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Abstract

Background: Mate selection can be used as a framework to balance key technical, cost and logistical issues while
implementing a breeding program at a tactical level. The resulting mating lists accommodate optimal
contributions of parents to future generations, in conjunction with other factors such as progeny inbreeding,
connection between herds, use of reproductive technologies, management of the genetic distribution of
nominated traits, and management of allele/genotype frequencies for nominated QTL/markers.

Methods: This paper describes a mate selection algorithm that is widely used and presents an extension that
makes it possible to apply constraints on certain matings, as dictated through a group mating permission matrix.

Results: This full algorithm leads to simpler applications, and to computing speed for the scenario tested, which is
several hundred times faster than the previous strategy of penalising solutions that break constraints.

Conclusions: The much higher speed of the method presented here extends the use of mate selection and
enables implementation in relatively large programs across breeding units.

Background
Mate selection is the process of choosing mating pairs
or groups i.e. simultaneous selection and mate allocation
of animals entering a breeding program [1]. This can be
carried out before mating, to make decisions for the
active mating group, but it can also be carried out at
other stages. Mate selection can cover almost all of the
decisions to be made in a selection program, including
culling among juveniles, decisions on semen and embryo
collection or purchase, migration of breeding stock,
active matings and backup matings. It can also be used
to set up investment matings, e.g. assortative matings to
invest in increased genetic variation, stock migration to
invest in the benefits of better connection, progeny test-
ing to invest in future information, and generation of
first-cross females to invest in future maternal heterosis
[2-4]. Mate selection does not cover decisions on which
animals to measure for which traits, including genotyp-
ing decisions, but it can cover most other decisions.
Mate selection analysis results in a mating list, which

is used to make the decisions described above. The out-
come is driven by an objective function that should

include the full range of technical, logistical and cost
issues that prevail. This list of motivating issues can be
very long, with some examples being genetic gain,
genetic diversity, progeny inbreeding, use of reproduc-
tive technologies, targeting genotype frequencies for key
markers, managing trait distributions, keeping within a
budget and not breaking logistical constraints or con-
straints that reflect the attitudes of the breeder. Mate
selection analysis leads to the progressive use of scienti-
fic principles in a practical manner that accommodates
real constraints, along with practitioner experience and
attitudes.
This paper relates to the inclusion of logistical con-

straints in mate selection analysis, such as lack of ability
for a natural mating bull to cover more than a given
number of cows, or to operate on more than one farm.
In particular, this paper handles constraints related to
animal grouping, where matings are not permitted
between certain groups. This can be due to
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• Cases where “virtual matings” are necessary, for
example where immature juveniles are selected as
part of a multi-stage selection/culling process, and
the male group “juveniles” night only be permitted
‘mate’ with the female group “juveniles”.

Practical experience with mate selection implementa-
tions shows that proper attention to such constraints
can be critical. Mate selection solutions that break
important constraints are generally difficult to fix
“manually”. Thus, the practitioner must be satisfied with
the proposed solution.
The objective of this paper is to present a mate selec-

tion method that achieves such grouping constraints
directly, without involving solutions that break the con-
straints, and to compare its performance with an exist-
ing approach that is based on penalising illegal solutions
that arise during analysis. In order to present the new
method, a full description of the underlying mate selec-
tion algorithm is provided since, to date, it has not been
presented elsewhere, despite its relatively wide use.

Method
Whenever the consequences of a particular mating set
can be evaluated by simply summing the value of each
mating carried out, we can use linear programming in a
relatively simple manner to find the optimal mating set
[5]. However, for most animal breeding problems, the
value of a mating depends on which other matings are
made. For example, the decision to mate a particular
bull with a cow will be increasingly inhibited if the bull
is used for an increasing number of other cows, as this
will result in more inbreeding in the long term. Simi-
larly, the value of mating a bull with cows in two differ-
ent farms to increase genetic connection is decreased if
many other such matings already give a good connec-
tion. Alternatively, if the aim of a given mating program
is to generate bimodality of the genetic value for intra-
muscular fat, in order to target two different product
markets, the mating value will decrease if most other
matings have the same outcome. To handle such issues,
we need a more flexible method that evaluates the
impact of each complete mating set analysed.
The method to analyse mate selection used in this

paper is based on an evolutionary algorithm, which
loosely mimics a biological process evolving towards an
optimal solution. The terms “generation”, “genotype”,
“phenotype” and “fitness” will be used to help illustrate
this method, and these should not be confused with simi-
lar terms used for the animal breeding application itself.
A mate selection analysis, as used in this paper, has

three key components (Figure 1) that are used iteratively
over “generations” to derive the optimal solution:

1. A problem representation component that uses a
vector of numbers (analogous to a multilocus geno-
type) and translates these numbers to a representa-
tion of a solution (analogous to a phenotype), which
in this case is a mating list.
2. An objective function component that evaluates
each phenotype to calculate its fitness (analogous to
selective advantage).
3. An optimisation component that uses the fitness
value for each of the genotypes that it has produced
to help select, mutate and recombine existing geno-
types to provide new candidate genotypes.

A key advantage of this approach is that the optimi-
sation engine is highly disjointed from the problem
itself. It does not “know” or “understand” the problem,
it simply delivers candidate solutions, in a raw form,
and receives feedback on the value of each of these.
This means that the problem itself can become
increasingly complex, without the need to increase the
complexity of the optimisation machinery. Importantly,
the objective function can evaluate a whole mating set,
including the types of interactions between matings
described above.
Given this disjointed nature of the optimisation

engine, the current paper does not include a detailed
description of the optimisation engine that it uses to
generate results. It is based on Differential Evolution
(DE) [6], with adaptations described by [7].

Strategies to apply constraints
Two strategies can be used to constrain the solutions
(mating lists or “phenotypes”) [7]:

• Penalising: Broken constraints are diagnosed
within the objective function, and the resulting fit-
ness value is penalised. A hard penalty is one that

Figure 1 The structure of an evolutionary algorithm [7].
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generally renders the solution uncompetitive for use
by the optimisation engine to help make new candi-
date solutions. A soft penalty is less stringent, with
penalties chosen such that solutions that break con-
straints are exploited earlier in the analysis, but
become uncompetitive as an optimal solution is
approached.
• Fixing: This strategy requires a more detailed
treatment at the problem representation stage to
ensure that no candidate solution (or “phenotype”)
breaks the constraint(s).

Penalising is generally easy to carry out. It only
requires the diagnosis of constraint breakage for each
solution, and ideally an extent of breakage. The latter is
important whenever all initial solutions are illegal. In
this case, rewarding the solutions that are less illegal
with higher fitness values allows the method to move
forward and eventually leads to legal solutions. This can,
however, result in an analysis that effectively consists of
two stages; if the range of possible fitness values for
legal solutions is 0 to 1, then applying a 100 unit penalty
for each broken constraint will lead to legality, but with
little emphasis on the desired attributes of legal solu-
tions. Once fitness values become positive, there will be
progress towards a legal solution of high merit. How-
ever, during this second phase, a great deal of selection
pressure can be taken up in maintaining legality, with
typically most candidate solutions being of no value as
they break one or more constraints, resulting in high
computing times.

Mate selection without grouping
The mate selection driver described in [8] can be used
for simple scenarios that place no grouping constraints
on the pattern of mating (Table 1). It gives a good
example of translating “genotype” (the numbers under-
lined in Table 1) to “phenotype” (the tick marks, or
mating list).

Based on this mate selection driver: the underlined
numbers in Table 1 drive the three matings noted, and
these are the values to be optimised. Nm (second col-
umn for males, second row for females) is the number
of matings for which each animal should be used, and
this in turn drives selection, including the extent to
which each animal is used. An animal is culled if this is
set to zero. The ranking criterion is simply a real num-
ber assigned by the optimisation algorithm, one for each
mating, and these numbers are ranked to give the col-
umn Rank. This is not a ranking on merit, but simply
an order of presentation to drive the mate allocation
part: The first ranked male mating is the single mating
of male 3 and it is thus allocated to the first available
female mating (the one nearest to the left) - the only
mating of female 1. The second ranked male mating is
the first mating of male 1 and it is thus allocated to the
second available female mating (the one second nearest
to the left) - the only mating of female 3. The third
ranked male mating is the second mating of male 1 and
it is thus allocated to the third available female mating -
the only mating of female 4.
Notice that the mate allocation part of this simple

algorithm breaks no constraints i.e. the row and column
sums of matings match the numbers of matings (Nm) to
be generated for each candidate. The optimisation
engine operates with the underlined numbers “in ignor-
ance” of this algorithm, except through eventual effects
on fitness, just as the biological methods to select,
mutate and recombine DNA operate “in ignorance” of
the phenotypic outcome, except through eventual effects
on fitness.
Constraints on number of matings per candidate
To invoke the mate selection driver of [8], we need to
constrain Nm to declared limits for each candidate
while achieving the targeted total number of matings
(Nt). These constraints are presented here to help illus-
trate the application of the grouping algorithm later on.
The one inevitable constraint is to have a non-negative
Nm for each candidate, and this is easily achieved by
using the “Fixing” strategy, constraining the raw solution
variables to be non-negative. The other constraints that
are usefully applied through the Fixing strategy are:

•Maxuse: The maximum value for Nm. For example,
Maxuse = 1 mating for natural mating females,
30 matings for natural mating bulls, 1,000 matings
for artificial insemination bulls, or the number of
semen doses left for a deceased bull.
•Minuse: The minimum value for Nm given that the
individual will be used at least partly. For example, if
a bull is to be selected for natural mating, we might
specify a minimum female group size of Minuse =
15 for that bull, as mating groups of less than this

Table 1 A mate selection driver

Female
®

1 2 3 4...

Male
↓

Nm Ranking
criterion

Rank 1 0 1 1

1 2 5.32 2 ✔ ✔

2.16 3

2 0 - -

3... 1 7.64 1 ✔

The components to be optimised for mate selection are underlined. A tick
denotes a mating to be made. Nm is the number of matings to be made for
each individual. The Ranking criterion is used to find Rank, which defines the
order of allocation of male matings to female matings [8].
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size may not acceptable to the breeder. In this case
Nm = 0 is permitted, as are Nm > or =15.
•AbsMinuse: The absolute minimum value for Nm.
This is generally zero, but may be set higher, for
example when a breeder has a given number of
semen doses available for a favoured bull, and insists
that these should all be used.

The raw variables for Nm for each candidate are non-
negative integers that are initially generated by the opti-
misation engine (Figure 1) but constrained to meet the
above three limits, first with setting to 0 or Minuse for
values between these, with a linearly greater probability
of moving to the closer constraint, followed by setting
to Maxuse or AbsMinuse for values that still violate one
of these two constraints.
These constraints are maintained during an iterative

process until ∑ Nm = Nt: while ∑ Nm is different from
Nt, a candidate is chosen at random, and has one mat-
ing added (if ∑ Nm <Nt) or subtracted (if ∑ Nm >Nt),
and this action is reversed when a constraint is violated.
A slight modification is made to reduce the probability
of allocating a mating to any male that has Nm = 0.
This speeds convergence, as an optimal solution often
has many males with Nm = 0.

Mate selection with grouping: the GroupFix algorithm
The full mate selection algorithm, with grouping con-
straints, is referred to as GroupFix, as it uses a fixing
strategy, rather than a penalising strategy, to ensure that
group mating permission constraints are observed. Extra
variables to be optimised are used to give relative
weightings that help determine the target number of
matings in each male by female group combination, and
this works in conjunction with a mate selection driver
to give solutions that are always legal.
This method should not be confused with the “Mate

selection by groups” method [9], which does not involve
grouping constraints. The motivation of the method in
[9] is simply to speed computation, using cluster analy-
sis to form multiple groups for each sex, then allocating
numbers of matings at the level of these groups, fol-
lowed by individual mate selection.
Weightings for target number of matings, W
Table 2 shows an example calculation of relative weight-
ings (W), used to set the target number of matings for
each group combination. For each female group, the
aim is to reach a set of relative weightings, one weight-
ing for each male group, that sum to one; these will be
used to help set the target number of matings within
each male group for the prevailing female group.
A permission matrix shows which group combinations

are permitted for mate allocations, with 1 for permission
and 0 for no permission. The action type for each male

× female group combination depends on the permission
matrix. For a given female group:

• There is no action (denoted by a period) wherever
permission = 0.
• If only one male group is permitted the action type
is 1 for that group and the final relative weighting is
1.
• Otherwise, the action type is “Opt”, denoting that
an optimal raw weighting value (R) has to be found
by the optimisation engine, for all permitted male
groups except the last male group.
• If the last male group is permitted, and one or
more other male groups are also permitted, its
action type is “Calc”, meaning that its relative
weighting is to be calculated as shown below.

This means that the number of raw weightings (R) to
be optimised to manage grouping is between zero, when
only one male group is permitted for each female group,
and (number of female groups) × (number of male
groups -1), or NFG(NMG - 1).

Table 2 Derivation of relative weightings (W) from raw
weightings (R), the mating permission matrix and action
types

Male
Group

FG1 FG2 Female Group
FG3

FG4 FG5

Permission Matrix

MG1 1 1 1 0 0

MG2 0 1 1 1 0

MG3 0 1 1 1 1

MG4 0 0 1 1 1

Action type

MG1 1 Opt Opt . .

MG2 . Opt Opt Opt .

MG3 . Opt Opt Opt Opt

MG4 . . Calc Calc Calc

Raw weights (R)

MG1 1 0 0.3 . .

MG2 . 0.2 0.6 0.2 .

MG3 . 0.1 0.6 0.3 0.8

MG4 . . . . .

Relative weights (W)

MG1 1 0 0.15 . .

MG2 . 0.667 0.3 0.16 .

MG3 . 0.333 0.3 0.24 0.8

MG4 . . 0.25 0.6 0.2

A’1’ in the permission matrix denotes that matings can be made between the
groups concerned; raw weights R are set by the optimization algorithm;
relative weights W are used to help set the number of target matings per
group combination; action types indicates whether the weights for that
mating combination are set (1), optimized by the optimization algorithm (Opt)
or calculated from weights for the other mating combinations (Calc).
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Table 2 shows an example set of values from the opti-
misation engine, which are used as raw weightings (R).
Each of these has been constrained to between 0 and 1
by truncation. Relative weightings (W) for the i, jth male,
female group are computed from the raw weightings as:
for i < NMG and when the last male group is not per-

mitted: Wi, j = Ri,j/∑R., j;
for i < NMG and when the last male group is per-

mitted: W R
k R
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where kj is the number of positive raw weightings,
plus 1 if the last male group is permitted. The last male
group is treated differently because it has no raw
weightings, and its relative weighting is contingent on
the raw weightings for the other male groups.
With reference to Table 2, this gives the following

sensible outcomes:

• All columns of W sum to one.
• When the mean value of all R > 0 is 0.5, W for the
last male group, if permitted, is the average of W.
• When the mean value of all R > 0 is < 0.5, W for
the last male group is above the average of W, and
vice versa.
• When all R = 0, W for the last male group = 1.
• When one or more R = 1 and the rest = 0, W for
the last male group, if permitted, = 0.

These results give an efficient coverage of relative
weightings to be used for target number of matings per
group combination, with a minimal number of raw
weightings to be optimised.
The next set of steps will define the target number of

matings to be carried out within each male by female
group combination for the current solution. These are
driven by Nm values for individual candidates, as in
Table 1, plus a raw weighting (R) for each group ×
group combination that is marked “Opt” in Table 2.
This will be followed by individual mate allocations
using the ranking criterion values, one per male candi-
date, as in Table 1, to satisfy these target numbers for
the current solution. Notice that Nm values, ranking cri-
terion values and R values are supplied for each solution
by the optimisation engine (Figure 1).
Target number of matings per group × group combination
Constraints on the number of matings per female
group For each female group, the target number of mat-
ings for the whole group is the product of the number

of candidates and the selection proportion declared by
the user for that group. [It is also possible to optimize
the selection proportions by adding them to the list of
parameters to be optimised, effectively giving an opti-
mised multistage selection scheme]. Constraining the
total number of matings for each female group to match
this target follows the iterative process of adding/sub-
tracting matings from individual candidates, as described
above for the no-grouping case.
Initial target number of matings per group × group
combination The target number of matings for each
group combination is then initiated. For each female
group j, the target number of matings with each male
group i is set using the weightings W described above,
giving Nmg as the number of matings for each group ×
group combination:

Nmg W Nti j i j j, ,=

with additional steps to ensure integer outcomes,
using W to set the probabilities of each group being per-
turbed to give equality.
Constraints on the number of matings per male group
The Nmg values can break constraints on male use, for
example where ∑ Nmi,. exceeds the sum of maximum
use of the males from group i. This is handled by itera-
tively reallocating target matings from the male group
that breaks a constraint to another randomly chosen
male group that can accept the change required from it,
with this reallocation taking place within a female group
that can accept the change at both the source and desti-
nation male groups.
Given Nmg values that do not break overall male use

constraints, the total number of matings for each male
group is then constrained to match this target following
the iterative process of adding/subtracting matings from
individual candidates, as described above for the no-
grouping case and for females in the grouping case.
At this stage, we have the number of matings to be

allocated to each candidate of each sex, together with a
target number of matings for each group combination.
The next step is to make the individual mate allocations.
Individual mate allocations
The optimisation engine provides a ranking criterion for
each male mating, as in Table 1. Typically each male
has zero or multiple matings to make, and there is a
ranking for each mating, rather than for each male, such
that matings for a given male are generally dispersed
throughout the ranked list.
For the current solution to be evaluated for the objec-

tive function, male matings are accessed sequentially
according to their position in this ranked list. Each male
mating is allocated to the next available female mating
(from left to right on row 2 in Table 1) that is both
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unallocated and legal according to group permissions.
For this purpose, female matings can be listed in an
arbitrary order that is fixed for the duration of the ana-
lysis. However, sorting the female list on attributes of
importance in the objective function tends to speed up
convergence, as this provides a smoother response sur-
face for the optimisation engine to climb. Moreover,
optimising the order of accessing female matings
increases the flexibility of covering the response surface,
making valleys to be crossed less deep. When this pro-
cess is completed, the number of individual mate alloca-
tions within each group combination will match the
target set for each group combination.
This method works for oocyte harvesting with in vitro

fertilisation (IVF), or indeed in fish species where IVF is
easily managed, since the multiple matings of a single
female can each be covered by a different male. How-
ever, a slightly different treatment is required for cases
involving in vivo fertilisation following superovulation,
as in classical multiple ovulation and embryo transfer
(MOET) practices. The male assigned to the first mating
to be allocated to a MOET female has to be used for all
her remaining matings.

Testing method
The GroupFix algorithm was tested by comparing its
speed and pattern of convergence with a penalising
strategy. Various penalties were applied in the latter for
solutions that break one or more grouping constraints.
An example dataset was generated using PopSim, avail-

able at http://www-personal.une.edu.au/~bkinghor/
genup.htm. Three separate breeding farms each mated
25 males to 100 females each year with: the first progeny
born when parents were 3 years old; culling for age after
5 (8) mating cycles for males (females); selection on an
economic index using BLUP EBV; random adult annual
survival of 95%; and a 80% calving rate for females. These
breeding programs were set up with a complete age
structure and then run for ten mating cycles.
The problem tackled here was to set up the next mat-

ing round, across farms. All live males and females of
appropriate age were considered as candidates for selec-
tion. There were 443 male candidates and 596 female
candidates with a requirement to make 341 matings
across farms and groups, of which 287 matings were in
the active mating group combinations that do not
involve juveniles or embryos (see Table 3).
Table 3 shows the group mating permission matrix

that was used. This matrix is formed by the practitioner
and this can involve some subjectivity, for example in
the rules that define which bulls are used for artificial
insemination. This example involves non-active ‘virtual’
matings, which are produced by the analysis but not
intended to be implemented in reality.

Virtual matings involving existing juveniles and pre-
dicted embryos (as predicted from the previous mating
round) can be useful to include in the analysis, for
example to help inhibit the high use of a bull in the cur-
rent mating round which has already contributed greatly
to the next generation, as evidenced by the number of
juvenile and embryo progeny.
The penalising strategy was invoked by reducing the

fitness of a solution by a weighting factor times the
number of matings that take place within group combi-
nations that contain a zero in the group mating permis-
sion matrix. Weightings used were 100, which in this
case effectively make the rest of the objective function
irrelevant for illegal solutions, and lower weightings
were used in different treatments to give softer con-
straints, viz. 0.1, 0.01, 0.005 and 0.001.
Objective function
The objective function used for the test example was a
function of the mean EBV index of the predicted pro-
geny, the coancestry among the parents used in the
mating set, weighted by their use, and the mean
inbreeding of the predicted progeny. A general descrip-
tion is given here, with details in Additional file 1,
appendix.
The relative emphasis on the mean index versus coan-

cestry was set in the light of their response surface (Fig-
ure 2). The curved frontier in this figure shows the
range of possible outcomes of optimal contributions
(number of matings allocated to each candidate), with
each point reflecting a different relative weighting on
mean progeny index versus parental coancestry [see
[10]]. However in this case, the frontier accommodates
the grouping constraints in Table 3, using the GroupFix
algorithm for all treatments, so that the same conditions
prevail for each treatment during its main run.
The software used to run the current tests can man-

age the balance between mean index and parental

Table 3 Group mating permission matrix for the test
dataset

Female group

Farm 1 Farm 2 Farm 3 Juvenile Embryo

Male group Farm 1 1 0 0 1 0

Farm 2 0 1 0 1 0

Farm 3 0 0 1 1 0

Juvenile 1 1 1 1 1

Embryo 0 0 0 1 1

AI 1 1 1 1 0

Farm denotes the farm of birth, embryos are animals already conceived in the
current year, juveniles are animals conceived in the previous year; bulls that
can be used for artificial insemination (AI) are defined as having already been
used for one or more mating cycles; a ‘1’ denotes that matings can be made
between the groups concerned; in this case, no migration between farms is
permitted for natural mating purposes; matings involving embryos or
juveniles are virtual matings and not part of the active mating set.

Kinghorn Genetics Selection Evolution 2011, 43:4
http://www.gsejournal.org/content/43/1/4

Page 6 of 9

http://www-personal.une.edu.au/~bkinghor/genup.htm
http://www-personal.une.edu.au/~bkinghor/genup.htm


coancestry in several ways. Here we used a target of
25 degrees, where 0 degrees corresponds to the maxi-
mum progeny index response and 90 degrees to mini-
mum parental coancestry (see Figure 2). An optimal
solution has been reached at the point on the frontier
that corresponds to 25 degrees (Figure 2), with the trail-
ing path showing the progress of the DE algorithm
towards this point.
When other component criteria are included in the

objective function, such as progeny inbreeding, the fron-
tier point is generally not reached. However, the soft-
ware used manages the outcome such that the optimal
solution will lie close to the target 25 degree line in
Figure 2. In this study, progeny inbreeding was given a
moderate negative weighting of -1, or a zero weighting,
as described below.

Results
Figure 3 shows fitness of the best solution by generation
of the DE algorithm for each strategy, with a weighting
of -1 for progeny inbreeding. The best solution in the
first generation of the evolutionary algorithm for the
Groupfix method gave values of 7.30, 0.0054 and 0.0076
for the mean progeny index, mean progeny inbreeding
and mean parental coancestry, with the latter figure
being low due to essential panmixia. In generation one
million of the Groupfix algorithm, these figures were
10.53, 0.0021 and 0.0485. The GroupFix strategy con-
verged essentially after about 100,000 generations, when

it had reached 99.5% of the fitness from generation one
million compared to the fitness from generation one
(itself the best of 50 randomly generated legal solutions).
This stage was reached in 3559 seconds on a 2.4 GHz
laptop computer. At this stage, the best penalising strat-
egy was 78.5% converged, which was reached by the
GroupFix strategy by generation 216. None of the pena-
lising strategies converged even close to the optimal
solution after one million generations of the DE algo-
rithm, with regular small improvements still being made
up to that stage. Of course the optimal solution and
maximal fitness are the same for all strategies, illustrat-
ing that the penalising strategies performed very badly
indeed. In fact, the best of these strategies at one million
generations (23,327 CPU seconds) had a lower fitness
than the GroupFix strategy had reached by generation
1057 (29 CPU seconds).
A lower penalty weighting allows some evolution

towards a useful solution simultaneously with the pro-
cess of developing legal solutions. This can be seen by
the higher fitness for lower weightings in earlier genera-
tions in Figure 3. In later generations, fitness is also
higher for lower weightings, except for the lowest
weighting strategy (weight = 0.005). This is likely
because the direction of evolution while illegal solutions
prevail is not fully appropriate to that under full legality,
and overall progress in fitness becomes impaired for this
strategy because of the long periods in which legality is
absent.
With a very small weighting of 0.001 on illegal solu-

tions, no legal solution features as the most-fit solution
in the one million generations that these analyses were
run for. It is essentially not possible to predict the best
weighting to use in a penalising strategy, such that some
testing would be required for each problem.
For this example, the negative weight on progeny

inbreeding is the only component in the objective func-
tion that impacts the mate allocation part of the mate
selection algorithm. Setting this weighting to zero ren-
ders the pattern of mate allocation inconsequential,
given that group legality is maintained. Under these cir-
cumstances, convergence is generally quicker; in this
case, the GroupFix strategy had reached 99.5% of the
optimal solution after 46,659 generations. At this stage,
the best penalising strategy was 70.7% from the optimal
solution, which was reached by the GroupFix strategy
by generation 81. The best penalising strategy at one
million generations (24,071 CPU seconds) had a lower
fitness than the GroupFix strategy had reached by gen-
eration 2325 (78 CPU seconds).

Discussion
Various mate selection algorithms have been described
in the literature, with differing levels of functionality.

Figure 2 An example frontier response surface involving
Progeny Index and Parental Coancestry. See text for details;
from the MateSel tool in Pedigree Viewer, available at
http://www-personal.une.edu.au/~bkinghor/pedigree.htm.
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Analysis based on linear programming [5] works when
the value of a mating is independent of which other
matings are done. However, this does not cover issues
such as parental coancestry or connection between
herds, where the whole portfolio of matings must be
evaluated. Simulated annealing [11] and evolutionary
algorithms [8,7,12] have been used to address this short-
coming, as well as a two-step approach of selection fol-
lowed by mate allocation [13]. However, none of these
methods allow inclusion of grouping constraints, as
described in this paper.
The GroupFix method generates candidate mate selec-

tion solutions that do not break declared grouping con-
straints and gives much improved flexibility and
robustness in mate selection operations compared to
other methods.
As noted by one referee, no general proof is offered

that the GroupFix algorithm accesses the full legal solu-
tion space. However, a test was carried out whereby a
legal solution was produced independently from the
GroupFix algorithm. This was treated as if it were an
optimal solution that was to be found by the GroupFix
algorithm, by using an objective function that compared
the current mate selection set to this “optimum” mate
selection set. The GroupFix algorithm was successful in
finding this solution.
The GroupFix algorithm has been used extensively

since 2007 in several operational breeding programs,
with the biggest runs involving several thousand

candidates for selection. It produces a dramatic increase
in speed of mate selection analyses for scenarios that
involve at least a moderate degree of grouping con-
straint. In this study, the alternative penalising strategies
were several hundred times slower, and in fact none of
these approached reasonable convergence for the sce-
narios tested.
The GroupFix method is important for application of

mate selection methods that integrate decision making
across issues in progressive breeding programs. It gives
a general framework for setting and managing the types
of grouping constraints that animal breeders would like
to impose. It also enables accommodation of overlap-
ping generations by including groups that constitute the
complete age structure and life cycle of animals, includ-
ing for example embryos and pregnant females, along
with candidates for the active mating group. This is an
alternative to other approaches for handling overlapping
generations [14,15].
Another prospect of the method is running mate

selection analyses simultaneously across multiple herds.
This gives opportunity to manage issues such as quaran-
tine barriers and transport costs, for example by redu-
cing the fitness of a solution by a weighting factor times
the total transport distance that the solution dictates for
live bulls. Policies on managing issues such as direction
of genetic change, genetic diversity, genetic variation for
specified traits, and gene marker profiles can be set or
influenced at a regional or breed level. For example, the

Figure 3 Fitness of the best solution by generation of the DE algorithm for different strategies. This figure censors results for those
strategies and generations in which the best solution breaks a constraint, and this is seen as gaps in the plot for each strategy; the right-hand
graph gives generation on a logarithmic scale to help differentiate the strategies; the strategies are GroupFix and the four penalising strategies
denoted by their penalty weighting, Pen, as labelled on the right-hand graph. Strategies Pen = 0.01 and Pen = 0.005 cross over at about
generation 150,000.
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association for an endangered breed might set a policy
recommendation to set the target degrees in Figure 2 at
35 degrees, to give more emphasis to genetic diversity.
For complex runs involving many issues, it is useful to

adjust weightings and other controlling factors in a
dynamic fashion. An example would be to change the
target from 25 degrees to 35 degrees in Figure 2 during
the analysis, and observe the impact on all component
outcomes. This gives opportunity to explore the overall
response surface and discover what outcomes are possi-
ble, before settling on a mating list to be adopted.
The analyses carried out in this paper used the

author’s program MateSel, with some additions to per-
mit test runs based on penalising illegal solutions. Mate-
Sel executable code is freely available as part of the
Pedigree Viewer program at http://www-personal.une.
edu.au/~bkinghor/pedigree.htm

Conclusions
The GroupFix method presented enables the use of
mate selection for the implementation of progressive
breeding programs in a wide range of scenarios, includ-
ing programs across breeding units, with attention paid
to the genetic and practical issues involved.

Additional material

Additional file 1: Appendix: Objective function details. Objective
function details referred to in the text.
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