive variants detected was slightly lower for MLMM 
than for E-GWAS but MLMM had a smaller number of 
true positive variants (Fig. 5b) and (see Additional file 1: 
Fig. S1b and Additional file  2: Fig. S2b). For the other 

Fig. 3 Performance of different methods before and after the permutation test. E‑GWAS and five other methods including BSLMM, MLMM, 
mrMLM, BLINK, and FarmCPU were used to analyze a simulated phenotype (simulated trait with a heritability of 0.6 controlled by 100 QTN). a The 
Venn Diagram shows the overlapping of the true QTN detected by these methods. MLMM specifically detected one true QTN. The bar graphs 
in b, c separately exhibit the difference in the number of true and false QTN between single methods and E‑GWAS before and after running the 
permutation test. Red and blue colors represent the number of QTN before and after filtering by the permutation test
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simulated phenotypes, the rate of false positive vari-
ants detected was higher for MLMM than for E-GWAS 
(Figs.  4b and 5b) and (see Additional file  1: Fig. S1b 
and Additional file  2: Fig. S2b). BLINK, FarmCPU, and 
mrMLM performed stably but were not optimal in terms 
of controlling the number of false positive variants across 
scenarios for traits with different genetic architectures. 
As expected, through the integration of the five methods, 
our proposed E-GWAS performed stably and was supe-
rior in controlling the number of false positive variants.

Putative SNPs can correspond exactly to true QTN, but 
it is also common that putative SNPs are in the vicinity 
of true QTN due to linkage disequilibrium (LD). There-
fore, two windows of 10,000, and 50,000  bp on either 
side of the true QTN were set. The numbers of putative 
SNPs present in each of these windows were compared 
for E-GWAS, BSLMM, MLMM, mrMLM, BLINK, and 
FarmCPU (Fig.  6a). Compared to the other methods, 
E-GWAS had a higher proportion of putative SNPs pre-
sent in the flanking regions of either 10,000 or 50,000 bp. 
In addition, the putative SNPs outside of these windows 
were closer to true QTN (Fig. 6b). These results show that 

E-GWAS can lead to the identification of a larger num-
ber of putative SNPs associated with traits, while exclud-
ing some SNPs that result in false positives in individual 
GWAS methods. In the other scenarios, the proportions 
of putative SNPs present in the 10,000 and 50,000  bp 
windows were inversely proportional to the rate of false 
positives (see Additional file 3: Fig. S3). Overall, E-GWAS 
performed stably across scenarios for traits with different 
genetic architectures and provided effective control over 
the rate of false positives without decreasing the number 
of true positives.

Applying a within‑bin merged strategy improved 
the performance of E‑GWAS
In E-GWAS, the intersection-joining step took only the 
putative overlapping SNPs with the same physical posi-
tion from each pair of methods in account. However, 
we found that some putative SNPs that were detected 
by the different methods were close to each other, and 
also close to the true QTN, which could be attributed 
to the LD between the putative SNPs. These SNPs were 
removed in the intersection-joining step, which might 

Fig. 4 Comparison between E‑GWAS and BSLMM, MLMM, mrMLM, BLINK, and FarmCPU under different heritability levels. a Detected true QTN 
numbers and b False positive rates. The comparisons were conducted with 100 replicates. The numbers of true and false positives among 100 
replicates were recorded. The simulated phenotype was controlled by 100 QTN with different heritabilities, low (0.2), moderate (0.6), and high (0.8). 
The column represents the sum of the true QTN a or the average of false positive rate b observed from 100 simulations
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weaken the performance of E-GWAS to a certain extent. 
Inspired by the bin method [15, 32], the putative SNPs 
within the same bins were retained in the intersection-
joining step. Two bin sizes of 10 and 50  kb were set in 
the intersection-joining step. Figure  7 displays the per-
formance of E-GWAS for these two bin sizes. The bin 
method in the intersection-joining step improved the 
ability of E-GWAS to detect true QTN but also resulted 
in a looser control over false positives. True QTN were 
partially removed in the redundancy reduction and the 
proportion of removed QTN increased with increasing 
bin size (Fig. 7a). In addition, the number of false QTN 
was still relatively large and increased with increasing 
bin size. After running the permutation test, most of the 
true QTN were retained and most of the false QTN were 
removed. We also considered scenarios in which a puta-
tive SNP was present in 10,000 and 50,000  bp windows 
on either side of a true QTN but the results were similar 
(see Additional file 4: Fig. S4), i.e. the numbers of true and 

false positives detected by E-GWAS slightly increased 
and decreased, respectively, with increasing bin size.

Addition of single GWAS methods enhanced 
the performance of E‑GWAS
Referring to the stacked ensemble method, the perfor-
mance of E-GWAS could be influenced by the number 
and the diversity of the single GWAS methods integrated. 
We classified GWAS methods into three types based on 
differences in their genetic or statistical assumptions: sin-
gle-locus methods, multi-locus methods, and Bayesian 
methods. To compare the performance of E-GWAS in 
different scenarios, we added different types or numbers 
of GWAS methods to four multi-locus GWAS methods 
(MLMM, FarmCPU, mrMLM, and BLINK).

Figure  8 shows the performances of E-GWAS that 
integrate different numbers of GWAS methods but 
of the same type. We added one to three single-locus 

Fig. 5 Comparisons between E‑GWAS and BSLMM, MLMM, mrMLM, BLINK, and FarmCPU under different numbers of QTN. a Detected true QTN 
numbers and b False positive rates. The comparisons were conducted with 100 replicates. The numbers of true and false positives among 100 
replicates were recorded. The simulated phenotypes had a heritability of 0.6 and were controlled by different numbers of QTN (20, 100, 500, and 
1000). The column represents the sum of the true QTN a or the average of false positive rate b observed from 100 simulations
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GWAS methods in sequence, including efficient mixed-
model association eXpedited (EMMAX) [33], genome-
wide efficient mixed-model association (GEMMA) [34], 
and MLM-based genome-wide association (FastGWA) 
[12]. Similarly, we added one to three Bayesian methods 
in sequence, including BSLMM, BayesB, and BayesCπ. 
The performance of E-GWAS improved increasingly 
with one to three single-locus methods (EMMAX, 
GEMMA, and FastGWA) added, but the improvement 
in performance was smaller than that obtained by add-
ing one to three Bayesian methods (BSLMM, BayesB, 
and BayesCπ) (Fig.  8). These results show that when 
GWAS methods of the same type are added, the Bayes-
ian methods resulted in greater improvement of the 
performance of E-GWAS.

Figure  9 shows the performance of E-GWAS when 
the same number of methods is added but of differ-
ent types. Adding one single-locus method (FastGWA) 
and one Bayesian method (BSLMM) was more effective 
in improving the performance of E-GWAS than adding 
two Bayesian methods (BSLMM and Bayes B) or two 
single-locus GWAS methods (GEMMA and FastGWA). 
These results show that when the same number of GWAS 
methods is integrated, the performance of E-GWAS 
improves increasingly as more types of methods are used.

Application of E‑GWAS to a pig dataset produced reliable 
results
To assess the performance of the E-GWAS strategy on a 
real dataset, we analyzed backfat thickness for a pig pop-
ulation (n = 4555 individuals and m = 41,078 SNPs after 
quality control). The phenotypic distribution of back-
fat thickness nearly followed a normal distribution (see 
Additional file  5: Fig. S5). GWAS for backfat thickness 
were conducted by MLMM, mrMLM, FarmCPU, BLINK, 
BSLMM, BayesB, BayesCπ, and FastGWA. Bonferroni 
correction was applied to adjust the p values. Respec-
tively two, nine, six, six, one, one, one, and eight putative 
SNPs (p-value < 2.12E−07) were detected by these eight 
single GWAS methods.

Subsequently, the overlapping putative SNPs detected 
by every pair of GWAS methods were merged into a 
combined set, which retained four SNPs after running 
the permutation test. The same four SNPs were also 
obtained when the bin size was set to 10 and 50 kb in the 
intersection-joining step. These four SNPs were located 
on chromosomes 1, 7, 9, and 13. The 1-Mb genomic 
regions on either side of the obtained SNPs were consid-
ered as candidate regions. Linkage disequilibrium analy-
ses of the four candidate regions were conducted with LD 
block plots (see Additional file 6: Fig. S6). After genome 
annotation, the genes related to adipose tissue function 

Fig. 6 Distributions of the distances of putative SNPs to true QTN obtained with E‑GWAS, BSLMM, MLMM, mrMLM, BLINK, and FarmCPU. We set two 
windows of 10,000, and 50,000 bp on either side of the true QTN. The simulated phenotypes had a heritability of 0.6 and were controlled by 100 
QTN. The comparisons were conducted with 100 replicates. a Comparison of the proportions of putative SNPs that were located within each 10,000 
and 50,000 bp window found between E‑GWAS, BSLMM, MLMM, mrMLM, BLINK, and FarmCPU. b The distributions of the distances of the putative 
SNPs outside the 10,000, and 50,000 bp windows
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within these candidate regions were considered as candi-
date genes, resulting in 10 candidate genes in total. Infor-
mation on the SNPs and corresponding candidate genes 
is provided in Table 1.

To validate the potential roles of these candidate genes, 
the ISWINE database [35] (http:// iswine. iomics. pro) was 
used to construct their tissue-specific expression pro-
file in fat-related tissues. The target tissues included vis-
ceral adipose, subcutaneous adipose, greater omentum, 
backfat, adipose, abdominal fat, and musculature. Gene 
expressions in the target tissues were visualized by a heat 
map (Fig. 10), where the SEC11C, LMAN1, RANBP9, and 
SIRT5 genes had a higher expression abundance in fat-
related tissues and musculature, whereas the MC4R gene 

had an extremely low abundance. The expression profile 
of the candidate genes showed that they were expressed 
in fat-related tissues, which indicates that they may influ-
ence backfat thickness and that the results provided by 
the E-GWAS using a real dataset are reliable.

Discussion
To date, GWAS have been widely used for the genetic 
dissection of complex traits. However, the rate of false 
positive variants is an ever-lasting problem in GWAS. 
Several GWAS methods have been proposed to solve 
this issue, including the multi-tool-based GWAS strat-
egy, and its use is increasingly reported in the literature. 
Previous studies have shown that when several GWAS 

Fig. 7 Performance of E‑GWAS under different bin sizes. a Numbers of true QTN detected and b numbers of false QTN detected. We compared 
the performance of E‑GWAS across three bin sizes: 0, 10 and 50 kb. The simulated phenotype had a heritability of 0.6 and was controlled by 100 
QTN. The comparisons were conducted with 100 replicates. The numbers of true and false positives among 100 replicates were recorded. The 
preliminary combined SNP list, the SNP list after elimination multicollinearity among SNPs, and the list of remaining SNPs after the permutation test 
are represented in red, blue, and green

http://iswine.iomics.pro
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methods are used to analyze the same dataset, the puta-
tive SNPs that are identified by different approaches tend 
to be more reliable [36, 37]. Thus, using several GWAS 

methods, especially different types of GWAS meth-
ods, tends to be more effective to investigate the genetic 
architecture of target traits. However, not all QTN can be 

Fig. 8 Comparison between E‑GWAS when integrating different numbers of methods. a Numbers of true QTN detected and b numbers of false 
QTN detected. The simulated phenotype had a heritability of 0.6 and was controlled by 100 QTN. Based on the integration of four multi‑locus 
methods (MLMM, mrMLM, BLINK, and FarmCPU), we compared the performance of E‑GWAS by adding one to three single‑locus methods (EMMAX, 
GEMMA, and FastGWA) in sequence, and adding one to three Bayesian methods (BSLMM, BayesB, and BayesCπ) in sequence. The comparisons were 
conducted with 100 replicates. The numbers of true and false positives across 100 replicates were recorded. E‑GWAS that integrated four multi‑locus 
methods, E‑GWAS that integrated four multi‑locus methods and three single‑locus methods, and E‑GWAS that integrated four multi‑locus methods 
and three Bayesian methods are represented in red, green, and blue, respectively
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Fig. 9 Comparison between E‑GWAS when integrating different types of methods. a Numbers of true QTN detected and b numbers of false QTN 
detected. The simulated phenotype had a heritability of 0.6 and was controlled by 100 QTN. Based on the integration of four multi‑locus methods 
(MLMM, mrMLM, BLINK, and FarmCPU), we compared the performance of E‑GWAS by adding two single‑locus methods (GEMMA and FastGWA), 
adding two Bayesian methods (BSLMM and Bayes B), and adding one single‑locus method (FastGWA) and one Bayesian method (BSLMM). The 
comparisons were conducted with 100 replicates. The numbers of true and false positives among 100 replicates were recorded
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identified by each statistical method, and since different 
GWAS methods are usually based on different genetic or 
statistical assumptions, interpretation of the results can 
be difficult. The E-GWAS strategy provides a possible 
solution to overcome this difficulty.

Considerations for the removal of redundant putative SNPs 
in E‑GWAS
The advantage of the intersection-joining step in 
E-GWAS is that it takes the overlapping putative SNPs 
with the same physical position from each pair of meth-
ods into account. Our results show that the putative SNPs 
detected by E-GWAS were closer to true QTN than those 
by the other methods. This can be attributed to the fact 
that some of the putative SNPs detected by the different 
methods are in the vicinity of true QTN, but the SNPs 
that result in false positives differ between methods. 
Therefore, putative SNPs related to the trait under study 
can be obtained by the intersection-joining step, while 
the SNPs that result in false positives in each method can 

be excluded. In addition, we found that using a within-
bin merged method to expand the size of the intersection 
windows can improve the number of true positives. Con-
sidering that the putative SNPs that are detected within 
the same region by different methods may differ but may 
be close to each other, E-GWAS uses a within-bin merged 
method to expand the size of the intersection windows 
and to merge the signals, some of which are true QTN.

In the process of removing redundant putative SNPs, 
the p-values of the putative SNPs in the combined list 
were calculated using the mixed-effect linear model. If 
two putative SNPs had Pearson correlation coefficients 
above a threshold (e.g., 0.7), the less significant puta-
tive SNP was removed. When the p-values of the puta-
tive SNPs were calculated, we found that the significance 
level of a true QTN tended to decrease when some puta-
tive SNPs were highly associated with the QTN. Thus, 
when redundant putative SNPs are removed, some true 
QTN might be erroneously removed. In addition, a small 
proportion of the true QTN was removed based on the 

Table 1 Identified SNPs after running the permutation test for backfat thickness

SNP ID Chr Physical position (bp) Candidate genes

MC4R 1 160,773,442 LMAN1, PMAIP1, MC4R, SEC11C

DRGA0007123 7 9,947,893 RANBP9, SIRT5, MCUR1, CD83

WU_10.2_9_3423450 9 2,722,389 SMPD1

WU_10.2_13_10321624 13 9,051,813 UBE2E2

Fig. 10 Expression profiles of 10 candidate genes in fat‑related tissues. The horizontal axis indicates gene symbols, and the vertical axis denotes the 
names of the adipose‑related tissues. The color bar represents expression abundance. The unit of expression value is transcripts per million (TPM). 
The gene expression fat value is the average of the adipose tissues in different parts of the body
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permutation test, possibly because the effect of some true 
QTN is less significant. Although some true QTN were 
lost by removing some redundant putative SNPs and by 
the permutation test, many false QTN were removed and 
most of the true QTN were retained.

Effect of the number and diversity of the integrated 
methods on the performance of E‑GWAS
The E-GWAS strategy relies on the stacked ensemble 
method, which can yield better results when the base 
models are heterogeneous [38, 39]. It has been reported 
that the single-locus method performs poorly for com-
plex traits [13, 14, 40], while the multi-locus methods 
and Bayesian methods show better performance for such 
traits [17, 18]. Following the stacked ensemble idea, the 
single-locus method was regarded as the weak learner 
and the multi-locus and Bayesian methods, as the strong 
learner. Studies reported in the literature have shown 
that the performance of the stacked ensemble method 
depends on the number and the diversity of the base 
learners, both weak and strong [41, 42]. Similarly, the 
performance of E-GWAS can be influenced by the num-
ber and the diversity of the GWAS methods that are 
integrated.

The performance of E-GWAS was slightly improved by 
adding single-locus methods, but this improvement in 
performance was smaller than that obtained by adding a 
Bayesian method. The reason for this difference might be 
that the genetic or statistical assumptions of the Bayes-
ian methods are more appropriate for complex traits. 
The simultaneous addition of single-locus methods and 
Bayesian methods resulted in greater improvement of the 
E-GWAS performance than the addition of single-locus 
methods or Bayesian methods alone. As the diversity 
of or the heterogeneity between the integrated GWAS 
methods increases, more traits with different genetic 
architectures can be covered. This is where the stacked 
ensemble strategy is effective. In principle, adding more 
different types of GWAS methods can cover more com-
plex genetic architectures of traits. However, integrating 
more GWAS methods also increases the computational 
burden of the E-GWAS.

Considerations for improving the computational efficiency 
of E‑GWAS
In ensemble methods, it is assumed that there is an ideal 
number of component learners and that accuracy will 
decrease if the number of learners is more or less than 
this number [43]. Likewise, the main factor that affects 
the performance of E-GWAS is the adaptability of the 
added GWAS methods to the genetic architecture of the 
target trait. Figures 8 and 9 show that the number of true 
and false positive QTN detected by E-GWAS increased 

and decreased, respectively, as more GWAS methods 
were integrated. Nevertheless, when these numbers 
given in Figs. 8 and 9 are divided by 100 (for considering 
an average gain per replicate), the gain in true QTN and 
the reduction in false QTN were less than 0.5 on aver-
age, which suggests that integrating more GWAS meth-
ods may not be appropriate for all phenotypes. Although 
our simulation results indicated that E-GWAS performed 
well when more Bayesian methods and multi-locus meth-
ods, and fewer single-locus methods were used, how to 
run E-GWAS efficiently is an interesting issue.

When the exact genetic architecture of the target trait 
is unknown, the composition and number of GWAS 
methods that should be integrated in the E-GWAS 
are largely determined by experience. When running 
E-GWAS on a big dataset, computing time should be a 
primary consideration. In the E-GWAS strategy, the time 
cost of the meta-processor step did not significantly dif-
fer when the number of GWAS methods increased since 
a relatively small number of SNPs were obtained in the 
intersection-joining step. Thus, the computing time of 
the whole E-GWAS process depended largely on the effi-
ciency of the chosen GWAS methods. Previous studies 
have shown that the FarmCPU, BLINK, BSLMM, and 
FastGWA methods are computationally efficient for large 
datasets [12, 16, 18, 44], which indicates that they can be 
used for E-GWAS. To test computing time, we created a 
synthetic dataset by randomly duplicating a pig dataset 
(n = 4555 individuals and m = 41,078 SNPs after quality 
control). It took E-GWAS about 6 h to complete the anal-
ysis of the large synthetic dataset with 100,000 samples 
(R language platform, Intel Core i5 CPU 7500, 3.40 GHz, 
Memory 32.00G).

A sample size with sufficient statistical power is criti-
cal to the success of GWAS to detect causal variants for 
complex traits [45]. When conducting GWAS on mod-
erate or small datasets, the differences in the results 
between GWAS methods may increase. For such data-
sets, we highly recommend using E-GWAS and add-
ing more GWAS methods of different types to cover 
the genetic architecture of different target traits. For a 
reasonable amount of computing time, we suggest using 
MLMM, FarmCPU, mrMLM, BLINK, BSLMM, and Fast-
GWA methods to accommodate the genetic architecture 
of complex traits.

The reliability of E‑GWAS on the real pig dataset
The putative SNPs detected by E-GWAS were reliable 
in the pig dataset. Using the pig dataset, based on the 
GWAS results of eight single methods for backfat thick-
ness, four SNPs were eventually detected by E-GWAS 
and 10 candidate genes were identified after genome 
annotation. The MC4R gene is known to affect porcine 
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backfat thickness [46, 47] and the SIRT5 gene to regulate 
adipose formation in pigs, cattle, and mice [48–50]. The 
ran-binding protein 9 which is encoded by the RANBP9 
gene interacts with the androgen receptor [51] and SNPs 
in the androgen receptor gene have been shown to be 
associated with fatness in pigs [52]. The SMPD1 gene has 
been reported to be up-regulated in the lipid biosynthetic 
process in pigs [53], and its expression level in human 
adipose tissue is higher in people who have a high level 
of liver fat [54].

Interestingly, the SEC11C, MCUR1, and LMAN1 genes 
are known to be associated with the growth of pigs [55–
57]. Previous studies have confirmed the negative corre-
lation between fat-related traits and growth-related traits 
[58], which suggests that these genes may be associated 
with backfat thickness. Other candidate genes which 
have been reported in humans, for example, the PMAIP1 
and UBE2E2 genes are involved in human obesity [59–
61]. The CD83 gene is known to contribute to T lympho-
cyte proliferation [62], and in humans, it has been shown 
that the T cells are actively regulated in the adipose tissue 
and contribute to obesity-induced inflammation [63, 64]. 
Because pigs and humans share many genetic and physi-
ological traits, it is possible that these genes also have 
corresponding functions in pigs, but further investigation 
is needed.

Conclusions
In this paper, we propose an E-GWAS strategy and com-
pare it systematically with single GWAS methods. The 
effectiveness of E-GWAS was validated by using both 
simulated and real datasets. The simulations showed that 
E-GWAS significantly reduced the number of false posi-
tive variants and efficiently controlled the number of true 
positive variants across different genetic backgrounds. In 
the real dataset, the putative SNPs identified by E-GWAS 
were also proven to be reliable. Thus, E-GWAS provides 
a reliable and robust strategy that effectively integrates 
the GWAS results from different individual methods and 
reduces the number of false positives without decreasing 
that of true positives.
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