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Abstract 

Background Bovine lactoferrin (Lf ) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal 
activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven 
by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence 
has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping 
of lactoferrin protein concentration in conjunction with RNA‑seq, ChIP‑seq, and ATAC‑seq data to pinpoint candidate 
causative variants that regulate lactoferrin concentrations in milk.

Results We identified a highly‑significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lac-
totransferrin (LTF) expression QTL (cis‑eQTL) mapping to the LTF locus. Using ChIP‑seq and ATAC‑seq datasets repre‑
senting lactating mammary tissue samples, we also report a number of regions where the openness of chromatin 
is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those 
highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed 
an ATAC‑seq peak in the putative promotor region of LTF, that highlights a set of 115 high‑frequency variants that are 
potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC‑seq peak, 
was predicted to alter binding sites of transcription factors known to be involved in lactation‑related pathways.

Conclusions Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lacto‑
ferrin concentration. These findings could enable the selection of animals for high‑producing specialist herds.

Background
Milk production and composition are very important 
to farmers, dairy processing companies, and consum-
ers. Accordingly, there has been a considerable amount 
of research into the genetic basis underlying phenotypic 
variation in milk. While numerous genome-wide asso-
ciation studies (GWAS) have surveyed the abundance of 
major milk components [1–4], genetic analysis of minor 
milk components is less understood. The globular gly-
coprotein lactoferrin (Lf ), encoded by the lactotransfer-
rin gene (LTF), forms a minor but economically valuable 
component of the whey fraction of milk protein. Lf has 
a high binding affinity for Fe3+ , and forms a compo-
nent of the non-specific immune system [5], exhibiting 
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broad antibacterial, antifungal and antiviral activity [6]. 
This anti-microbial effect confers passive immunity to 
the neonate mammal until its own immune system has 
matured. The bacteriostatic and bactericidal abilities of 
Lf arise from the ability of the protein to sequester iron 
[7], thereby reducing its bioavailability to bacteria [8]. 
These effects also derive from the direct binding of a pep-
tide formed from the N-terminus section of the protein 
(known as lactoferricin) to the cell membranes of a wide 
range of pathogenic species [9]. Lf is also active against 
a number of viruses [7], primarily those with membrane 
envelopes, including influenza virus [10, 11], hepatitis C 
virus [12], and potentially SARS-CoV-2 [13–15].

Lactoferrin concentrations are highly variable in milk, 
varying by over an order of magnitude [16] between indi-
viduals. Although much of this variation can be explained 
by factors such as the stage of lactation and infection in 
the mammary gland (mastitis), a proportion of the vari-
ance appears to be under genetic control [17, 18]. Due to 
its many potential pharmaceutical uses, it may be benefi-
cial to select for cattle with a genetic propensity for pro-
ducing higher quantities of Lf. To this end, our aim was 
to investigate the genetic control underpinning lactofer-
rin production, using molecular phenotypes to help iden-
tify candidate genetic variants potentially responsible for 
these effects.

Methods
Animal populations
This study used two overlapping sets of animals which 
had been phenotyped at different dates as part of other 
large experiments. This section describes the breed and 
other characteristics of these populations. Phenotypic 
and genomic data descriptions follow in the subsequent 
sections.

The first population was measured for milk Lf concen-
tration as part of a Holstein-Friesian × Jersey crossbreed-
ing (FJX) trial [19, 20]. This trial was conducted using an 
F2 trial design with a half-sibling family structure, where 
reciprocal crosses between Holstein-Friesian and Jersey 
animals were carried out to produce six F1 bulls. A herd 
of F2 cows was subsequently produced by mating the F1 
bulls with F1 cows over two seasons (born spring 2000 
and spring 2001). In total, 724 F2 cows entered their sec-
ond lactations (spring 2003 and spring 2004), of which 
706 were sampled at least once to determine milk Lf con-
centrations (see Lf quantification methodology section 
below). All animals were raised using a seasonal pasture-
based management system as typically used in New Zea-
land, under a twice-daily milking regime.

The second population of 411 animals was sampled to 
generate a previously published [3, 21] RNA-seq data-
set. After sample quality control (see methods in [3]), 

372 mixed-breed, mixed age animals of Holstein-Friesian 
and Jersey ancestry were retained. A subset of 22 animals 
were F2 animals from the FJX population. The remaining 
350 animals were primarily of Holstein-Friesian ancestry, 
comprising 211 pure-bred Holstein-Friesians, three pure-
bred Jerseys, and 136 cross-bred animals, where pure-
bred is defined as ≥ 14/16ths ancestry based on pedigree 
information. A subset of 99 animals from the 372 animal 
RNA-seq population was also analysed using chromatin 
immuno-precipitation with sequencing (ChIP-seq; see 
the methodological description below). An additional 
non-overlapping subset of 199 animals was analysed 
using the assay for transposase-accessible chromatin 
with sequencing (ATAC-seq) to identify windows of open 
chromatin.

Lf protein and RNA expression quantification
Lactoferrin protein concentration was measured in the 
FJX population at up to three time points during the sec-
ond lactation of each animal: at peak lactation (35 days 
post-calving; N  =  621), mid-lactation (mid-November; 
N = 648), and late lactation (late February; N = 611). On 
each test day, samples were collected (combined across 
all four quarters) during both the a.m. and p.m. milk-
ings, then combined to yield a single composite sample 
for each animal. Lf concentrations were measured using 
reversed-phase high-performance liquid chromatogra-
phy (RP-HPLC) as previously described [22, 23]. These 
measurements were aggregated and adjusted using a 
repeated-measures model in ASReml-R [24] for 706 ani-
mals with at least one Lf record. Fixed effects were fitted 
for the sample collection period (early, mid, or late), Frie-
sian breed proportion (in contrast to Holstein; the Jersey 
proportion was always 50% as all animals were F2 crosses 
of Holstein-Friesian ×  Jersey), and breed heterosis, with 
random effects for animal (using a relationship matrix 
defined by the recorded pedigree) and a permanent envi-
ronmental effect also fitted. The aggregate phenotype 
was calculated for each animal as the sum of the additive 
animal component and the mean of the residual compo-
nents for that animal’s measurements.

Sample skewness estimates for the four Lf phenotypes 
(three collection periods plus aggregate) were calculated 
using Eq. (1), where n is the number of samples, s is the 
sample standard deviation, and x is each Lf record across 
the samples. As the estimates obtained indicated strong 
positive skews in Lf concentrations (see results section), 
additional phenotype values were created for which the 
values were log-transformed. A log version of the aggre-
gate phenotype was not generated, because the values for 
the aggregate phenotype are centred on zero, and there-
fore feature a large proportion of negative values.
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For quantification of RNA expression, biopsies of lactat-
ing mammary tissue taken from the RNA-seq population 
animals were sequenced using the Illumina HiSeq  2000 
platform as described previously [3, 21]. Paired-end 
RNA reads were processed using the Trimmomatic soft-
ware package (version  0.39) [25] with settings LEAD-
ING:20 TRAILING:20 SLIDINGWINDOW:3:15 
MINLEN:50, then mapped to a masked version of the 
ARS-UCD1.2 bovine reference genome (including a 
Y  chromosome), where known variants were replaced 
by bases that matched neither of the two alleles (to avoid 
mapping bias; see [26] for details) using STAR (ver-
sion 2.7.0) [27] in two passes. In the first pass, the STAR 
index file was generated using junctions extracted from 
the NCBI assembly GCF_002263795.1 with annota-
tion release 106. Novel splice junctions with at least five 
uniquely mapping supporting reads were extracted, and 
used to augment the annotation set used for the second 
pass.

To produce a gene expression phenotype for use in 
the expression quantitative trait locus (eQTL) associa-
tion analysis (see below), reads mapping to the LTF gene 
were counted for each animal using the featureCounts 
function of the Subread package (version  1.5.3) [28]. 
Read counts were subsequently normalised using the 
variance-stabilising transformation (VST) implemented 
in the DESeq2 (version 1.26) R package. Outlier samples 
were detected using principal component analysis (PCA) 
on the VST-transformed counts, where any samples > 4 
standard deviations from the mean, in any of the first six 
principal components(PC), were excluded.

ChIP‑seq analysis and bioinformatics
The ChIP-seq data used here were generated as part of a 
previous study [26]. Briefly, chromatin immunoprecipita-
tion was performed using the Magnify Chromatin Immu-
noprecipitation kit (Thermofisher) for three histone 
modifications: histone 3 lysine 4 mono- and trimethyla-
tion (H3K4Me1 and H3K4Me3), and lysine  27 acetyla-
tion (H3K27ac). Libraries were produced for 99 samples 
for the H3K4Me1 and H3K4Me3 modifications, and 37 
samples for H3K27ac. Each library was sequenced to a 
depth of 20–200 million reads, and reads were trimmed 
using the Trimmomatic software package (version  0.39) 
[25] as for the RNA-seq data described above. Reads 
were mapped to the masked reference genome described 
above, using BWA-MEM version 0.7.17-r1188 [29], with 
poor quality and duplicate reads being removed using the 
Samtools package (version 1.9) [30].

(1)b1 =

∑n
i=1 (xi − x̄)3

n · s3
.

Consensus ChIP peaks were called by randomly 
downsampling equal numbers of reads from each BAM 
file, followed by merging into a consensus BAM file 
for each of the three histone modifications (both steps 
were performed using SAMtools version  1.9). Consen-
sus ChIP peaks were called on the consensus BAM file 
using MACS2 version  2.1.1 [31], with low-depth  WGS 
prepared from the same samples (input reads) as a con-
trol. Peak calling was performed using the broadPeak 
algorithm for the H3K4Me1 data, and the narrowPeak 
algorithm for the remainder. This yielded  971 H3K27ac 
peaks within  1  Mb of the LTF gene, along with 429 for 
H3K4Me1 and 782 for H3K4Me3 within the window on 
Bos taurus chromosome (BTA) 22:51946110–53986647 
(see Additional file  1: Tables  S1–S3 for peak caller 
outputs).

Reads under each consensus peak were counted using 
the featureCounts function of the Subread software pack-
age (version 1.5.3) [28], for both the ChIP-seq peak data 
and the corresponding input data. As a quality control 
step, a length-adjusted read count was produced for each 
peak by dividing the read count by the number of bases 
covered by the peak. Peaks with an adjusted read count 
below the first percentile of all peaks were removed. 
Peaks were also removed when the adjusted input read 
count was over 5× the average across all reads, to remove 
potential false positive peaks caused by artefacts in the 
reference genome. This yielded a filtered data set of 793, 
353, and 725 peaks within 1  Mb of LTF for  H3K27ac, 
H3K4Me1, and H3K4Me3, respectively.

To enable the identification of histone accessibility QTL 
(hQTL) that map near the LTF gene, phenotypes for 
chromatin openness were developed, with the aim of 
being suitable for mixed model analyses. The read counts 
for both the ChIP-seq ( Cp×n ) and input ( Ip×n ) data were 
stored as matrices, where each row represented a ChIP-
seq peak, each column represented an animal. Vec-
tors of total read counts per animal  (t ) were calculated 
by summing the counts in each column of the count 
and input matrices (example for the ChIP-seq counts in 
Eq. (2); calculations proceed analogously for the input 
read counts). The read depth normalisation factors ( f  ) 
for each animal were then calculated, representing the 
total count for each animal divided by the mean across 
all animals; this yielded a number representing the read 
depth of each animal relative to the average animal. The 
read counts are then divided by the read depth factors 
to yield the adjusted count matrices ( CN and IN for the 
Peak and Input counts, respectively). Using the vectors 

(2)ti =

p∑

j=1

Ci,j , fi =
ti

mean(t)
, CN

i,j =
Ci,j

fj
.
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yi = loge(C
N
i,· + 1) and xi = loge(I

N
i,· + 1) , the linear 

model yi = a+ b · xi + ei was fitted using ordinary least 
squares for each peak (i) across all animals, with the 
residuals ( ei ) yielding the final phenotype used for hQTL 
discovery.

As a final step, further filtering was applied to remove 
samples with anomalous read cover; for example, samples 
prepared from an incorrect tissue, or which had issues 
with library preparation. PCA was conducted to identify 
outlier samples following a method similar to that of Ellis 
et al [32], and any sample falling more than four standard 
deviations from the mean in any of the first seven prin-
cipal components was excluded. This resulted in a final 
dataset containing 34, 94, and 95 genotyped animals for 
H3K27ac, H3K4Me1, and H3K4Me3, respectively.

Measuring chromatin accessibility using ATAC‑seq
A subsample of 199 mammary tissue secondary biop-
sies (collected as part of the RNA-seq experiment) were 
assayed for open chromatin regions using the Assay 
for Transposase Accessible Chromatin using Sequenc-
ing (ATAC-seq) method [33]. Libraries were prepared 
using the commercial ATAC-Seq Kit provided by Active 
Motif (Carlsbad, CA, USA), then sequenced using the 
Novaseq 6000 genome analyser (Illumina Inc, CA, USA), 
targeting 25 million 150 bp paired-end reads per sample. 
Read processing, mapping, and counting proceeded as 
described above for the ChIP-seq analysis. Peak calling 
was performed using the MACS3 software package (ver-
sion 3.0.0a7) within 1 Mb of the LTF gene, on a consen-
sus BAM file produced by sampling 5% of the reads from 
each individual sample BAM file. This yielded 207 peaks 
within the window BTA22:51946110–53986647 (see 
Additional file 1: Table S4).

Phenotypes for chromatin accessibility QTL (caQTL) 
discovery were produced in a similar fashion to the 
ChIP-seq phenotypes, with the exception that, because 
individual input samples were not available, a consensus 
input BAM file was created by sampling 1% of the reads 
from each of the ChIP-seq input files. While this method 
would not identify any problematic regions specific to 
an individual animal, it will enable the identification of 
regions of the genome that cause read pile-ups due to 
inherent reference assembly problems. One sample was 
identified as an outlier via PCA (as described above) and 
removed from the QTL discovery set, resulting in a QTL 
discovery population of 193 animals after excluding ani-
mals that failed genotype concordance.

Genotyping and imputation
Within the 706 animals in the FJX population, 679 were 
genotyped using the Illumina Bovine50k (50k) chip 
panel. Of these, 12 have also been re-genotyped on the 

high-density Illumina BovineHD 777k (HD) chip panel, 
with the remainder imputed to this panel using Bea-
gle version 5.0 [34]. For the RNA-seq population of 372 
animals, 350 animals were genotyped on the HD panel. 
The remaining 22 (overlapping the FJX population) were 
genotyped using the Illumina Bovine50k panel, then 
imputed to the HD panel using Beagle (version 5.0). The 
subset of  99 animals used for the ChIP-seq experiment 
were all genotyped on the HD panel, as were the 199 ani-
mals used for the ATAC-seq experiment. Variants (both 
imputed and genotyped) were subsequently imputed 
to whole-genome sequence resolution using Beagle  5.0 
across a window encompassing 1 Mb of sequence either 
side of the annotated LTF gene (BTA22:51946110–
53986647). This window contained 608 HD markers, 
which were imputed up to a total of 43059 whole-genome 
sequence (WGS) markers using a mixed-breed reference 
population of 1300 sequenced cattle, comprising 231 Jer-
seys, 392 Holstein-Friesians, and cross-bred animals, and 
forming a superset of our previously published imputa-
tion reference population of 556 animals [21]. After fil-
tering for allelic dosage R 2 (DR2) > 0.9 and minor allele 
frequency (MAF) > 0.005 , a final set of 11,736 WGS vari-
ants was produced.

Separately, variants were imputed over the same 
genomic window surrounding the gene as described 
above for the RNA-seq population, producing a final 
set of 10,916 imputed WGS markers. This set is slightly 
smaller than the set selected for protein QTL discovery, 
as more low-frequency markers were dropped because 
insufficient numbers of observations were available for 
their alternative alleles, as a result of the smaller number 
of samples in this dataset.

Association analyses for QTL discovery
Marker-based heritability estimates for Lf concentra-
tions were calculated using the GCTA software pack-
age (version  1.93.2) [35] with the restricted maximum 
likelihood average information (REML-AI) method. A 
genomic relationship matrix (GRM) was produced using 
GCTA with the actual (where available) and imputed HD 
genotypes. Genome-wide association studies (GWAS) 
were conducted for Lf protein at three sampling periods 
(peak, mid, and late lactation), plus the aggregated phe-
notype produced using the repeated-measures model, 
as described above. GWAS was conducted using the 
GCTA software package (version  1.93.2) with the same 
HD genotypes and GRM, along with a covariate for ani-
mal birth year. To fine-map the region 1 Mb either side of 
the LTF gene, an additional analysis was undertaken for 
each phenotype using an imputed WGS-resolution vari-
ant set, comprising 11,736 variants that mapped to this 
genomic window after removing variants with MAF less 
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than 0.005 and imputation DR2 less than 0.9. This analy-
sis was carried out as per the HD variant set, except that 
the 598 HD variants that mapped within the target win-
dow were excluded from the GRM calculation, yielding a 
leave-one-segment-out (LOSO) design.

Gene eQTL analysis for the LTF gene was per-
formed similarly using the VST-transformed phenotype 
described above. The analysis was run using GCTA ver-
sion 1.93.2 [35] and a GRM calculated for the RNA-seq 
population of animals with physically genotyped HD 
genotypes. The mixed linear model analysis (MLMA) 
method in GCTA was run using a whole genome HD 
genotype set with leave-one-chromosome-out (LOCO), 
to identify any LTF trans-eQTL. Fine mapping of the cis-
eQTL was undertaken using 10916 imputed sequence 
variants with filtering as described above.

Histone QTL (hQTL) and caQTL were identified simi-
larly using the chromatin openness phenotypes described 
above, by applying a GCTA MLMA-LOCO model with 
imputed sequence variants mapping within 1  Mb of 
each ChIP-seq or ATAC-seq peak within 1  Mb of the 
LTF locus. This yielded a mean of 10136 variants per 
peak analysed. As the ChIP-seq and ATAC-seq samples 
formed a subset of the RNA-seq samples, the same GRM 
was reused for the chromatin QTL analyses.

As a final step, the Pearson and Spearman correlations 
between Lf  pQTL and the LTF  eQTL were calculated 
using the R software package [36]. Correlations were cal-
culated using both the β  allele effects and the −log10(p)

-values for each variant within 50 kb of the LTF gene, i.e., 
between positions 52896110 and 53036647 on BTA22. 
Similarly, correlations were calculated for the LTF eQTL 
with each of the hQTL and caQTL for which the corre-
sponding ChIP-seq or ATAC-seq peak lay within 1  Mb 
of LTF. To summarise the linear relationships between 
pQTL, eQTL, and hQTL/caQTL simultaneously, we 
then performed a principal components analysis (PCA) 
for each triplet of pQTL, eQTL, and hQTL/caQTL, then 
determined the percentage of variance for each that 
could be explained by the first principal component. This 
approximates a three-dimensional analogue to the R 2 
(called a pseudo-R2 in this text).

Identification of candidate transcription factor binding 
sites (TFBSs)
Sequences within open chromatin regions with signifi-
cant hQTL were examined to predict the positions of 
transcription factor binding sites (TFBSs). Significant 
hQTL for ATAC-seq ( n = 32 ) and ChIP-seq ( n = 4 and 3 
for H3K4Me1 and H3K4Me3 respectively) were selected, 
where at least one hQTL variant was observed with 
p < 5× 10−8 . The reference DNA sequence under each 
peak was extracted in FASTA format and loaded into R 

version  4.1 using the Bioconducter package Biostrings 
(version  2.62). Position weighted matrices (PWMs) 
representing transcription factor binding motifs were 
loaded from the JASPAR database using the package 
JASPAR2020 (version  0.99.10) for the CORE collection 
defined in that package (comprising profiles represent-
ing curated, non-redundant binding site sequences), with 
the taxonomic group ‘vertebrates’ ( n = 746 PWMs), and 
also from the POLII collection ( n = 13 PWMs), com-
prising sequences for RNA polymerase  II promoter ele-
ments. Candidate TFBSs were then located on the DNA 
sequences using the PWMs with the package TFBSTools 
(version  1.32), and filtered to keep only those with a 
relScore ≥ 0.9.

Results
Milk Lf concentrations and genetic correlations
Milk Lf concentrations were measured in 706 animals 
at up to three time periods each during a single milking 
season (peak lactation, mid lactation, and late lactation) 
using HPLC. Lf concentrations were highly variable, with 
a difference of about two orders of magnitude between 
the highest and lowest concentrations in each time period 
(see Additional file 2: Fig. S1). In addition, an aggregate 
phenotype was produced by running a repeated-meas-
ures model in AS-REML [24]. Summary statistics for all 
four phenotypes are in Table 1. The lowest Lf concentra-
tions were observed at peak lactation, with the highest 
values seen at mid-lactation, followed by a modest reduc-
tion in late lactation. Table 1 also shows the narrow-sense 
SNP heritabilities ( h2SNP ) calculated for each phenotype. 
In general, values of  0.3 to  0.4 were observed (with the 
exception of mid lactation), suggesting that Lf concen-
tration is moderately heritable. All heritability estimates 
were statistically significant by the likelihood ratio test 
(maximum p-value 1.77× 10−4 ). The highest heritabil-
ity estimate was observed with the aggregate repeated-
measures phenotype (0.433), followed by LogPeak (0.416) 
and LogLate (0.413).

Association mapping of protein QTL (pQTL)
Performing a GWAS using HD genotypes for each of 
the four Lf phenotypes (peak, mid, late, and aggregated) 
yielded significant ( p < 0.05

631896 = 7.9× 10−8 ) QTL in all 
cases: minimum p-values attained were 1.54 × 10−14 , 
1.73× 10−10 , 2.27× 10−23 , and 3.09× 10−24 for the 
peak, mid, late, and aggregate phenotype, respectively. 
With the exception of the late lactation phenotype, the 
most significant SNP identified was rs110659162 on 
BTA22 at position 52986092, located within intron  16 
of the LTF gene (referencing Ensembl transcript ENS-
BTAT00000001704.5). For the late lactation phenotype, 
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the most significant variant was rs109183581 on BTA22 
at position 52954126 in the first intron of LTF.

Compared to the non-log phenotypes, the log pheno-
types gave stronger genetic signals. The most significant 
variant for the log-peak lactation phenotype (LogPeak) 
was rs109183581 with a p-value of 4.01× 10−23 , and for 
the log-mid lactation phenotype (LogMid), the most sig-
nificant variant was the synonymous variant rs43765460 
at position 52969419, (LTF exon 9 of 17) with a p-value of 
2.89× 10−14 . The log-late lactation phenotype (LogLate) 
yielded a haplotype comprising seven SNPs (minimum 
pairwise linkage disequilibrium (LD): R 2 = 0.998) within 
the window 52940222–52951641 on BTA22, all with a 
p-value of 8.05× 10−30 . Four of these variants were pre-
dicted by Ensembl’s Variant Effect Predictor (VEP) to be 
intergenic; however, the remaining three (rs109348197, 
rs134043953, and rs137054020) map between 0.9–4.5 kb 
upstream of LTF, approximately where promoter ele-
ments could be expected to be located. Manhattan plots 
for the three log-phenotypes, as well as the Aggregate 
phenotype, are shown in Additional file 3: Fig. S2. Strik-
ingly, the estimates of the effect of this pQTL in cis were 
substantial, with a more than two-fold difference between 
opposing homozygotes.

To fine map the Aggregate and Log pQTL located at 
the LTF locus, we defined a genomic window of interest 
comprising 1 Mb on each side of the LTF gene using an 
imputed WGS resolution variant set. The most signifi-
cantly associated variants ( p = 1.93× 10−24 ) in peak lac-
tation were rs133536129 (BTA22:52984449; intron  15) 
and rs211296757 (BTA22:52985300; intron 16). The Log-
Mid phenotype yielded a haplotype of eight variants (all 
with p = 4.30× 10−15 ), of which seven were intronic 
(introns  1, 7, 9, and  13), and the eighth was the same 
synonymous variant (rs43765460; exon 9) identified in 
the HD GWAS described above. The top variant for the 
LogLate phenotype, rs137774559 (BTA22:52946182), was 
predicted to be intergenic, with a p-value of 9.50× 10−33 , 
and the top variant for the Aggregate phenotype was 
rs109183581, the same variant as seen for the late-lac-
tation phenotype above, with a p-value of 1.23× 10−8 . 
These variants were all highly correlated in the GWAS 
population, giving pairwise R 2 values ranging from 0.84 
to 1.00, with rs109183581 showing the lowest R 2 with the 
remaining variants (from 0.81 to 0.88). Manhattan plots, 
coloured by LD with the most significant variant in each 
analysis, are in Fig. 1. See Additional file 1: Tables S5–S8 
for full pQTL results.

All the tag variants for the Log phenotypes, i.e., the 
most significant variants in the QTL, showed sur-
prisingly large Lf protein effects, especially consider-
ing that these variants were very common in the study 

population (MAF of around 0.45). The largest effect 
was observed for LogPeak, 0.56± 0.055 on a loge-scale, 
equivalent to a 1.75× higher milk Lf concentration per 
allele ( 3.08× between homozygotes) on a linear scale. 
Mean Lf concentrations ( mgL−1 ) observed for peak lac-
tation were 32.2, 69.3, and 111.5 for the GG, GT, and 
TT genotypes of rs133536129, respectively. A similarly 
large effect was observed for the LogLate phenotype, 
with a loge-scale effect of 0.50± 0.042 , equivalent to 
1.65× on a linear scale, or 2.74× between homozygotes. 
Mean  Lf concentrations for late lactation were 71.5, 
159.8, and 221.9 mgL−1 for the TT, CT, and CC alleles of 
rs137774559, respectively.

The population frequency of rs137774559, the top 
associated variant for LogLate, was also determined in 
the data set from a larger, previously reported popula-
tion [37] of 38085 mixed-breed cows (UMD3.1 posi-
tion BTA22:53514853). Within the total population, 
the minor allele was ‘T’, with a MAF of 0.4325. We also 
determined the allele frequency in pure-bred subpopu-
lations of this larger population, with Holstein-Friesians 
(n = 8504) showing a MAF of 0.3332 for the same allele, 
and Jerseys (n = 4804) having the opposite minor allele 
‘C’, with a MAF of 0.3851. The remaining animals com-
prised a mix of predominantly Holstein × Jersey crosses, 
and other minor pure and mixed breeds. Since the allele 
associated with the highest concentrations of Lf was the 
‘C’ allele, this implies that Holstein-Friesian cattle are 
in general genetically predisposed to higher Lf levels in 
milk than Jersey cows, although this contradicts previous 
research showing that Jersey milk has significantly higher 
Lf concentrations than Holstein milk [38]. Unfortunately, 
breed-specific analyses could not be conducted in the 
current study, as all the cows for which Lf concentration 
data were available were Holstein × Jersey crosses.

Investigation of candidate causative regulatory variants 
for the Lf pQTL
Several small studies have looked for genetic effects on 
milk Lf concentration, typically examining only one or 
two promoter or 5 ′-UTR variants, many of which were 
captured in the current dataset. To verify whether or not 
these variants represented QTL that differed from that 
presented here, the pQTL analysis was repeated with the 
genotype of rs133536129 (the top variant for LogPeak) 
fitted as a covariate. The promoter variant “Lf−962 ” 
was previously shown to be weakly associated with milk 
Lf concentration [39]. In the current study, this variant 
yields p-values of 2.32× 10−16 and 4.65× 10−21 for peak 
and late lactation respectively, compared to 1.93× 10−24 
and 9.50× 10−33 for the lead variants of each trait. The 
Lf−962 effect becomes non-significant after fitting 
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rs133536129, with p-values of 0.177 and 0.188, although 
the LD between the two markers was weak (R2 = 0.273).

A second promoter variant “Lf−28 ” (rs41256920) 
has also been associated with milk Lf concentration 

[40]. This variant is in moderately strong LD with 
rs133536129 (R2 = 0.701), and is associated with both 
peak and late lactation Lf concentrations in the current 
study ( p = 4.67× 10−9 and 1.25× 10−13 , respectively). 

Fig. 1 Fine‑mapping of the Aggregate, LogPeak, LogMid, and LogLate phenotypes, within the 2 ‑ Mb window surrounding the LTF gene on BTA22. 
Colours indicate linkage disequilibrium (R2 ) between each variant and the variant with the smallest p‑value. The grey band indicates the location 
of the LTF gene (5  on the left)
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As above, this variant was noticably less significant than 
the lead variants presented in the current study, and it 
also becomes non-significant after fitting rs133536129 
( p = 0.159 and 0.830). A third variant, in the 5 ′-UTR, 
that has previously been associated with Lf concentra-
tions is “Lf+32 ” (rs43706485) [39, 41]. Although this 
variant is in moderately weak LD with rs133536129 (R2 
= 0.327), fitting the latter as a covariate results in the 
moderately significant p-values for Lf+32 becoming non-
significant: from 8.08× 10−17 to 0.325 for LogPeak, and 
from 4.54 × 10−20 to 0.679 for LogLate.

Conversely, fitting the genotype of Lf−926 resulted 
in the p-value of rs133536129 remaining signifi-
cant, although it decreased to 2.14 × 10−6 , suggest-
ing that Lf−926 captures only part of the genetic 
signal at this locus. Similar results were observed after 
fitting Lf−28 (rs133536129 p = 5.50× 10−11 ) or Lf+32 
( p = 2.94 × 10−5 ). Collectively, these observations sug-
gest that these promoter-region variants capture a por-
tion of the signal for the same LogPeak and LogLate 
pQTL as identified in this study, but also show that this 
signal is better represented by rs133536129 and other 
variants within the core haplotype.

LTF expression and identification of eQTL
RNA-seq data from lactating mammary tissue confirmed 
that LTF is moderately highly expressed (median tran-
scripts per million (TPM) = 350.01, mean = 597.34) in all 
animals (minimum TPM = 28.44). Similar to the protein 
phenotypes, LTF expression showed a strong positive 
skew, with a sample skewness estimate of 4.946. However, 
data transformation using the VST [42] reduced the skew 
of the expression phenotype to minimal levels (sam-
ple skewness = 0.242). Therefore, we can anticipate that 
skewness is unlikely to lead to any false-positive results in 
eQTL discovery.

A GWAS was conducted using the VST expression 
phenotype with the HD genotype set to identify eQTL 
for the LTF gene. A highly significant cis-eQTL was iden-
tified (minimum p-value: 1.38× 10−33 ) on BTA22 at 
52.95 Mbp, overlapping the transcription start site (TSS) 
of the gene (at position 52946110). The three most sig-
nificantly associated markers (rs134043953, rs137054020, 
and rs42013171) formed a haplotype with a MAF of 0.37 
(minimum pairwise R 2 > 0.99 ) overlapping the top HD-
chip variants identified for the LogLate phenotype. No 
marker outside BTA22 was significantly associated with 
LTF transcript levels (all p > 7.9× 10−8 ). Fine mapping 
of the locus using imputed sequence data gave a mini-
mum p-value of 1.50× 10−32 for marker rs800016664 at 
position 52941483, 4.6  kb upstream of LTF (see Addi-
tional file 1: Table S9 for full LTF results). With the same 
dataset and model, the top HD variants yielded p-values 

of 2.81× 10−32 , suggesting that the causal haplotype was 
adequately tagged by the HD-chip platform.

Histone modification and chromatin accessibility peaks 
identified
In total, 2182 ChIP-seq peaks were identified within 1 Mb 
of the LTF gene, comprising 971 peaks for H3K27ac, 429 
for H3K4Me1, and 782 for H3K4Me3. The five most sig-
nificant peaks for each of these histone modifications, 
as ranked by Q-value, are listed in Table  2. A number 
of peaks were detected that mapped to loci overlap-
ping the LTF gene, including 20 for H3K27ac, nine for 
H3K4Me1, and 17 for H3K4Me3. In all cases, the peak 
with the highest score overlapped the annotated LTF TSS 
(BTA22:52952571): 52951712–52956226 for H3K27ac 
(MACS2 score 1665), 52950247–52958565 for H3K4Me1 
(133), and 52951824–52956227 for H3K4Me3 (9522). 
Although these scores are noticeably lower than others 
in the wider region, they still represent highly-significant 
peaks. Within the window used for association analyses 
(i.e., within 1  Mb of LTF; BTA22:51946110–53986647), 
971, 429, and 782 peaks were detected for the H3K27ac, 
H3K4Me1, and H3K4Me3 histone modifications, respec-
tively (See Additional file 1: Tables S10–S12 for summary 
hQTL results), covering 33.2%, 47.0%, and 19.2% of the 
bases in the window. The average lengths of the peaks 
were 698.0 bp, 2237.5 bp, and 499.8 bp, respectively. At 
least one of the top-ranking trait associated SNPs for 
each of the fine-mapped pQTL fell within a ChIP-seq 
peak (Table 3).

In total, 207 ATAC-seq peaks were detected within 
the interval encompassing 1 Mb on each side of LTF (see 
Additional file 1: Table S13 for caQTL summary results). 
The five most significant ATAC-seq peaks are listed in 
Table 2. The average length of the 207 peaks was 723.5 bp 
(SD = 426.0), collectively covering 7.3% of the genomic 
window. One ATAC-seq chromatin accessibility peak 
overlapped the 5 ′-UTR and first exon of the LTF gene 
(peak ATAC-94 at 52953062–52954626, Qval = 443.6). 
Although this peak did not contain the currently anno-
tated TSS, it did overlap the non-canonical TATA box 
identified by Zheng et al. [43]. An additional four ATAC-
seq peaks were located within 20 kb upstream of LTF, the 
most significant of which (peak ATAC-90) mapped to 
52934507–52936357 with a Qvalue of 796.31. All four of 
the ATAC-seq peaks overlapped with ChIP-seq peaks for 
all three histone modifications.

Chromatin QTL
Using a threshold of p < 7.9× 10−8 , seven ChIP-seq 
peaks exhibited significant hQTL, of which four were 
observed for the H3K4Me1 histone modification, 
with the remaining three for the H3K4Me3 histone 
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modification. No H3K27ac peaks yielded significant QTL 
at this threshold, which is likely due to the smaller sample 
size available for this histone modification. Among the 
four H3K4Me1 peaks with significant QTL, one mapped 
upstream of the SCAP gene (peak Me1-65), two were 
within the LTF gene (peaks Me1-196 and Me1-202), and 
one overlapped the TSS of the SACM1L gene (peak Me1-
343). Among the three peaks identified with significant 
QTL for the H3K4Me3 marker, one mapped upstream of 
the SCAP-202 transcript (peak Me3-61), one overlapped 
with the TSS of the LTF gene (peak Me3-391), and one 
was within the LARS2 gene (peak Me3-737). Adopting a 
less stringent p-value threshold of p < 1× 10−5 resulted 
in one significant QTL for an H3K27ac peak (peak 
Ac-886), 17 for H3K4Me1 and nine for H3K4Me3. The 
H3K27ac peak mapped to an intron of the LARS2 gene.

Compared to the ChIP-seq peaks, QTL were more 
frequently observed for the ATAC-seq peaks, which is 
likely due to the larger sample size, with 32 peaks exhibit-
ing a significant caQTL at p < 7.9× 10−8 , and 50 peaks 
exhibiting a significant caQTL at p < 1× 10−5 . The 
ATAC-seq peaks were also distributed across many more 
genes. However, one (peak ATAC-94) was located close 
to the TSS of the LTF gene. An additional three peaks 
(ATAC-91, ATAC-92, and ATAC-93) mapped within 
15  kb upstream, and another overlapped exon  15 (peak 
ATAC-102). Further away from the LTF gene, another 
peak (ATAC-71) exhibiting a significant QTL overlapped 
the TSS of the ALS2CL gene, with two additional peaks 
(ATAC-73 and  ATAC-75) mapping within the gene. 
Other peaks with significant caQTL mapped within 
the genes SMARCC1 (peak ATAC-4), CCDC12 (peaks 
ATAC-51 and ATAC-53), LRRC2 (ATAC-88), FYCO1 
(ATAC-139), LIMD1 (ATAC-167, ATAC-169, and ATAC-
174), and LARS2 (ATAC-184, ATAC-184, ATAC-185, 
ATAC-192, and ATAC-193).

Co‑regulation between QTL
Shared genetic regulation underlying the hQTL, caQTL, 
LTF eQTL, and Lf  pQTL is expected to be observed as 
correlations between both the allele effects of differ-
ent QTL and the corresponding p-values. Moderate to 
strong correlations were observed between the LTF cis-
eQTL and the pQTL identified for every Lf protein phe-
notype analysed (Table  4). These observations reinforce 
the assumption that differential Lf protein expression is 
under the same genetic control as differential LTF tran-
script abundance, and that the former likely derives 
from the latter. Strong correlations were also observed 
between the LTF cis-eQTL and several of the hQTL and 
caQTL (Table  5 and Additional file  1: Tables  S14, S15). 
The strongest correlation between β allele effects with the 

eQTL was seen for the ATAC-93 caQTL, and between 
− log10(p)-values for the Me1-196 hQTL. ATAC-93 sits 
upstream of the canonical LTF transcript, but overlaps 
the TSS of an alternative transcript (X1, XM_015459655). 
Peak Me1-196 overlaps four LTF exons (exons 3–6 in the 
coding sequence of both transcripts). We identified a 
set of 115 variants that fell within the top 5% (by abso-
lute value of allele effect) of both hQTL, as well as the top 
5% of both the LTF cis-eQTL and the LogPeak Lf pQTL. 
These variants are highlighted in green in Fig. 2, and will 
be labelled hereafter as the ‘core haplotype’ (see Addi-
tional file 1: Table S16 for a list of variants included in the 
haplotype). Of these variants, 15 map within ATAC-93, 
while none map within Me1-196. The LD between the 
top eQTL and LogPeak pQTL SNPs rs110395606 and 
rs133536129 was R 2 = 0.842.

As 115 seemed a surprisingly large number of variants 
to be in such strong LD, we calculated the density of the 
variants surrounding the LTF locus in the imputation 
sequence population (excluding singleton variants), and 
compared this to the whole genome (see Additional file 4: 
Fig.  S3). This analysis showed that the region immedi-
ately encompassing the core haplotype has a significantly 
higher density of variants than the genome as a whole 
(99.2 percentile).

Next, we examined whether SNPs in LD ( R2 ≥ 0.75 ) 
with the top pQTL or eQTL SNPs fell within open 
chromatin regions. For the LTF eQTL, the top SNP 
was rs110395606 at position BTA22:52941483 
( p = 1.504 × 10−32 ), which is in LD with 142 other vari-
ants. Of these variants, 107 fell within an open chromatin 
region: 42 in Me3-391, 26 in ATAC-93, 17 in ATAC-94, 
14 in Me1-202, and 14 in Me1-196, with the remaining 
variants spread across another six regions. The majority 
of these regions also exhibited significant QTL that were 
strongly correlated with the eQTL (Table 5). A lower but 
still significant correlation was observed for Me3-391 
(Pearson r = 0.759 between the allele effects); however, 
this ChIP-seq region encompasses the ATAC-seq derived 
region ATAC-94, which gave a stronger correlation. For 
the LogPeak Lf pQTL (where the strongest correlations 
were observed with the eQTL; Table  4) the top associ-
ated SNP was rs133536129, at position BTA22:52984449. 
Using the same LD threshold of R2 ≥ 0.75 applied above, 
165 variants were in strong LD, of which 87 mapped to 
an open chromatin region. Of these, 45 mapped to Me3-
391 ( r = 0.803 between hQTL and pQTL), 22 to ATAC-
93 ( r = 0.913 ), 17 to ATAC-94 ( r = 0.907 ), and 14 to 
Me1-196 ( r = 0.908 ), with the remaining six variants 
distributed across another five regions. The correlations 
observed between these chromatin QTL and the LogPeak 
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Fig. 2 Fine mapping of the locus surrounding the LTF gene for Lf protein and co‑located molecular QTL. a–d Show the sequence‑resolution 
Manhattan plots of the QTL peaks for (a) the log‑Peak Lf protein QTL; (b) the LTF eQTL; (c) the ATAC‑seq caQTL for peak 93 (BTA22:52946445–
52948019); and (d) the ChIP‑seq hQTL for H3K4Me1 peak 196 (BTA22:52960026–52962680). All four are coloured by the absolute values 
of the association β‑values. Variants highlighted in green are those which have absolute β‑values in the top 5% for all four phenotypes. The positions 
of the LTF gene and the two chromatin peaks are indicated at the base of the figure
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pQTL were uniformly stronger than the equivalent corre-
lations between the chromatin QTL and LTF eQTL.

After having established the correlations between pairs 
of QTL, we examined the three-way interactions among 
hQTL or caQTL, with eQTL and pQTL. Fig. 3 presents 
two three-dimensional scatter-plots of the β allele effects, 
showing the relationships between LogPeak Lf, LTF gene 
expression, and chromatin accessibility for the two open 
chromatin regions Me1-196 and ATAC-93. The core hap-
lotype variants are bordered with green as in Fig. 2, and 
appear as a single point because all 115 variants have very 
similar p-values across all traits. To summarise these two 
plots, and to facilitate comparisons between them, we 
performed a principal component analysis on each set of 
three allele effect variables. Then, we determined the per-
centage of variance for each set that could be explained 
by the first principal component, as a three-dimensional 
analogue to the R 2 (a pseudo-R2 ). When calculated for 
the pQTL, eQTL, and Me1-196, this yielded 84.1%, and 
87.4% with ATAC-93. Repeating this analysis using the 
− log10(p)-values instead of allele effects yielded 94.8% 

and 93.0%, respectively. Values obtained for other Lf phe-
notypes are provided in Table 6.

Transcription factor binding site analysis
The co-occurrence of top-associated variants for both 
Lf protein and molecular phenotypes highlights a sub-
set of candidates potentially causing these effects. To 
attempt to further differentiate these candidates, tran-
scription factor binding site analysis was performed. 
Using a threshold for the minimum hQTL or caQTL 
p-value of 7.9× 10−8 , 39 open chromatin regions with 
significant QTL were identified, comprising four for 
H3K4Me1 ChIP-seq, three for H3K4Me3 ChIP-seq, and 
32 for ATAC-seq (see Additional file  1: Table  S17). The 
sequence from these regions was extracted and ana-
lysed to predict TFBSs using TFBSTools and the JAS-
PAR2020 database (see "Methods"). This identified 
1285 TFBSs with a relative score > 0.9 and a transcrip-
tion factor matrix (TFM) p-value [44] < 1× 10−5 . Of 
these 1285, the majority ( n = 885 ) were found within 
an ATAC-seq peak, followed by H3K4Me1 ChIP-seq 

Fig. 3 Three‑dimensional scatter‑plots of β‑values for the lactoferrin pQTL and eQTL against two chromatin QTL. Left: the ChIP‑seq H3K4Me1 
peak 196 hQTL. Right: the ATAC‑seq peak 93 caQTL. Both plots are coloured by the mean of the log10‑transformed p‑values

Table 1 Summary phenotypic and heritability statistics for Lf concentration

Concentrations are shown in units of mg/L. The Agg period represents the aggregated phenotype produced using a repeated-measures model in AS-REML. The Skew 
column contains the estimated sample skewness for each phenotype. The NP column shows the number of phenotyped animals recorded for each sampling period; 
the NG column is the number of animals both phenotyped and genotyped. The LRT Pval column shows the p-value for H0:h

2

SNP
= 0 , determined using a likelihood 

ratio test

Period NP Mean± SD Median Skew NG h
2

SNP
± SE LRT Pval

Peak 621 98.3± 88.2 70.0 2.37 595 0.364± 0.102 3.21× 10
−9

LogPeak 621 − 0.09 595 0.416± 0.102 1.34× 10
−12

Mid 648 201.3± 139.7 173.0 1.20 622 0.151± 0.081 1.77× 10
−4

LogMid 648 − 0.94 622 0.253± 0.094 1.66× 10
−7

Late 611 186.5± 113.8 163.0 1.53 588 0.335± 0.099 3.14× 10
−13

LogLate 611 − 0.71 588 0.413± 0.103 < 1× 10
−16

Agg 700 7.0± 81.8 − 3.0 1.48 679 0.433± 0.091 < 1× 10
−16
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windows ( n = 270 ), with the remainder ( n = 130 ) fall-
ing under three H3K4Me3 ChIP-seq peaks. The 1285 
predicted sites included 80 under the Me1-196 peak (37 

on the positive strand, matching the LTF gene), and 71 
under the ATAC-93 peak (40 on the positive strand). In 
total, 1144 TFBSs were predicted from the CORE section 

Table 2 The top five most significant ChIP‑seq and ATAC‑seq peaks identified within 1 Mb of the LTF gene

Results are shown for each of the three histone modifications, and ATAC-seq peaks within the same window. Peak names are allocated by the peak caller sequentially 
for each dataset. Peaks are ranked by Q-value ( − log10-scale). Score, signal value, and q-value are as reported in the narrowPeak or broadPeak files created by the peak 
caller. The transcription start site (TSS) column lists the genes for which the TSS overlapped with the peak, or, for those marked with an asterisk, the gene within which 
the peak is located. A superscript U indicates that the peak maps within 20 kb upstream of the indicated gene

Peak Name Location (BTA22) Score Signal Value Q‑value TSS

Ac‑244 52541892–52549649 7113 64.64 711.34 CCDC12

Ac‑592 53325802–53327345 3079 34.48 307.94 FYCO1U

Ac‑418 52935669–52936535 2764 31.86 276.42 LTFU

Ac‑630 53398218–53403461 2517 29.77 251.72 FYCO1∗

Ac‑64 52136724–52138123 2170 26.77 217.07 ELP6∗

Me1‑283 53332642–53338482 323 8.94 32.37 FYCO1

Me1‑133 52560161–52586174 268 8.13 26.88 CCDC12∗

Me1‑129 52541850–52549226 265 8.02 26.55 CCDC12

Me1‑367 53749632–53751815 239 7.66 23.90 LARS2∗

Me1‑194 52944846–52949322 239 7.72 23.90 LTFU

Me3‑482 53325803–53327366 29773 178.25 2977.31 FYCO1U

Me3‑106 52283328–52285089 29451 176.68 2945.13 PTPN23

Me3‑567 53470756–53472052 26738 163.37 2673.81 LZTFL1

Me3‑140 52360766–52363004 24267 151.06 2426.73 KLHL18,KIF9

Me3‑164 52425038–52427859 22979 144.57 2297.99 –

ATAC‑158 53625481–53627252 28987 13.14 2898.77 SACM1L

ATAC‑49 52555035–52556223 22154 14.51 2215.48 CCDC12∗

ATAC‑145 53470617–53471757 18874 17.63 1887.42 LZTFL1

ATAC‑128 53333362–53335224 17271 10.28 1727.13 FYCO1U

ATAC‑54 52578451–52579389 16778 11.02 1677.87 CCDC12∗

Table 3 Peaks from ChIP‑seq and ATAC‑seq that overlap with top pQTL SNPs for each Lf phenotype

Top SNP rsIDs and ARS-UCD1.2 positions (on BTA22) are given, along with overlapping peak locations on the same reference genome and chromosome. Peak names 
are given by dataset (histone modification type or ATAC-seq) and peak number as assigned by the peak caller. The QVal column represents the adjusted log-pvalue as 
calculated by the peak caller

Phenotype Top SNP Position Peak name Peak location QVal

LogPeak rs133536129 52984449 Ac‑443 52984080–52984603 25.0

Me1‑202 52981402–52984701 10.2

Me3‑405 52984124–52984609 12.1

ATAC‑103 52984170–52984748 8.1

LogMid rs384918755 52953612 Ac‑425 52951712–52956226 166.6

Me1‑195 52950247–52958565 13.4

Me3‑391 52951824–52956227 952.3

ATAC‑94 52953062–52954626 443.6

LogLate rs137774559 52946182 Ac‑422 52944818–52948471 106.4

Me1‑194 52944846–52949322 23.9

Me3‑388 52945942–52946608 11.4

Agg rs110659162 52986092 Ac‑444 52985453–52986580 12.4

Me1‑203 52985484–52987687 3.4
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of the JASPAR2020 database (see "Methods"), with the 
three most commonly predicted classes of transcription 
factors (TFs) being C2H2 zinc finger factors ( n = 348 , 
from 37 open chromatin regions), basic helix–loop–helix 
factors ( n = 170 , from 27 regions), and homeo domain 
factors ( n = 112 , from 25 regions). The STAT family of 
TFs, which are known to affect the expression of lacta-
tion-related genes [3, 45], featured 46 predicted binding 
sites across 18 regions. Outside the CORE section of the 
database, the remaining 141  sites were identified in the 
POLII section, with the majority ( n = 114 ) being pre-
dicted downstream core elements (DCE).

Amongst the 115 core haplotype variants, five (all 
mapping within ATAC-93) were found within pre-
dicted TFBSs. Functionally, the most interesting pre-
dicted TF binding sites were found for rs110000337 
(BTA22:52947400), which sat within sites for the two 
STAT domain containing TFs STAT5A/STAT5B (TFM 
p = 5.48× 10−6 ) and STAT1 ( p = 2.15× 10−6 ), as 
well as a predicted site for the HMG  domain contain-
ing  TF SOX5A ( p < 1× 10−6 ). On the negative strand, 
this SNP also overlapped with predicted binding sites for 

the TEA  domain factors TEAD1 ( p = 3.96× 10−6 ) and 
TEAD2 ( p = 3.38× 10−6 ). Another SNP, rs137271649 
(BTA22:52946852), sat within predicted binding sites 
for the homeo domain factor ZEB1 ( p = 9.78× 10−6 ) 
and the two basic helix–loop–helix factors TCF3 and 
TCF12 (both p = 3.34 × 10−6 ). SNPs rs109790251 
(BTA22:52946581) and rs42013170 (BTA22:52946494) 
sat within predicted binding sites for the C2H2 zinc fin-
gers ZNF148 (p-value p = 4.17× 10−6 ) and ZNF423 
( p = 4.2× 10

−6 ). SNP rs132785282 (BTA22:52947941) 
sat within a predicted binding site for NR2F1 
( p = 6.24 × 10−6 ), which is another zinc finger con-
taining TF. Including the remainder of the 107 eQTL 
variants that were in strong LD with the top variant, 
and mapped within an open chromatin region, resulted 
in one additional variant overlapping with a predicted 
TFBS. This variant, rs42013174 (BTA22:52946715, also 
within ATAC-93), co-located with predicted binding 
sites for the two fork head/winged helix TFs FOXA1 
( p = 3.93× 10−6 ) and FOXD1 ( p < 1× 10−6).

Table 4 Correlations between Lf protein QTLs for several 
phenotype definitions, and the LTF eQTL

Correlations were calculated using variants (n=1467) within 100 kb of the TSS of 
the LTF gene, between the allele effects ( β ) and between the − log10 p-values

β allele affects − log10(p)

Phenotype Pearson Spearman Pearson Spearman

LogPeak 0.908 0.856 0.935 0.919

LogMid 0.846 0.719 0.873 0.845

LogLate 0.906 0.748 0.897 0.859

Agg 0.862 0.698 0.824 0.823

Table 5 Correlations between the LTF eQTL and neighbouring ChIP‑seq and ATAC‑seq QTL within 1 Mbp of the LTF gene

Both Pearson and Spearman (rank) correlations were calculated between both the QTL allele effects, and the log-scale p-values. Only hQTL and caQTL with a minimum 
p < 1× 10−5 and an absolute correlation > 0.8 for at least one statistic are included. Correlations were calculated across markers within 50 kb of the LTF gene, i.e., 
between positions 52896110 and 53036647 on BTA22

Peak name Location (BTA22) β allele affects − log10(p)

Pearson Spearman Pearson Spearman

Me1‑196 52960027–52962680 0.834 0.851 0.966 0.969

Me1‑202 52981401–52984701 0.781 0.735 0.848 0.813

Me3‑213 52580146–52580284 − 0.688 − 0.788 0.892 0.855

ATAC‑92 52940691–52941040 0.818 0.559 0.845 0.736

ATAC‑93 52946446–52948019 0.909 0.833 0.908 0.883

ATAC‑94 52953062–52954626 0.869 0.667 0.890 0.840

ATAC‑113 53055448–53055807 − 0.631 − 0.619 0.854 0.815

ATAC‑194 53809923–53810456 − 0.808 − 0.763 0.640 0.576

Table 6 PCA pseudo‑R2 values

Values show the percentage of variance explained by the first principal 
component, for datasets comprising the Log-Peak pQTL, LTF eQTL, the Me1-196 
hQTL, and the ATAC-93 caQTL, and were calculated between the allele effects ( β ) 
and between the − log10 p-values, across markers within 50 kb of the LTF gene, 
i.e., between positions 52896110 and 53036647 on BTA22

β allele affects − log10(p)

Phenotype Me1‑196 ATAC‑93 Me1‑196 ATAC‑93

LogPeak 0.841 0.874 0.948 0.930

LogMid 0.809 0.854 0.912 0.907

LogLate 0.831 0.870 0.924 0.921

Agg 0.772 0.819 0.880 0.882
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Discussion
Regulatory QTL underlying lactoferrin concentration 
in milk
In this study, we have identified a number of QTL co-
locating to the region surrounding the LTF gene. As 
expected, a strongly significant pQTL was found for Lf at 
all three sampling times. Additionally, an eQTL for LTF 
was also observed, and importantly, this showed a strong 
correlation with the pQTL (R2 up to 0.935; Table 4). This 
strong correlation implies that the two QTL are under 
shared genetic regulation, with the level of gene expres-
sion controlling the concentration of milk Lf protein. 
Furthermore, we have identified a number of open chro-
matin regions, some of which also present similar genetic 
signals to those underlying the eQTL and pQTL. This 
finding suggests the presence of a regulatory chain, with 
regulatory elements in open chromatin regions control-
ling gene expression, which in turn control milk protein 
concentration. Selecting variants that were strongly asso-
ciated with the pQTL, eQTL, and the ATAC-93 and Me1-
196 QTL identified a haplotype of 115 variants (the ‘core 
haplotype’), 15 of which are within ATAC-93. This open 
chromatin region is therefore a prime candidate region 
for the underlying causative variant(s). To facilitate this 
search, we examined the reference DNA sequence within 
this and other open chromatin regions surrounding the 
LTF gene to predict transcription factor binding sites 
that could affect milk protein expression. Variants map-
ping within these predicted binding sites were considered 
to be the best candidate causal variants controlling LTF 
expression, and thereby milk Lf concentration.

Promoter‑region variants
In this study, we identified a set of 115 variants (the core 
haplotype) that are strongly associated with milk Lf con-
centration, LTF gene expression, and chromatin open-
ness in two regions near the LTF gene. Previous studies 
of the region upstream of the LTF gene have identified a 
number of variants. One set of 19 variants was identified 
by O’Halloran et al. [46]. Although no association analy-
sis was performed with milk Lf concentrations or somatic 
cell score (SCS) in that work, eight of these variants fell 
within the core haplotype reported herein, and therefore 
were all strongly associated with Lf milk concentration 
in the current study, exhibiting p-values of 5.87× 10−23 
for LogPeak and 2.30× 10−32 for LogLate. Beyond the 
core haplotype, another variant identified by O’Halloran 
et  al. [46],  “−28 ” (rs41256920) at BTA22:52953304, was 
directly adjacent to the annotated TATA box TFBS [47], 
and has been shown to be associated with milk Lf con-
centration in a small number of animals [40]. Four addi-
tional novel promoter variants were recently identified 
by Moncada-Laínez et al. [48] in Honduran dairy cattle; 

however, none of these variants were observed in our 
study population.

A small number of other genetic variants in the pro-
moter region of the LTF gene have also been associated 
with Lf concentration in milk. One variant (rs43706485) 
in the 5 ′-UTR, frequently named “Lf+32” in the litera-
ture, has been characterised by several authors [39, 41], 
and is located at BTA22:52953364 in the current cattle 
reference (ARS-UCD1.2). These studies showed that 
Lf+32 is associated with both Lf concentration and SCS 
breeding value (BV; a marker of mastitis sensitivity), 
with the high Lf expression allele showing low SCS BV, 
and therefore increased resistance to mastitis. Within 
the current study, this variant is highly significant for 
both the LogPeak Lf phenotype ( p = 8.08× 10−17 ) 
and LogLate ( p = 4.54 × 10−20 ), though these values 
are substantially less significant than those found for 
top associated variants in our study ( p = 1.93× 10−24 
and 1.06× 10−31 for rs133536129, for example). 
Another promoter variant is “Lf−926 ” (rs135768375) 
at BTA22:52952404 [39]. Like Lf+32, Lf−926 has been 
associated with both SCS and Lf concentrations [49]. 
This variant has a similar significance level to Lf+32 
in the current study, with p-values of 2.32× 10−16 and 
4.65× 10−21 observed for the LogPeak and LogLate Lf 
phenotypes, respectively.

Coding variants
Three missense mutations were observed in the study 
population; however, none of these were novel. All three 
variants were significantly associated with the LogLate Lf 
phenotype: Lys2Arg (rs384176726, BTA22:52953375) 
with p = 9.00× 10−8 , Ile145Val (rs52960814, 
BTA22:52960814) with p = 2.72× 10−13 , and His439Tyr 
(rs137554581, BTA22:52973728) with p = 7.09× 10−14 . 
The latter two variants were among the 47 variants that 
were reported in the LTF coding sequence by O’Halloran 
et  al. [46], of which eight (including synonymous vari-
ants) were observed in the current study population. 
Amino acid positions are valid for both Ensembl pro-
tein sequence ENSBTAP00000001704 and RefSeq 
sequence XP_015315141.1, and include the 27  aa sig-
nal peptide. In an analysis comparing genetic signa-
tures between measured and FT-MIR predicted traits 
that used some of the same data reported in the current 
study [50], the synonymous variant rs43765460 (Thr396 
= BTA22:52969419) was proposed as being in strong 
LD with an unknown causative regulatory variant. This 
variant was very highly significant in the current study, 
with p-values of 4.93× 10−24 and 2.47× 10−32 for Log-
Peak and LogLate, respectively, and was also in strong LD 
( R2 > 0.85 ) with the top variants for both LogPeak and 
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LogLate. A large structural variant overlapping the LTF 
locus has been described within a French Holstein bull 
[51]. The 4.9-Mb inversion, annotated as esv3897783 in 
the Ensembl database, extends from BTA22:52320385 to 
BTA22:57234998 (remapped to the ARS-UCD1.2 refer-
ence genome), and overlaps 166 transcripts, including 
LTF (BTA22:52952571–52986619). However, its impact, 
if any, on LTF expression, or on Lf concentration in milk, 
is unknown.

ChIP‑seq and ATAC‑seq
Due to the importance of chromatin state for regulating 
gene expression, we anticipated that hQTL and caQTL 
might be evident at the LTF locus, and that a subset of 
these would share genetic signals with the LTF cis-eQTL 
and Lf pQTL. As expected, several peaks exhibited such 
QTL, with Me1-196 and ATAC-93 giving the strong-
est correlations with the eQTL. The histone methylation 
peak Me1-196 mapped to coding exons 3–6, while the 
ATAC-seq peak mapped to a region adjacent to an alter-
native TSS for the LTF gene, and also overlapped with 
several candidate causal variants, in the core haplotype, 
for the regulation of Lf concentrations in milk. Interest-
ingly, in spite of the core haplotype variants mapping 
near the alternative TSS, little to no expression of this 
alternative transcript can be seen in the mammary RNA-
seq data set.

A second ATAC-seq peak, ATAC-94, also exhib-
ited a caQTL that showed strong positive correlations 
with the LTF eQTL, and overlapped with the canoni-
cal LTF TSS, as well as with a predicted TATA box 
upstream [43]. Overlapping the same locus, the histone 
trimethylation peak Me3-391, which spans the win-
dow BTA22:52951823–52956227, gave an hQTL with a 
lower but still significant correlation (Pearson ρ = 0.759 
for allele effects) with the eQTL. This broader peak also 
covered predicted binding sites for the TFs STAT3 and 
NF-κ B [43], in addition to the TATA box and canonical 
TSS. These TFs are involved in the regulation of mam-
mary gland involution and the response to infection; 
both of these processes induce increased concentrations 
of Lf in milk.

Transcription factors
We report three variants mapping to an ATAC-seq peak 
that are strongly associated with Lf phenotypes and sit 
within predicted TFBSs. In particular, the rs110000337 
variant sits within predicted binding sites for several 
TFs with known effects on lactation and mammary 
gland development. Several of the STAT-domain TFs 
are important regulators of milk production and mam-
mary gland status [52], and rs110000337 is predicted to 
alter binding sites for STAT5A, STAT5B, and STAT1. 

STAT5A and STAT5B fall within signalling pathways 
for at least two major galactopoietic hormones, prolac-
tin and growth hormone [53], and have been shown to 
be involved in regulating the synthesis of both milk fat 
[54] and milk proteins such as αS1-casein [55]. STAT1 
shows different regulatory activities, but is important for 
the response to growth hormone during mammary gland 
growth and development [56], as well as for the response 
to bacteria during mastitis [57]: this latter function is 
particularly relevant to Lf as the protein has antibacterial 
properties. In addition to these three STAT-domain TFs, 
rs110000337 is predicted to alter a binding site for SOX5, 
a member of the SRY-related HMG-box family of TFs. 
SOX5 has several developmental functions, including 
cartilage formation [58] and influencing the migration 
of oligodendrocytes in the spinal cord [59], and SOX5 is 
also active in the terminal end bud of developing mam-
mary glands [60], alongside the related TF SOX9. A sec-
ond variant, rs132785282, was predicted to sit within the 
binding site for the nuclear hormone receptor NR2F1, 
also known as COUP-TF1. This acts as a co-receptor 
for the hormone oestradiol in mammary cells [61], and 
inducing its expression in a mammary cell line caused an 
increase in cell proliferation [62].

Previous studies have examined the sequence imme-
diately upstream of the LTF gene to predict TFBSs [43, 
63]. In our work, we identified a putative binding site 
for STAT5, as well as one for STAT3. STAT3 is a media-
tor of apoptosis and is upregulated at the time of mam-
mary gland involution [60, 64] when Lf expression is 
also higher. None of the core haplotype variants high-
lighted in the current study fell within these binding 
sites. However, one core variant (rs134161490 at posi-
tion BTA22:52949403) did map within a previously pre-
dicted binding site for AP-1 [43]. Like STAT3, the AP-1 
family of TFs is induced in the mammary gland dur-
ing involution [65]. Beyond the core haplotype, variant 
rs133094565 (BTA22:52950505) also fell within a pre-
dicted AP-1 binding site [43], and was moderately signifi-
cant for associations with the LogPeak ( p = 5.51× 10−7 ) 
and LogLate ( p = 6.56× 10−8 ) phenotypes. Another 
important family of TFs is the nuclear factor NF-κ B fam-
ily, which plays a major regulatory role in several aspects 
of immune function, and in upregulating the expression 
of STAT1 [66]. Two variants outside the core haplotype 
were found to map within predicted binding sites for the 
TF c-Rel [43], a member of the NF-κ B family. The first 
variant, rs381967837 (BTA22:52950613), gave p-val-
ues of 4.19× 10−13 and 5.43× 10−17 for LogPeak and 
LogLate, respectively. The second variant, rs135723142 
(BTA22:52949971), gave less significant p-values of 
1.34 × 10−6 and 6.56× 10−10 for LogPeak and LogLate, 
respectively. A final significant variant, rs137735372 
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(BTA22:52951180), fell within a predicted GC  Box 
element, and exhibited p-values of 4.67× 10−13 and 
2.15× 10−14 for the LogPeak and LogLate phenotypes, 
respectively.

Conclusions
The protein lactoferrin (Lf ) is highly valuable for its iron-
binding and antimicrobial properties. Using Lf protein 
concentrations in milk, we have identified a conspicu-
ously large QTL, showing at least a doubling of secreted 
lactoferrin between opposing homozygous genotypes. 
To help elucidate the underlying genetic cause of this 
QTL, we have identified overlapping, correlated QTL for 
a range of additional omics data sets, comprising gene 
expression, histone modifications for several marks, and 
chromatin accessibility. Together, these analyses high-
light a set of 115 variants (labelled herein the core hap-
lotype) that are in the top 5% for all four of the protein, 
gene expression, and chromatin QTL. Among the core 
haplotype variants, several mapped within an open 
chromatin region (ATAC-93), and of these, three over-
lapped predicted TFBSs: rs109790251, rs110000337, 
and rs132785282. Of these three, rs110000337 appears 
the best overall candidate causative variant for the Lf 
QTL, on the basis that it interferes with predicted bind-
ing sites for the TFs STAT1, STAT5A, and STAT5B, all of 
which have well-described impacts on lactation pheno-
types. Future experiments could test candidate variants 
for causality using techniques such as massively-parallel 
reporter assays (MPRA [67]) or hybridisation chain reac-
tion fluorescence in situ hybridisation coupled with flow 
cytometry (HCR-FlowFISH [68]). Overall, these results 
present a genetic approach to identify high Lf-producing 
animals, which, when combined with specific manage-
ment techniques, could be used to select animals with 
substantial increases in Lf production.
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