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Summary - Position and variance contribution of a single QTL together with additive
polygenic and residual variance components were estimated using a residual maximum
likelihood method and a derivative-free algorithm. The variance-covariance matrix of
QTL effects and its inverse were computed conditional on incomplete information from
multiple-linked markers. Simulation was employed to investigate the accuracy of param-
eter estimates and likelihood ratio tests. The design was a granddaughter design with
2 000 sons, 20 sires of sons and 9 ancestors of sires. Designs with 1 000 and 600 sons were
also investigated. Data were simulated under three different genetic models for the QTL, a
biallelic model, a multiallelic model with ten alleles at equal frequencies, and a model with
normally and independently distributed QTL allelic effects for base individuals. The trait
analyzed was daughter yield deviation or the daughter average adjusted for environmental
effects and merits of mates of the sons. Genotypes for five markers situated on the same
chromosome were generated for all sons and their ancestors. Data were analyzed with and
without relationships among sires. Parameters were estimated with good accuracy under
all three simulation models. The REML method was fairly robust to the number of alleles
at the QTL for the designs studied.

quantitative trait loci / residual maximum likelihood / mapping / simulation /
granddaughter design

Résumé - La cartographie de locus de caractère quantitatif dans des populations en
ségrégation à l’aide du maximum de vraisemblance résiduelle. II. Étude de simulation.
La position et la contribution à la variance d’un locus de caractère quantitatif (QTL) ont
été estimées avec les variances polygéniques additives et résiduelles par une méthode de
maximum de vraisemblance résiduelle et un algorithme sans dérivation. La matrice de
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variance-covariance des effets de QTL et son inverse ont été calculées conditionnellement
à l’information incomplète relative à des ensembles de marqueurs liés. Une simulation a
été réalisée pour déterminer la précision des paramètres estimés et les tests de rapport de
vraisemblance. Le plan d’expérience était un schéma petite-fille, avec 2 000 fils, 20 pères
et 9 ancêtres de pères. Des schémas avec 1 000 et 600 fils ont également été étudiés.
Les données ont été simulées sous trois modèles génétiques différents pour le QTL, un
modèle biallélique, un modèle à 10 allèles d’égale fréquence, et un modèle avec des effets
alléliques distribués normalement et d’une manière indépendante chez les individus de
base. Le caractère analysé était la production des petites-filles en écart à la moyenne, ou
leur moyenne ajustée pour les effets de milieu et les valeurs génétiques des conjointes des
fils. Les génotypes pour cinq marqueurs situés sur un même chromosome ont été générés
pour tous les fils et leurs ancêtres, et les données ont été analysées avec ou sans relation
de parenté entre les pères. Les paramètres étaient estimés avec une bonne précision dans
les trois modèles simulés. La méthode était d’une robustesse satisfaisante relativement au
nombre d’allèles dans les schémas étudiés.

locus de caractère quantitatif / maximum de vraisemblance résiduelle / cartogra-
phie / simulation / schéma petite-fille

INTRODUCTION

In a companion paper (Grignola et al, 1996), a residual maximum likelihood
(REML) method was derived for estimating position and variance contribution of
a single QTL together with additive polygenic and residual variance components.
The REML analysis was implemented with a derivative-free algorithm. The method
overcomes the shortcomings of the traditional methods of linear regression (eg,
Haley et al, 1994; Zeng, 1994) and maximum likelihood (ML) interval mapping (eg,
Weller, 1986; Lander and Botstein, 1989; Knott and Haley, 1992). ML and regression
methods cannot fully account for the more complex data structures of outcross
populations, eg, data on several families with relationships across families, unknown
linkage phases in parents, unknown number of QTL alleles in the population, and
varying amounts of data information on different QTLs or in different families.

The REML method is based on a mixed linear model including random polygenic
effects and random QTL effects. Polygenic effects represent the sum of the additive
effects at all loci not linked to the markers. The QTL allelic effects are assumed
to have a prior normal distribution with variance-covariance matrix conditional on
information from multiple linked markers. Because the true nature of the QTLs is
unknown, ie, the number of alleles at a QTL in the population studied is unknown,
the robustness of the REML analysis to the number of alleles at the QTL must be
evaluated.

One of the main experimental designs for QTL mapping in livestock is the
half-sib design, used in cattle in the form of daughter or granddaughter designs
(Weller, 1990). In this paper, we evaluate the accuracy of the REML analysis in
QTL mapping using granddaughter designs. The simulated designs resemble actual
designs for the US Holstein population. Data are simulated under several genetic
models differing in the number of QTL alleles. The analysis is carried out with and
without consideration of relationships among sires. Here, we only present simulation
results. The analysis is described in detail in the companion paper (Grignola et al,
1996).



SIMULATION

Design

The most frequently used design for mapping QTL in dairy cattle is the granddaugh-
ter design (GDD), where marker genotypes are collected on sons and phenotypes
on daughters of the sons. A GDD was simulated with a pedigree structure resem-
bling the real GDD of the US public gene mapping project for dairy cattle based
on the Dairy Bull DNA Repository (Da et al, 1994). The simulated GDD consisted
of 2 000 sons, 20 sires, and 9 ancestors of the sires (fig 1), and is identical to the
design used in the Bayesian linkage analyses of Thaller and Hoeschele (1996a,b)
and Uimari et al (1996a). While this design had 100 sons per sire, designs with only
50 or 30 sons per sire were also simulated.

The phenotype simulated was daughter yield deviation (DYD) of sons (Van-
Raden and Wiggans, 1991). DYD is an average of the phenotypes of the daughters
adjusted for systematic environmental effects and genetic values of the daughter’s
dams. Total variance of DYD equals Var(DYD) = 0.250&dquo;;/ R and can be factored
into

where R is reliability or squared accuracy of the son’s estimated additive genetic
effect or breeding value, and 0&dquo;; is the additive genetic variance. In this factorization,
the first component is the variance among the sons’ transmitting abilities or half
of their additive genetic values, and the second term is ’residual variance’ or the
variance of the average dam and Mendelian genetic effect of the daughters and the
average environmental effect. Variance of DYD can be rewritten as

where w = (1 - R)/R and 0&dquo;; = 0.25Qa. Therefore, when analyzing DYD with the
weight w, DYD has an expected heritability of 0.5, because the expected value of
the estimate of 0&dquo;; is 0.25a2 a. Hence, there is the option of treating heritability as
known in the REML analysis when phenotypic data are DYDs.

Marker and QTL genotypes were simulated according to Hardy-Weinberg fre-
quencies and the map positions of all loci. One linkage group was considered which
consisted of five marker loci and one QTL. Each marker locus had five alleles at



equal frequencies, with the exception of one design where each marker had only
three alleles at equal frequencies. The markers were spaced 20 cM apart and, for
the results presented here, the QTL was located in interval 3 at 5 cM from the left
marker (other QTL positions were simulated to verify that the analysis was working
properly).

Polygenic and QTL effects were simulated according to the pedigree in figure 1.
Data were analyzed (i) using full pedigree information and (ii) assuming that the
20 sires in figure 1 were unrelated, as is common practice. The QTL contribution
to the DYDs of sons was generated by sampling individual QTL allelic effects of
daughters under each of the genetic models as described below. This sampling of
QTL effects assures that DYD of a heterozygous son or of a son with substantial
difference in the additive effect of its two QTL alleles has larger variance among
daughters due to the QTL than a homozygous son or a son with similar QTL allelic
effects.

Genetic models

Three different genetic models were used to simulate data. Common to all models
were the parameters narrow sense heritability of individual phenotypes h2 = 0.3,
phenotypic SDap = 100, and the order of and recombination rates among all loci.
Under all three models, phenotypes were simulated as

where ni was the number of daughters of son i, g was the sum of the v effects
in daughter j of son i, u was a normally distributed polygenic effect, e was a

normally distributed residual, polygenic variance (or2) was equal to the difference
between additive genetic variance (oa2) and the variance explained by the QTL
(20,2) , and or,2, was environmental variance. Number of daughters per son was set
to 50, corresponding to a reliability (VanRaden and Wiggans, 1991) of near 0.8.
The ratio of the QTL allelic variance (ov2) to the additive genetic variance (0,2) is
denoted by v2 below.

Model 1. Normal-effects model

For each individual with one or both parents unknown, one or both QTL effects,
respectively, were drawn from N(O, a v 2) . For the pedigree in figure 1, there were 32
distinct base alleles, and the QTL was treated as a locus with 32 distinct alleles in
passing on alleles to descendants. The parameter UV2 was set to 0.250&dquo;! or 0.06250&dquo;!,
ie, the simulated QTL accounted for 50% (2v2 = 0.5) or 12.5% (2v2 = 0.125) of
the total additive genetic variance, respectively. In an additional simulation, v2 was

set to zero to obtain the empirical distribution of the test statistic under the null
hypothesis.

Model 2. Multiallelic model

The QTL had ten alleles with equal frequencies. For the biallelic QTL with 2v2 = 0.5
(see below), the difference among homozygotes was 2a = 20’a. For the multiallelic



QTL, means of the ten homozygous genotypes ranged from -ga to Qa at equal
intervals. Means of heterozygotes were calculated assuming additive gene action.
Given these means (!,), additive effects of alleles were determined

as where pi = p2 = 
... 

= Pio = p = 0.1. The variance at the QTL was

which yielded a value of 2v2 = 0.204.

Model 3. Biallelic model

The QTL was biallelic with allele frequency of 0.5. The variance at the QTL was

where for p = 0.5 and 2v2 = 0.5 or 2V2 = 0.125, QTL substitution effect a was
determined and used to compute the additive effects of the two QTL alleles as -pa
and (1 - p)a.

RESULTS

The REML analysis for single QTL mapping using all markers on a chromosome
is decribed in detail in the companion paper (Grignola et al, 1996). Analyses were
performed with and without considering relationships among sires and with the
marker linkage phases of sires and ancestors known or unknown. For the designs
considered here, the most probable (more than 90%) linkage phase of the sires
was always the true phase, but phases probabilities calculated for the ancestors
indicated more uncertainty about their true phases. When phases were treated as
unknown, the analysis employed equation (11! of Grignola et al (1996) to calculate
the inverse of the variance-covariance matrix of the QTL effects of ancestors and
sires. Contributions from sons were calculated assuming that the most likely sires
phases equalled the true phases.

Analysis of a single data set took around 8 mins of computing time on an
IBM SP2 system with RS6000 390 and 590 nodes. In a preliminary investigation,
the REML analysis, using a derivative-free Simplex algorithm was started from
very different initial values for the parameters to verify convergence to the same
estimates. As an example, a particular data set simulated under the biallelic QTL
model (2v2 = 0.5) was analyzed using the two starting value sets [0.9, 0.45, 0.6,
200] and [0.1, 0.05, 0.4, 1500] for [h 2, V2, dQ, 0&dquo;;] with the parameters defined in
table I. Parameter estimates and likelihood for the first starting value set were
0.6380, 0.2790, 0.4434, 542.6, and - 4 331.3. Corresponding figures for the second
starting value set were 0.6380, 0.2780, 0.4440, 541.6, and - 4 331.3.





Parameter estimates and likelihood ratio statistics are shown in tables II-VI.
All results are based on 50 replicates. In table II, results for the normal-effects
QTL model with 2v2 = 0.5 are presented. Several different analyses, described in
table II, were conducted. First, sires were simulated as unrelated and analyzed
without relationships. Then, relationships among sires were simulated according to
figure 1. In analyses of these data, sires were treated as unrelated, treated as related
with known marker linkage phases (ie, the true phases were used for all sires and
ancestors), treated as related with the most likely linkage phases used in place of
the true phases, or treated as related with linkage phases considered as unknown
(by using equation [11] in Grignola et al, 1996).

Accuracy of parameter estimates was slightly higher when sires were simulated
and analyzed as being unrelated (analysis I), compared to the case where sires were
simulated and analyzed as related (analyses III-V). When sires were simulated
related and analyzed unrelated, the estimate of heritability was slightly lower and
the likelihood ratio statistic was lower than the corresponding values obtained
with sires treated as related (analyses II and IV). When sires were analyzed using
relationships, treating the most likely marker linkage phases of sires and ancestors
as the true phases produced almost identical parameter estimates and likelihood



ratio statistics as considering linkage phases as unknown (analyses III-V). Only
small differences between analyses with known, most likely, or unknown linkage
phases are to be expected for a granddaughter design with marker information on
100 sons per sire.

A further analysis (analysis VI in table II) was conducted on the same GDD
except that markers had three alleles at equal frequencies rather than the five alleles
simulated for all other design variations. Parameter estimates were not noticeably
affected by the decline in marker polymorphism, but the average likelihood ratio
statistic was reduced.

In the last analysis of table II (VII), heritability was fixed at 0.5. Accuracy of
estimates of the QTL parameters and of residual variance was improved but the
value of the likelihood ratio statistic was almost unchanged.

Table III contains results for data sets generated with 2v2 = 0.125 and with
relationships among sires, and analyzed first by ignoring relationships among
sires and secondly by accounting for relationships with linkage phases treated as
unknown (equation !11! in Grignola et al, 1996). Analyses I and II in table III were
conducted for the GDD with 100 sons per sire. The estimate of heritability and
the likelihood ratio statistic were again lower when relationships among sires were
ignored. Expectedly, position of this smaller QTL was less accurately estimated, and



the likelihood ratios were considerably lower than those in table II. In the analyses
of the granddaughter designs with only 50 (analyses III and IV) or 30 (analyses
V and VI) sons, heritability estimates were also lower when sires were treated
as unrelated, and QTL variance contribution was overestimated. The differences



between analyses with and without relationships in the likelihood ratio statistics
were rather small for the designs with 30 and 50 sons, where the likelihood ratio
statistics were near the threshold values of 5.99 (0.05 type-I error level) and 9.21
(0.01 type-I error level) when assuming a chi-square distribution with two degrees
of freedom.

Figures 3 and 4 depict residual likelihood profiles for single replicates generated
with 2v 2 = 0.5 and 2V2 = 0.125, respectively, and obtained from analyses with
relationships among sires and with linkage phases of sires and ancestors treated as
unknown. Both figures display the marker positions, the most likely QTL location,
and a confidence interval (CI) for the QTL position calculated by the LOD drop-
off method of Lander and Botstein (1989). The limits of this CI were found by
determining the map position at either side of the most likely position, where the
LOD score had fallen by one unit (this calculation required converting natural
logarithms to base 10 logarithms). As pointed out earlier, information from all
markers was utilized, leading to smoother profiles (Knott and Haley, 1992; Georges
et al, 1995) than the original interval mapping method of Lander and Botstein
(1989).

Results for the multiallelic model (2v2 = 0.204) are presented in table IV. Again,
data sets were analyzed by first treating sires as unrelated and then by utilizing
relationships among sires with linkage phases of sires and ancestors treated as
unknown. Parameters were estimated quite accurately, and likelihood ratios were
significant and similar to those for the normal-effects QTL model with 2v! = 0.125.

Results for the biallelic models with half of the homozygote difference equal
to one additive genetic SD (2v2 = 0.5) or to one half of it (2v2 = 0.125) are
presented in tables V and VI, respectively. For both tables, sires were related



in the simulation, and data sets were analyzed by ignoring relationships and by
accounting for relationships with linkage phases unknown (equation !11! in Grignola
et al, 1996). Ignoring relationships among sires again decreased the estimate of
heritability but increased the estimate of v2. The least accurate estimate of QTL
position was obtained under the biallelic model with 2v2 = 0.125. Overall, and at
least when relationships among sires were considered in the analyses, parameter
estimates were not noticeably inferior to those obtained under the correponding
normal-effects QTL models (table II), and likelihood ratios for the biallelic and
normal-effects models were similar.

CONCLUSIONS

REML analysis based on a mixed linear model with random QTL allelic effects,
having a prior normal distribution, provided quite accurate estimates of QTL
location and of the variance components, in particular of the QTL variance
contribution. Data were generated under three different genetic models for the
QTL, the biallelic, the multiallelic (ten alleles) and the normal-effects (two effects
per founder drawn from independent and identical normal distributions) model.
While the normal-effects model is very similar to the analysis model, the biallelic
model with gene frequency p and substitution effect a deviates the most from the
model of analysis. In the biallelic model, 50% of the individuals are expected to be



homozygous for a gene frequency of p = 0.5, and variance among daughters of a
homozygous son is equal to

while variance among daughters of heterozygous sons is higher by 0.25a2. Therefore,
Thaller and Hoeschele (1996a,b) and Uimari et al (1996a) fitted two different
residual variances of DYD when performing Bayesian analysis of linkage of a biallelic
QTL.

Despite the discrepancies between the biallelic model and the model of analysis,
the REML analysis was quite robust to the number of alleles at the QTL, a result
which is in agreement with findings of Xu and Atchley (1995); ie, polymorphism
at the QTL did not strongly affect parameter estimates or hypothesis tests. This
finding confirms the usefulness of the REML analysis as an alternative method of
analysis which, although not nonparametric, requires fewer parametric assumptions
(number of QTL alleles and their frequencies) than maximum likelihood and
Bayesian analyses based on biallelic QTL models. Furthermore, REML is in general
known to be quite robust to deviations from normality.

The REML analysis can be considered as an approximation to the Bayesian
analysis of Hoeschele et al (1996) fitting a normal-effects QTL model. The Bayesian
analysis has the advantage of also being able to fit a biallelic model, but for the
designs considered here, it does not give more accurate parameter estimates than



the REML analysis and requires several hours of computing time. Although the
REML analysis fitting a single QTL requires only around 8 mi of CPU time, this
requirement still prohibits the calculation of genome-wide significance thresholds
for this method using data permutation (Churchill and Doerge, 1994), unless a
number of less stringent significance levels are chosen to obtain threshold values
and these are used to extrapolate to the desired significance threshold (Uimari
et al, 1996b). Only the least-squares method allows direct computation of genome-
wide significance thresholds from a large number of permutations (eg, 10 000 to
100000).

The REML analysis has been implemented in the Fortran program SMREML,
which is available from the authors upon request. The program is currently being
extended to fit two linked QTLs per chromosome, rather than using the approach
of Xu and Atchley (1995) fitting the variances associated with the next-to-flanking
markers to account for additional, linked QTLs. Their approach is only approximate
as effects associated with marker alleles identified within founders erode over

generations. Furthermore it requires many additional parameters when the marker
polymorphism is limited, causing the flanking and next-to-flanking markers to differ
among families. In the near future, the program will be extended to other designs
(eg, full-sibships within half sibships), where the current computation of the inverse
of the variance-covariance matrix becomes approximate due to uncertain linkage
phases in parents of final offspring, and other ways of computing this inverse exactly
(eg, Van Arendonk et al, 1994) will be implemented.
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