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Abstract 

Background The study of ancestral alleles provides insights into the evolutionary history, selection, and genetic 
structures of a population. In cattle, ancestral alleles are widely used in genetic analyses, including the detection 
of signatures of selection, determination of breed ancestry, and identification of admixture. Having a comprehensive 
list of ancestral alleles is expected to improve the accuracy of these genetic analyses. However, the list of ancestral 
alleles in cattle, especially at the whole genome sequence level, is far from complete. In fact, the current largest list 
of ancestral alleles (~ 42 million) represents less than 28% of the total number of detected variants in cattle. To address 
this issue and develop a genomic resource for evolutionary studies, we determined ancestral alleles in cattle by com‑
paring prior derived whole‑genome sequence variants to an out‑species group using a population‑based likelihood 
ratio test.

Results Our study determined and makes available the largest list of ancestral alleles in cattle to date (70.1 million) 
and includes 2.3 million on the X chromosome. There was high concordance (97.6%) of the determined ancestral 
alleles with those from previous studies when only high‑probability ancestral alleles were considered (29.8 million 
positions) and another 23.5 million high‑confidence ancestral alleles were novel, expanding the available reference 
list to improve the accuracies of genetic analyses involving ancestral alleles. The high concordance of the results 
with previous studies implies that our approach using genomic sequence variants and a likelihood ratio test to deter‑
mine ancestral alleles is appropriate.

Conclusions Considering the high concordance of ancestral alleles across studies, the ancestral alleles determined 
in this study including those not previously listed, particularly those with high‑probability estimates, may be used 
for further genetic analyses with reasonable accuracy. Our approach that used predetermined variants in species 
and the likelihood ratio test to determine ancestral alleles is applicable to other species for which sequence level 
genotypes are available.

Background
Ancestral alleles are the allelic state of the last common 
ancestor of a group of organisms or, in other words, 
the alleles that have retained their initial state. They 
are determined by comparing the genomic sequence 
of different populations and identifying alleles that are 
shared by closely-related species or populations [1–3]. 
Ancestral alleles provide valuable information about the 
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evolutionary history of a particular group of genes or 
organisms [4], and they are useful to construct phyloge-
netic trees, study the genetic diversity and structure of 
populations, infer the demographic history of popula-
tions [5–7], identify functional elements in non-coding 
regions of the genome, and understand the genetic sus-
ceptibility to diseases and deleterious alleles [8, 9].

In cattle, ancestral alleles have been determined by sev-
eral studies [10–12] and used for studies on signatures of 
selection of traits associated with adaptation and produc-
tion [13–16]. These ancestral alleles were based on the 
previous version of the bovine genome (e.g., UMD3.1 or 
UMD3.1.1) and are focused on the 50k and high-density 
single nucleotide polymorphism (HD SNP) chip geno-
types (e.g. BovineHD and BovineSNP50). In the absence 
of a comprehensive list of ancestral alleles, an alternate 
practice is to use major or common alleles as the ances-
tral alleles [17–19], but it is known that the major alleles 
are not always the ancestral ones. For example, up to 19% 
of the identified ancestral alleles in previous studies were 
minor alleles [10, 20]. Thus, the direct use of the major 
alleles as the ancestral alleles can potentially jeopard-
ise inferences in genetic studies. More recently, lists of 
whole-genome sequence-based ancestral alleles (up to 42 
million) have been determined in cattle [20, 21]. While 
this is a significant leap in the number of ancestral alleles 
determined, it represents less than 28% of the total num-
ber of variants detected in cattle (152 million, Run9, the 
1000 Bull Genomes project [22]) and a considerable gap 
still exists at the sequence level.

Generally, ancestral alleles in cattle have been deter-
mined by comparing the alleles present within a range 
of the evolutionarily diverged out-species group of non-
cattle Bos species and non-Bos lineages. In practice, 
this approach is complex as it needs to consider which 
out-species should be chosen, and which analytical 
approaches and threshold should be used to call ances-
tral alleles. For example, Xiang et  al. [20] used three 
out-species (yak, sheep and camel) and determined 
probabilities of allele ancestrality using a likelihood ratio 
test [23], while Naji et  al. [21] used four non-cattle Bos 
species (gayal, gaur, yak and banteng) and bison as the 
out-species group. Rocha et al. [10] conducted compara-
tive analyses of the cattle reference genome to reference 
genomes of sheep (Ovis aries), water buffalo and yak (Bos 
grunniens) and then annotated the SNPs to determine 
ancestral alleles. Considering the number and diversity 
of cattle, the use of more diverse cattle breeds in Rocha 
et al. [10] yielded more variants within cattle and resulted 
in a longer list of ancestral alleles compared to studies 
involving fewer breeds [20, 21]. There is also some vari-
ation in the threshold adopted to call an allele ancestral, 

based either on the prevalence of an allele in two-thirds 
of the species/groups [10, 21] or the use of probability 
estimates [20]. The combination of the two approaches 
would enable to define ancestral alleles with higher con-
fidence. Taken together these results highlight the need 
to capture the maximum variation within cattle and the 
out-species group for a better coverage of the genome 
and to assign probability estimates or reliability scores for 
ancestral alleles.

Currently, the 1000 Bull Genomes project [22] is the 
largest sequence repository of bovine genomic variation 
representing most of the major breeds, crossbreeds, and 
composites across the globe, primarily for imputation 
and genome-wide association studies. The list of variants 
in this project may be directly explored for the determi-
nation of ancestral alleles in cattle. Additional non-cattle 
Bos species (B. sauveli) sequences have recently become 
available [24] and can also be part of the out-species 
group. In addition, sequences of another non-cattle Bos 
species (B. mutus), which is the wild type of the domestic 
yak, have not been used previously for the determination 
of ancestral alleles in cattle. These available resources, 
together with the use of appropriate statistical methods, 
are expected to further improve ancestral allele coverage 
as well as the sensitivity of ancestral allele determination 
and, hence, the power in genetic analyses associated with 
ancestral alleles in cattle. Lastly, statistical approaches to 
estimate the confidence and reliability of ancestral alleles 
(i.e., probability estimates and the number of out-species 
supporting ancestrality) would enable the user to make 
informed decisions about the confidence level of the 
ancestral alleles they choose to use in their studies.

Therefore, the aim of our study was to determine ances-
tral alleles in cattle using a large, predetermined dataset 
of variants in cattle, an expanded list of out-species and 
a likelihood ratio test for improved ancestral allele cover-
age on the cattle genome.

Methods
Ancestral allele positions in cattle
This study used genomic variants (SNPs) from run9 
of the 1000 Bull Genomes project, derived from over 
6000 genomes that cover the major taurine, indicine 
and composite cattle breeds across the globe. The 
variants were filtered using variant recalibration with 
the Genome Analysis Toolkit (GATK) and QD, MQ, 
MQRankSum, ReadPosRankSum, FS and SOR anno-
tations for SNPs (GATK commands and thresholds 
are available from the 1000 Bull Genomes project on 
request). Specifically, the SNPs that passed all the fil-
ters (i.e., “PASS”, 41.67 million) and those in the truth 
sensitivity tranche level for the SNP model at VQS Lod: 
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0.7381 <  = x < 9.3379 (“VQSRTrancheSNP90.00to99.00”, 
41.72 million) from the autosomes were considered to 
further expand the list (see Additional file 1: Table S1). 
Furthermore, from these categories keeping only the 
positions that were biallelic (i.e., removing multiallelic 
sites) made 67.77 million biallelic variants available for 
the determination of ancestral alleles. Similarly, 2.36 
million biallelic positions were available for analysis on 
chromosome X.

Out‑species group
The bovine SNP positions were compared with ortholo-
gous positions in an out-species group. The out-species 
group comprised six non-cattle Bos species, including 
two species previously not used in the determination of 
ancestral alleles (Bos sauveli and Bos mutus) and bison as 
non-Bos out-species (Table 1 and Fig. 1). The wild yaks, 
in spite of their very subtle phenotypic differences with 
the domestic yaks, are technically classified as a differ-
ent species [25], and as such, have never been considered 
in previous studies that aimed at determining ancestral 
alleles, and thus were of special interest in this study. 
Among these species, aurochs (Bos primegenius) is listed 
as extinct and Kouprey (Bos sauveli) is critically endan-
gered with a population of less than 50 individuals [26, 
27]. While these species are evolutionary divergent and 
genetically diverse, some closely-related species can 
inter-breed to produce hybrids [28, 29].

Analyses
Raw sequence read processing
The raw paired-end sequence reads for samples in the 
out-species group were processed following the guide-
lines from the 1000 Bull Genomes project (see Addi-
tional file  2: Method S1 for tools, command lines and 

Table 1 Summary of the out‑species samples processed for the 
determination of ancestral alleles

See Additional file 1: Table S2 for accession numbers of the samples and 
associated project

Sub‑group Common name Species Number of 
samples

Non‑cattle (Bos species) Gayal Bos frontalis 14

Gaur Bos gaurus 2

Domestic yak Bos grunniens 11

Banteng Bos javanicus 9

Wild yak Bos mutus 4

Kouprey Bos sauveli 2

Non‑Bos species Bison Bison bison 10

Fig. 1 Representative image of the species from out‑species and cattle groups sampled in the current study. a Bison (Bison bison), b Wild yak 
(Bos mutus), c Domestic yak (Bos grunniens). d Banteng (Bos javanicus), e Gaur (Bos gaurus), f Gayal (Bos frontalis), g Skull of Kouprey (Bos sauveli), 
h Mounted skeleton of Auroch (Bos primigenius) bull, i Angus bull (Bos taurus). j Nelore bull (Bos indicus) (see Additional file 1: Table S3 for image 
attributions)
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thresholds) for compatibility and comparison with vari-
ant positions in cattle from the 1000 Bull Genomes. Simi-
larly, the single-end reads for the Bos sauveli samples 
were aligned and trimmed as appropriate for single-end 
reads using the same tools as for the paired-end reads 
and then processed following the same guidelines. We 
used an updated version of GATK (4.2.0.0) compared to 
the one mentioned in the guidelines (3.8). The end-prod-
uct of the pipeline was gVCF files of individual samples, 
which were then consolidated into a single gVCF file for 
the out-species group using the GATK CombineGVCFs 
option. The consolidated gVCF file consisted of 71.35 
million positions corresponding to biallelic variants in 
cattle that were all genotyped, including the non-variant 
sites (adding option -include-non-variant-sites true) in 
the out-species using joint genotype options (Genotype-
VCF) in GATK. After the removal of positions that were 
multi-allelic and missing in the out-species for the cor-
responding biallelic positions in cattle, a comprehensive 
list of 68,256,797 (autosomal) and 2,329,918 (X chromo-
some) biallelic sites was generated. Note that the X chro-
mosome was not treated differently from the autosomes 
which means that the sex and hemizygosity of the sam-
ples were not considered. Finally, genotypes were con-
servatively filtered based on read depth (DP) and allele 
depth (AD) using the BCFtools package [30], i.e. homozy-
gous genotypes with a DP < 3 and heterozygous geno-
types with a DP < 5 and any individuals with an AD < 2 
were set to missing as a balanced approach between not 
excessively removing information and tolerating some 
false positives to take the poor quality of some of the 
samples into account. Furthermore, filters based on max-
imum read depth and/or excess heterozygosity call were 
not applied.

Population structure
A preliminary quality check was performed to verify that 
the processing pipelines had worked by examining the 
population structure of the out-species group in relation 
to the cattle group. For cattle, we used a subset of 11 sam-
ples from the 1000 Bull Genomes, considering their avail-
ability in public databases. This includes the five samples 
of Nelore cattle (B. indicus), another random five Angus 
samples (B. taurus) and one auroch (B. primigenius) to 
constitute the cattle group for the principal component 
analysis (PCA) (see Additional file  1: Table  S2). A sub-
set of the VCF file for the PCA cattle group, specifically 
for the 70 million genomic positions, was derived from 
the 1000 Bull Genomes and then merged with the VCF 
files generated in this study for the out-species using 
BCFtools (version 1.18.0), resulting in a combined VCF 
file of cattle and out-species groups. This combined cattle 
and out-species VCF file was then used for the principal 

component (PC) analysis, excluding variants with miss-
ing call rates higher than 0.1 using the PLINK (version 
2.0.0a3.02) software [31]. Furthermore, for a balanced 
representation of the out-species with only two sam-
ples (B. sauveli and B. gaurus), a relationship matrix was 
derived using two random samples in the rest of the out-
species. The PC and relationship matrices were plotted 
in the ggplot2 package (version 3.4.2) in R (version 4.0.5) 
[32]. This was followed by PC and relationship analyses 
for the out-species group only to assess the structure 
among the out-species.

Determination of ancestral alleles
We used a likelihood ratio test (LRT) to determine the 
ancestral state of the two alleles at any position on chro-
mosomes 1 to 29 and X (see Additional file  3: Method 
S2, Additional file  3: Tables S4 to S7 for details on the 
method with further easy-to-follow examples, Additional 
file 4: Method S3 for Bash scripts). Briefly, the numerical 
algorithm proceeds as follows:

1. Based on the genotype frequency at a position in a 
out-species, the genotype configuration  (GTc) is 
derived for that position as the number of samples 
with  A1A1,  A1A2 and  A2A2 genotypes. For example, 
on the one hand, in an out-species of 10 samples, if 
all samples have been genotyped at a position and 
the number of samples for each genotype  A1A1,  A1A2 
and  A2A2  (GTf) is 4, 2, 4, then the  GTc is 4 2 4. On 
the other hand, if only seven samples have genotypes 
(missing in three samples) and have frequencies of 
4, 1, 2, the  GTc is 4 1 2. Similarly, if all samples have 
genotypes missing at a position, then  GTf and  GTc 
will be 0, 0, 0 and 0 0 0, respectively.

2. Once  GTc is determined for all the positions, the 
number of distinct  GTc observed in an out-species 
 (GTc_obs) is recorded, and then the number of  GTc 
expected by chance  (GTc_exp) is determined with an 
equal probability for all  GTc.

3. The likelihood ratio (LR) of one allele to be ancestral 
is calculated as the ratio of  GTc_obs to  GTc_exp in the 
out-species and assigned to the allele  (A1 or  A2) cor-
responding to the homozygous genotype with the 
larger number of samples. For example, let the LR for 
 A1 and  A2 be 0.7 and 1.05, respectively.

4. At the site, a signal for ancestrality is directed to 
either of the two alleles, with signals adding up to 1 
(or 100%). In the above example, the signal for ances-
trality would be 0.7/(0.7 + 1.05) or 40% for  A1 and 
1.05/(0.7 + 1.05) or 60% for  A2.

5. The above steps are repeated for the remaining spe-
cies in the out-species group.
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6. The signals for  A1 and  A2 are summed to get the 
combined signal at a given position for all the  out-
species group.

7. Finally, the allele with the highest signal is assigned 
as the ancestral allele and the probability of an allele 
being ancestral is determined as the proportion of 
the individual LR to the sum of the LR of the two 
alleles.

8. In addition to the probability estimate as a measure 
of confidence of the allele ancestrality, we determined 
the number of out-species contributing to the proba-
bility estimates of the ancestral allele as added weight 
on the confidence of ancestral alleles. This is because 
a high probability estimate with representation from 
all species is potentially more accurate compared to 
the high probability estimate based on a few out-spe-
cies. Furthermore, to characterise the positions with 
a high confidence and the remaining ancestral alleles, 
we annotated the positions using the snpeff/5.0e tool 
[33] for any specificity to a region on the genome.

Validation of ancestral allele assignments
Ancestral allele assignments generated in this study were 
compared against three previous studies with compara-
ble numbers of determined ancestral alleles: Rocha et al. 
[10], Naji et al. [21] and Xiang et al. [20]. The first study 
was based on the previous bovine reference genome 
version (UMD3.1), and the latter two used the same 
reference genome as the present study [20, 21]. For com-
patibility and comparison, positions from the first study 
were lifted over from UMD3.1 to ARS-UCD1.2 using 
the LiftOver tool [34]. Any variants that were mapped to 
multiple positions following the liftover were removed, 
considering that such a conversion of the positions is 
not perfect but is the best guess. Ignoring the strand 
switches during the liftover process has the potential to 
introduce errors in the concordance metric after liftover 
to the newer genome. Nevertheless, it is worth noting 
that this approach was only applied to the Rocha et  al. 
[10] dataset. For validation of ancestral alleles, we con-
sidered only the ancestral alleles with a probability ≥ 0.8 
and that were observed in at least six of the seven out-
species included in the present study, which we hereaf-
ter refer to as high-confidence ancestral alleles. Similarly, 
ancestral alleles from previous studies were restricted to 
an equivalent confidence if estimates of probability were 
provided (probability ≥ 0.8 in the third study) or to all 
positions if no confidence estimates were provided (first 
and second study). We determined the number of posi-
tions in common between our study and previous stud-
ies, and then the percentage agreement of ancestral allele 
assignments. The overall concordance of ancestral alleles 

across studies was expressed as the weighted percentage 
of coincident ancestral alleles, which is expressed as the 
total number of positions in common among the studies 
with matching ancestral alleles over the total number of 
positions in common among the studies. However, owing 
to X-chromosome ancestral alleles being either unavail-
able or present in very small numbers in previous studies, 
the concordance of the ancestral alleles on the X chro-
mosomes were analysed separately from the autosomes, 
applying the same approach.

Results
Population structure
As a rapid check of the alignment of sequences from 
the out-species group to the bovine reference genome 
and the SNP pipeline, PCA were performed for both 
the cattle and out-species groups. PC1 segregated cattle 
and their Auroch ancestor from the out-species group 
(Fig.  2a). Plotting only the out-species group (Fig.  2b) 
provided a higher resolution of the clusters among the 
out-species, with PC1 separating B. javanicus from the 
rest of the out-species and PC2 resulting in subgroups for 
B. grunniens, B. mutus and Bison bison, and for B. fronta-
lis and B. gaurus. Similarly, the relationship matrix based 
on the two random animals per species-based relation-
ship matrix (Fig. 3) concurred with the pattern from the 
PC analyses.

Ancestral alleles
This study proposed a LRT to determine the ancestral 
alleles for 67,767,982 biallelic SNP positions in cattle. It 
should be noted that the designated ancestral allele for 
1964 positions remained undetermined either because of 
heterozygosity or equal signals, and thus removed, which 
left 67,766,018 sites with determined ancestral alleles 
(available at https:// doi. org/https:// doi. org/ 10. 25919/ 
9a81- 4p83). Via this link, one has access to information 
on the chromosome number, position (bp), allele 1  (A1), 
allele 2  (A2), likelihood ratio (LR) for  A1 as LRa(A1) and 
A2 as LRa(A2), the putative ancestral allele (AA), prob-
ability estimate of ancestrality for  A1 (prob(A1)) and  A2 
(prob(A2), number of out-species supporting  A1, number 
of out-species supporting  A2, number of out-species sup-
porting AA, and the weight of the out-species support 
for AA and variant class from the 1000 Bull Genomes. 
Overall, the mean LR and number of out-species sup-
porting the ancestral allele were high (N 67,766,018, LR: 
mean 0.983, SD 0.067, min 0.5 and max 1.000; number of 
out-species supporting ancestral alleles: mean 6.223, SD 
0.630; Min 1 and Max 7; see Additional file 5: Table S8).

To further improve the confidence of ancestral 
alleles, we considered ancestral alleles with an LR ≥ 0.8, 
which removed 2,127,228 positions and left 65,644,102 

https://doi.org/
https://doi.org/10.25919/9a81-4p83
https://doi.org/10.25919/9a81-4p83
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positions. In addition, using the number of out-species 
supporting the ancestral call as another measure of reli-
ability (i.e., the probability estimates of ancestral allele 
call supported by at least six out-species of the seven in 
the out-species group) resulted in 61,987,061 high-con-
fidence ancestral alleles. For the X chromosome, ances-
tral alleles were determined on 2.3 million positions 
(available at https:// doi. org/https:// doi. org/ 10. 25919/ 
9a81- 4p83), and about 91.2% were in the high-confidence 
category. We also report that around 12.5% of the auto-
somal and about 10% of the X chromosomal ancestral 
alleles were represented by minor alleles in the 1000 
Bull Genomes project (Table 2). The annotation of posi-
tions with a high-confidence ancestral allele and of the 
remaining positions on the autosomes was done using 
the snpeff/5.0e tool [33] to see if any of these probability 
categories were specific to a region on the genome and 
no notable differences were observed in the proportions 

of the positions annotated and also in their consequences 
between the groups (see Additional file 5: Table S9).

Concordance of the ancestral alleles with previous studies
Comparing ancestral alleles from the current study to 
those from three previous studies [10, 20, 21] showed a 
very high concordance. The ancestral alleles were highly 
concordant among the studies with a weighted average of 
97.6% ranging from 91.1 to 100% between studies (Fig. 4), 
which validated 29.8 million ancestral alleles from the 
present study and another 3.2 million from the other 
studies, thus reaching a total of 33 million positions.

Similarly, the concordance of the ancestral alleles from 
this study with those from the two recent sequence-based 
studies of Naji et  al. [21] and Xiang et al. [20] was high 
(98.4% in 27.6 million common positions) (Fig.  5). As 
such, there was a 99.4% concordance for 6.4 million posi-
tions shared by all three studies. As expected, ancestral 

Fig. 2 Principal component plot (PC1 and PC2) of cattle and out‑species groups (a) and within the out‑species group (b)

Fig. 3 Heatmap of the relationship matrix based on two animals per species for out‑species and cattle group (a) and out‑species only group (b)

https://doi.org/
https://doi.org/10.25919/9a81-4p83
https://doi.org/10.25919/9a81-4p83
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alleles from the Xiang et  al. [20] study and the present 
study shared more than 22.9 million positions with about 
22.4 million ancestral alleles in concordance. Similarly, 
high concordance between the present study and that of 
Naji et al. [21] was found for 11.2 million positions. The 
coincidence between the Xiang et al. [20] and Naji et al. 
[21] studies was also equally high (> 99.0%).

For the X chromosome, among the previous studies 
only that of Xiang et  al. [20] had a substantial number 
of ancestral alleles determined (843,609 positions) for 
the validation analysis. The number of high-confidence 
ancestral alleles in Xiang et al. [20] (probability > 0.8) was 
803,184 and shared 571,807 genomic positions with the 

present study. The coincidence of ancestral alleles on the 
X chromosome between the two studies was 84.8% (i.e., 
484,997 positions).

Discussion
Our study makes available the largest list of ancestral 
alleles to date determined based on a LRT and using 
pre-identified variant positions in cattle by comparing 
with the maximum number of non-cattle Bos species 

Table 2 Number of ancestral allele calls (percentage) mapping to the major and minor alleles on the autosomes and X chromosome 
over the 1000 Bull Genomes, Bos taurus and Bos indicus 

N: Number of samples; *high confidence reflects LR ≥ 0.8 and LR estimate supported by six or more out-group species

Group (N) Ancestral 
allele call

Number of autosomal SNPs Number of X 
chromosomal 
SNPs

Number of high 
confidence* autosomal 
SNPs

Number of high 
confidence* X 
chromosomal SNPs

Cattle (6191) Major 59,296,006 (87.50) 2,090,158 (88.73) 55,007,099 (88.74) 1,765,733 (90.30)

Minor 8,469,172 (12.50) 239,091 (10.26) 6,979,348 (11.26) 189,518 (9.69)

Total 67,766,018 232,9275 61,987,061 1,955,267

Bos taurus (5204) Major 59,122,728 (87.24) 2,085,396 (89.53) 54,842,130 (88.48) 1,761,321 (90.08)

Minor 8,642,431 (12.75) 243,843 (10.47) 7,144,313 (11.52) 193,930 (9.92)

Bos indicus (606) Major 60,338,000 (89.04) 2,128,601 (91.39) 56,039,349 (90.41) 1,814,511 (92.80)

Minor 7,412,619 (10.94) 200,194 (8.60) 5,934,888 (9.57) 140,448 (7.18)

Fig. 4 Coincidence of ancestral allele positions and ancestral alleles 
(percentage) among the studies for ancestral alleles with high 
confidence sites, i.e., ancestral alleles with a probability ≥ 0.8 
and observed in at least six of the seven out‑species included in 
the present study, and with a probability ≥ 0.8 in Xiang et al. [20]. 
Rocha et al. [10] and Naji et al. [21] do not provide probability 
estimates/confidence level of ancestral alleles and thus the whole list 
from these studies was used

Fig. 5 Extract of the coherence of ancestral allele positions 
and coincidence of ancestral alleles (percentage) among the studies 
based on the ARS‑UCD1.2 reference genome considering 
ancestral alleles with high confidence sites, i.e., ancestral alleles 
with a probability ≥ 0.8 and observed in at least six of the seven 
out‑species included in the present study, and with a probability ≥ 0.8 
in Xiang et al. [20] from Fig. 4. Naji et al. [21] do not provide 
the confidence level of ancestral alleles and thus the whole set 
of ancestral alleles in the list was used
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sequences available. The present study alone presents 
29.8 million autosomal ancestral alleles that are concord-
ant with previous studies and another 23.5 million auto-
somal ancestral alleles of high confidence that are specific 
to this study. In addition, we identified 2.0 million high-
confidence ancestral alleles for the X chromosome. We 
also demonstrated the use of our LRT to determine 
ancestral alleles with high accuracy.

The PC, which separated the out-species from the cattle 
group and with a clear delineation of the Bos taurus and 
Bos indicus species and provided sub-groupings within 
the out-species group, was as expected. However, the 
distribution of the species within the first PC was slightly 
different from that reported by Naji et al. [21]. This may 
be partly attributed to the alignment of the out-species 
sequences to the cattle reference genome and the use of 
selective variant positions (e.g., biallelic, high-confidence 
SNPs) from cattle to call genotypes, thereby substantially 
losing informative variants about the diversity of the out-
species. Thus, the population structure observed in the 
current study is relative to a subset of variant positions 
in cattle.

Generally, the clustering within the out-species group 
(leaving out cattle) largely agreed with most of the previ-
ous studies although these are often based on mitochon-
drial sequences. For example, B. frontalis and B. gaurus 
were grouped together; as were Bison bison and B. grun-
niens [28, 35–37]. The clustering of B. mutus (wild yak) 
with B. grunniens (domestic yak) was expected based on 
the belief that domestic yak descended from the wild yak. 
Furthermore, the placement of B. sauveli closer to the 
gayal and gaur group in this study was in line with several 
previous studies [24, 29]. B. javanicus has been consist-
ently placed among the B. gaurus and B. frontalis group 
in previous studies based on mitochondrial sequences 
[35] but, in our study, it was placed separately from these 
species. However, the use of such closely-related spe-
cies as separate groups (e.g., domestic and wild yaks) can 
potentially bias the ancestral allele call, particularly when 
the ancestral allele is only supported by two close groups. 
These variations in the placement of species could be 
attributed to substantial differences in the number of 
variants considered between studies. Altogether, the 
PCA structure largely corroborated previously reported 
results and suggested that the data processing underpin-
ning our study is solid. As such, PCA-based ancestral 
allele determination is currently applied in practice [21] 
and the genetic distance between the out-species and cat-
tle may be considered to draw confidence statistics.

The ability of our study to determine, validate and 
confirm a high coherence of the determined ancestral 
alleles with those from previous studies suggests two 
key points. First, our approach that uses pre-determined 

variant positions for the identification of ancestral alleles 
to generate a larger set of ancestral alleles is effective. 
In other approaches, the detection of variants depends 
on the sampling size and the diversity of the samples, 
which is often restricted in smaller studies. Our approach 
may also be used in other species for which sequence-
level genotype data are available. Second, regardless of 
the approaches used for the determination of ancestral 
alleles, in general, the agreement of ancestral allele calls 
across studies remained very high (~ 97%). This implies 
that the specific ancestral alleles determined in the previ-
ous studies and in the current study are also of equally 
high confidence for further analyses. However, some 
false positives might be present due to the use of simi-
lar approaches in different studies, reference biases that 
arise from the alignment of out-species to the cattle ref-
erence genome and the use of conservative filtering of 
read depth and quality. Other potential biases and limita-
tions, particularly for the X chromosome, can arise from 
not taking the sex and hemizygosity of the samples into 
account in the determination analyses, and warrant fur-
ther investigation.

The combination of ancestral alleles across stud-
ies further enhances the coverage of ancestral alleles 
on the genome. While Xiang et al. [20] used a subset of 
the data from the 1000 Bull Genomes project, they pre-
sented about 11.9 million ancestral alleles specific to 
their study, with 5.2 million being outside of the filter 
and thresholds considered in our study. Similarly, from 
the 32.4 million position explored in Naji et al. [21], 17.7 
million were unique to their study, with 13.2 million dis-
tinct from the 1000 Bull Genomes project (see Additional 
file 5: Table S10). Thus, a combination of our study with 
the three previous studies is assumed to result in vali-
dated ancestral alleles for 32.7 million genomic positions 
and about 56.4 million study-specific ancestral alleles to 
substantially increase the current list of reliable ancestral 
alleles in cattle to over 90 million.

Unlike the global use of ancestral alleles or ancestral 
sequences in the study of evolutionary history and the 
origin of species, the objective of the ancestral alleles 
determined in our study is to use them to decipher their 
association with production traits and signatures of 
selection in modern cattle, i.e. in other words, to identify 
ancestral alleles from the variants identified in cattle that 
are widely used for genome imputation and association 
testing to understand the effect of ancestral alleles on 
traits of economic importance in cattle. Thereby, to selec-
tively use known biallelic variants in cattle determined 
by aligning short read sequences to the cattle reference 
genome and variant calling. The same approach has been 
used to call variants in out-species at the identified posi-
tions aligning to a cattle reference genome. Variant or 
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SNP-based ancestral allele call has been used in cattle 
and humans in previous studies [10, 20, 21, 38]. While 
reference-based alignment has shortcomings, includ-
ing reference biases [39], it enables the use of short read 
sequences of multiple samples per species from next-
generation sequencing platforms to capture the allelic 
diversity at a position both within and across the out-
group species, which is key for defining ancestral alleles 
in our approach, unlike the multiple sequence align-
ment (MSA) approach where a single reference genome 
sequence per species is used. The reference-free align-
ment MSA approaches (e.g., Cactus, Enredo, Pecan) not 
only overcome the reference biases but also consider the 
insertions, deletions, substitutions and copy number var-
iations among the species [40–42] and also allows iden-
tification of conserved sequence patterns and motifs in a 
whole-sequence family that are an essential prerequisite 
for phylogenetic analysis [43]. However, overemphasis 
sometimes produced ancestral sequences that are longer 
than the true sequences. The differences in the algorithm 
of MSA affect the accuracy of the determination of ances-
tral alleles, and the appropriate choice is critical [44].

Our approach that uses an LRT based on genotype fre-
quencies to assign ancestrality is equivalent to the est-sfs 
approach of Keighley and Jackson [23] but has a subtle 
difference. The est-sfs algorithm operates at the level of 
the nucleotide frequencies and, in its current implemen-
tation (https:// sourc eforge. net/ proje cts/ est- usfs/), han-
dles a maximum of up to three outgroups. Instead, our 
approach operates at the level of the genotype frequen-
cies for bi-allelic SNPs only, but there are no limits to the 
number of outgroups. Ancestral alleles have also been 
determined within human populations without refer-
ences to out-group species using haplotype diversities 
and led to the identification of reliable variants that are 
recent [38].

The strikingly high concordance of the ancestral alleles 
determined here with those from previous studies sug-
gests that the LRT is a satisfactory tool to determine 
ancestral alleles and probability estimates for ancestral-
ity. While it would have been interesting to compare 
ancestral alleles using our approach with other MSA-
based approaches, it was beyond the scope of the current 
study but warrants future investigation on the accuracy 
and scalability to determine whole ancestral reference 
genome. Currently, because of its computational effi-
ciency, coupled with the need to organise the data in 
populations, we believe that the LRT proposed to assign 
ancestrality can be easily implemented for the identifica-
tion of signatures of selections. For instance, the dataset 
could be split into cattle populations on one side and 
out-species on the other. Then, the application of the 
LRT, separately, in each population would identify alleles 

that change “ancestrality” assignment and the genomic 
regions where these alleles are mapped to and mined for 
signatures of selection.

Overall, considering the general definition of ances-
tral alleles as the allelic state of the last common ances-
tors, the last common ancestor as the upper bound can 
be more recent within a family, across families or beyond 
which are specific to the scope of the study. Thus, an 
approach such as ours that uses within-population vari-
ation may be more suitable to study more recent evolu-
tionary events compared to the conventional approaches 
that can draw inferences over a large spectrum of unre-
lated species for a longer molecular evolutionary history.

Conclusions
Our findings suggest that ancestral alleles can be deter-
mined from the predetermined variants in a species. 
They highlight the high concordance of the ancestral 
alleles determined across studies, in spite of the differ-
ences in the approaches used for their determination. 
They also demonstrate that a simple test, such as the like-
lihood ratio test, can be used as an alternate statistical 
tool to determine ancestral alleles with high accuracy.
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