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Abstract

Background: Genomic selection has become an important tool in the genetic improvement of animals and plants.
The objective of this study was to investigate the impacts of breeding value estimation method, reference
population structure, and trait genetic architecture, on long-term response to genomic selection without updating
marker effects.

Methods: Three methods were used to estimate genomic breeding values: a BLUP method with relationships
estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method
(PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations)
was used with each method. The effects of the different selection approaches were compared under four different
genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding
values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations.

Results: Differences in long-term selection response were small. For a genetic architecture with a very small
number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1
genetic standard deviation higher than other methods in generation 10. For genetic architectures with
approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of
0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less
inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early
generations were greater with the shallow reference population while long-term response was not affected by
reference population structure.

Conclusions: The ranking of estimation methods was different with than without selection. Under selection,
applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to
selection was achieved. The reference population structure had a limited effect on long-term accuracy and
response. Use of a shallow reference population, most closely related to the selection candidates, gave early
benefits while in later generations, when marker effects were not updated, the estimation of marker effects based
on a deeper reference population did not pay off.

Background
Genomic breeding values estimated with genetic mar-
kers distributed over the whole genome (MEBV) have
become important in dairy cattle breeding [1,2], and
efforts are undertaken to implement this technology in

other animal species [3,4] as well as in plants [5,6]. The
expected advantages of selection based on MEBV over
traditional selection methods, where the estimation of
breeding values is based solely on phenotypes and pedi-
gree information, include an increased accuracy of
MEBV compared to traditionally estimated breeding
values, in combination with a reduced generation inter-
val and a lower rate of inbreeding, e.g. due to the ability
to distinguish between sibs [7-11].
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Calculation of MEBV requires a population with infor-
mation on genetic markers and phenotypes, called the
reference population. Information on the relation
between markers and phenotypic information in the
reference population is used to calculate MEBV of indivi-
duals with only marker information, called the evaluation
population. Factors affecting the accuracy of MEBV
include the heritability of the trait, the size of the refer-
ence population, the method used to estimate allelic
effects of the markers, linkage disequilibrium (LD)
between markers and quantitative trait loci (QTL), and
the distribution of QTL effects, i.e. the genetic architec-
ture of the trait [7,12-16].
The accuracy of estimated breeding values, estimated

either with traditional methods such as pedigree BLUP
or with the use of markers, decreases when the number
of generations separating the reference and the evalua-
tion populations increases [7,17]. Using pedigree BLUP,
this decrease is mainly due to the inability of this method
to predict the random segregation of genomic segments
to the next generation. Using markers, this segregation
can be traced and, for the part of the genetic variance
that is explained through LD with the markers, the
decrease in accuracy per generation is smaller than for
the remaining part of the genetic variance that is
explained solely by family structure. The accuracy that is
due to LD with markers is only affected by the changing
patterns of LD between markers and QTL. More persis-
tent accuracies of MEBV are expected when the average
distance between markers and QTL decreases, as this
leads to lower recombination rates [18]. The structure of
the reference population is expected to have an effect on
the persistence of accuracies because it affects how well
the genetic variance of QTL can be assigned to markers
near the QTL as opposed to markers that are more dis-
tant. When individuals in the reference population are
more related, they will share longer stretches of chromo-
somes surrounding the QTL, allowing more distant mar-
kers to explain QTL variation within the reference
population. Because the recombination rates between
these more distant markers and the QTL are higher, they
will loose their predictive value more quickly compared
to markers near the QTL. Selecting animals for the refer-
ence population across more generations will reduce the
average relationship within the reference population and
is expected to lead to more persistent accuracies of
MEBV. Moreover, in populations under selection, LD is
expected to change more rapidly compared to unselected
populations, with the result that accuracies of the MEBV
decrease faster under selection [5,11].
A variety of methods for estimating MEBV exist,

including Bayesian methods (BM) such as BayesA and
BayesB proposed by Meuwissen et al. [7], ridge regression
[7,11], BLUP methodology with the use of a realized

relationship matrix calculated from the markers
(GBLUP) [1,19], principal component regression (PCR)
[15], and partial least square regression (PLSR) [15,16].
Methods BM and PLSR deal with the high dimension

of the marker data by assigning different variances or
weights to individual markers. After one generation,
these methods result in higher accuracies when genetic
variance is due to a small number of QTL compared to
traits with more QTL of small effect [16,20]. Pedigree
BLUP and GBLUP estimate covariances between indivi-
duals based on pedigree data or marker data, respec-
tively and may be less dependent than BM and PLSR on
LD between individual markers and QTL [14].
The performance of estimation methods has been

extensively evaluated in simulations. Information on the
performance of these methods when the MEBV are
being used for selection, however, is very limited. A few
studies applying selection on MEBV are the selection on
MEBV estimated using GBLUP, in the studies of Muir
[11]) and Jannink [5] and in a study by Sonesson and
Meuwissen [17]. A systematic comparison between
methods to calculate MEBV is lacking concerning their
ability to achieve a selection response for more than one
generation under a range of genetic architectures (num-
ber of QTL and distribution of QTL variance).
The objective of this study was to evaluate the impact

of choices that can be made, in terms of evaluation meth-
ods and between reference population structures, on the
long-term selection response. The evaluation was done
across a range of genetic architectures to avoid conclu-
sions that may hold only under specific circumstances.
The reference population structure was evaluated
because a reference population made up of multiple gen-
erations was expected to increase the long-term accuracy
of MEBV compared to a reference population made up
of a single generation [11,17,21]. Comparisons of meth-
ods and reference structures were based on genetic pro-
gress, accuracy of MEBV, inbreeding rate and reduction
of genetic variance. Finally, accuracies of MEBV under
directional selection were compared to accuracies with
random selection.

Methods
Simulation of data and estimation methods
The simulations were performed using the R-package
HaploSim [22], which is available from the R repository
CRAN at http://cran.r-project.org/package=HaploSim.
We refer to Coster et al. [16] for a detailed description
of the simulations to create the starting populations.
Briefly, the simulated genomes consisted of four 1 Mor-
gan chromosomes. The genome contained 40 000
equally distributed loci where mutations were allowed,
most of the 40 000 loci were monomorphic at any time.
Random mating was simulated from generation -5005 to
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generation -1 to generate LD between loci and to reach
mutation-drift equilibrium. The number of recombina-
tions on each chromosome per meiosis event was drawn
from a Poisson distribution, and the mutation rate of
the 40 000 loci was set at 10-5 per meiosis. The muta-
tion rate was set to 0 after generation -1, to avoid the
introduction of a large number of markers with very
low minor allele frequency (MAF). All loci that were
polymorphic in generation -1 were used as markers.
Each individual in generations -5005 to -2 contributed
two gametes to the next generation, which were ran-
domly combined to form individuals. Consequently, a
constant population size of 100 individuals with an
effective population size of 199 was maintained through-
out these generations of random mating. In generation
-1, each individual contributed ten gametes to the next
generation, with the objective to increase the population
size to 500 individuals. The individuals of this genera-
tion were formed as pairs of random gametes from dis-
tinct parents to avoid selfing.
Thirty replicates of this population were simulated

and stored. From the data of each replicate, all four
genetic architectures were created. Each of the five esti-
mation methods was then applied in combination with
one or two selection approaches to each population. In
this way, identical base populations were used in a vari-
ety of simulation and selection scenarios. The four
genetic architectures, five estimation methods and two
selection approaches are explained below.
Four traits with different genetic architectures were

created in each simulated population by combining a
low or high number of QTL, with one of two distribu-
tions of QTL variance, unequal and equal QTL variance
(Table 1).
The high number of QTL was simulated by selecting

50% of the markers with a MAF above 0.10 in genera-
tion -4 as QTL. The low number of QTL was simulated
by retaining every 10th QTL from the high QTL density
and removing the remaining 90% from the data. QTL
density and number of QTL are interchangeable

measures because the length of the genome is fixed and
the distribution and number of polymorphic loci are the
same in all scenarios within a replicate.
The variance of all QTL was set to 1 in the equal dis-

tribution case and the allelic effect of a QTL was calcu-

lated as a =

√
1
2pq

where p and q are the frequencies of

the two QTL alleles. In the unequal distribution case,
the allelic effect of every 10th QTL was multiplied by 9
to make its variance 81 times the variance of the other
QTL. This resulted in the unequal distribution, where
10% of the QTL accounted for 90% of the total genetic
variance.
All polymorphic loci that remained after selecting the

QTL for the high QTL density were used as biallelic
markers in all scenarios. Within a replicate, this resulted
in an identical set of markers for each genetic
architecture.
The true breeding value of an individual was calcu-

lated as the sum of the effects of the QTL alleles it

received. The additive genetic variance, σ 2
a , was calcu-

lated as the variance of the breeding values of the indivi-
duals in generation -4. Random normal deviates from a
N(0, σ 2

e ) distribution were added to the breeding values
to simulate phenotypes with a heritability of 0.25.
The reference population always consisted of 500 indi-

viduals with genotypes and phenotypes but could have
one of two structures. The reference population was
either shallow, consisting of all 500 individuals from
generation 0 (1 × 500), or the reference population was
deep, consisting of 100 individuals from each of genera-
tions -4 to 0 (5 × 100). The deep reference population
was an attempt to reduce the average relationship
between reference animals compared to the shallow
reference population. In generations following those of
the reference population, no additional phenotypes were
recorded for methods BM, PLSR and GBLUP, and
therefore the marker effects were not updated after the
initial analysis of the reference population.
Breeding values were estimated for all individuals from

generation -4 onwards using five different methods. The
first two methods were a bayesian model (BM) and par-
tial least square regression (PLSR). BM and PLSR meth-
ods were similar in that they estimated allelic effects for
each individual marker using the phenotypes and mar-
kers in the reference population. These estimated allelic
effects were subsequently used to calculate MEBV as
follows:

MEBV = Xâ (1)

where MEBV was the vector of breeding values esti-
mated with the marker genotypes, X was an incidence

Table 1 Genomic selection scenarios

Scenario Number of QTL QTL variance reference population

1 Low Unequal 1 × 500

2 5 × 100

3 Equal 1 × 500

4 5 × 100

5 High Unequal 1 × 500

6 5 × 100

7 Equal 1 × 500

8 5 × 100

Combinations of genetic architecture (number of QTL and distribution of QTL
variance) and structure of reference population
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matrix that related allele counts to individuals, and â
was the vector of allelic effects of the markers, estimated
either with method BM or with PLSR.
The next two methods applied the BLUP methodology.

Genomic BLUP (GBLUP) used a relationship matrix, G,
estimated from marker data and pedigree BLUP (BLUP)
estimated the relationship matrix, A, from pedigree
records. Both GBLUP and BLUP used G or A as a covar-
iance matrix among relatives in an animal model:

EBV = Zû

û ∼ N(0,Gσ 2
a ) or

û ∼ N(0,Aσ 2
a )

(2)

where EBV was a vector of estimated breeding values
(EBV for estimates from pedigree BLUP and MEBV for
estimates from GBLUP which used the marker data), Z
was an incidence matrix relating each individual to its
breeding value in vector û.
In the last method, RANDOM, random numbers were

assigned to selection candidates as estimated breeding
values. This method was included as a baseline in which
changes in LD are only affected by drift and recombina-
tion. The RANDOM method made it possible to com-
pare changes in accuracies of MEBV over generations in
situations with and without selection acting on LD and
allele frequencies.
Bayesian method
The Bayesian method (BM) was used as implemented by
Verbyla et al. [23]. In this model, the allelic effects of
the markers were considered independent random nor-
mal variables. The allelic effects of markers were consid-
ered to be from a mixture distribution. Effects were
sampled from a wide N(0, σ 2

1 ) distribution or a more

narrow N(0, σ 2
1 /100) distribution. The prior for the

probability of marker effect being sampled from the
wide distribution was the ratio of the true number of
QTL over the number of markers. The true number of
QTL was counted in the generations that contributed to
the reference population, generations -4 to 0. The prior

for the QTL variance σ 2
1 was set to the genetic variance

resulting in generations -4 to 0, divided by the true
number of QTL. The priors were set separately for each
scenario and each replicate. The BM method used
Gibbs sampling to numerically integrate over the poster-
ior distribution of the model. The Gibbs sampler was
run for 10 000 iterations and the first 1000 iterations
were discarded as burn-in. Estimates of allelic effects of
the markers were calculated as the mean of the poster-
ior distributions.
Partial least square regression
Partial Least Square Regression (PLSR) reduces the dimen-
sions of the regression model by building orthogonal

linear combinations of markers, or components, which
have a maximal correlation with the trait [24]. The trait
was subsequently regressed on these components. Cross-
validation was used on the data in the reference popula-
tion to find the number of components that minimized
the prediction error. We used the plsr function in the
package pls [25] of R [26] to fit and cross-validate the
models. The algorithm to fit and cross-validate the PLSR
models was modified according to Coster et al. [16] to
reduce the computation time.
GBLUP method
GBLUP was performed by solving the mixed model
equations of an animal model using a relationship
matrix estimated from the marker data as the covariance
matrix among relatives, following Van Raden [27]. The
relationship matrix G was calculated as:

G = MDMt, (3)

where matrix M was the genotype matrix, with -1 for
one of the homozygous genotypes, 0 for a heterozygous
genotype and 1 for the alternative homozygous geno-
type. Matrix D was a diagonal matrix with the reciprocal
of the expected variance of each marker on the diagonal

elements
(

1
2pq

)
where p and q were the frequencies of

the two QTL alleles. We used the gblup function in
the pedigree package [28] of R [26] to calculate these
MEBV, using the simulated heritability of 0.25.
Pedigree BLUP method
The simulated phenotypes of all 900 individuals in gen-
erations -4 to 0 were used to estimate breeding values
using pedigree BLUP. This represents 400 additional
phenotypes compared to the 500 used by all three geno-
mic estimation methods. The inverted genetic relation-
ship matrix A-1 was calculated from the pedigree data
with generation -4 as the unrelated base population.
The matrix A-1 was calculated using function
makeAinv of the R-package pedigree. The pedigree
BLUP approach only used phenotypes of the 900 indivi-
duals in generations -4 to 0. For the subsequent genera-
tions, only pedigree information was used to estimate
breeding values. We used the blup function of the ped-
igree package in R [28] to calculate the EBV, with the
simulated level of heritability of 0.25.

Selection
Selection started in generation 0, the last generation of
the reference data, and was continued for ten genera-
tions. In each generation, 100 individuals (50 males and
50 females) were selected from the 500 candidates.
Selected individuals were mated at random and each
pair produced ten offspring, making the next generation
consist of 50 fullsib families of size ten.
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The three methods to calculate MEBV (BM, PLSR,
GBLUP) were applied to each of the two reference popula-
tion structures to form six genomic selection approaches.
Each genomic selection approach was applied to each of
the four genetic architectures (Table 1). Selection on pedi-
gree BLUP EBV and RANDOM selection were also
applied to each of the four genetic architectures.
In the RANDOM scenarios, selection was performed

by randomly sampling males and females to produce the
next generation. Breeding values of random selection
generations were estimated with each of the three geno-
mic estimation methods BM, PLSR and GBLUP. The
random selection scenario was included to assess the
impact of selection on accuracies of MEBV. Accuracies
of MEBV from selection scenarios were compared to
accuracies of MEBV in the RANDOM scenarios where
there was no selection that could cause changes in the
LD between markers and QTL, changes in the frequen-
cies of QTL alleles, or reduction of σ 2

G . This resulted in

32 unique scenarios of genetic architecture by selection
approach. The results for each scenario were obtained
from 30 replicates.

Comparing selection approaches
The evaluation of simulation scenarios was based on
genetic improvement, incurred inbreeding, accuracy of
the (M)EBV and loss of genetic variance over ten genera-
tions of selection. Genetic improvement was calculated
as the cumulative increase of the average breeding value
( Ḡ ) in each generation. The average breeding value in
each generation was standardized and presented as a per-
centage of the genetic standard deviation in generation 0.
The inbreeding coefficient was calculated for each indi-

vidual in the pedigree using the function calcIn-
breeding from the R-package pedigree [28]. The
average increase in inbreeding was calculated for each
generation, using generation 0 as the base population.
The accuracy of the (M)EBV was calculated as the corre-
lation of these (M)EBV with the simulated breeding
values of the individual from each generation. The
genetic variance was calculated in each generation as the
variance of the simulated breeding values and presented
as a percentage of the genetic variance in generation 0 or
as the percentage reduction in genetic variance from
generation 0.

Results
Characteristics of the simulated populations
For each replicate, all 36 scenarios started with the same
number of markers in generation 0, which was on aver-
age 1429 across the 30 replicates (Table 2). The average
minor allele frequency (MAF) of markers was 0.09,
reflecting a U-shaped distribution of allele frequencies.
Average LD between adjacent markers, measured as r2,
was 0.05 (Table 2). This low r2 value was due to the
high number of low frequency alleles, which resulted
from recent mutations. The average r2 between markers
with MAF above 0.1, was 0.15, which was in line with
expectations based on Sved [18].
The average number of QTL was 34 for the low QTL

density and 340 for the high QTL density architecture
(Table 2). The average LD between QTL was 0.01 for the
low QTL density and 0.15 for the high QTL density archi-
tecture (Table 2). The number of QTL that accounted for
90% of the genetic variance ranged from only 3 for the
low-unequal architecture to 306 for the high-equal archi-
tecture. Linkage disequilibrium between markers and QTL
(R2) was defined as the average r2 between each QTL and
the marker in highest LD with that QTL. The R2 was 0.46
for the low QTL and 0.47 for the high QTL density archi-
tecture, reflecting the fact that the marker density was the
same in both scenarios (Table 2).

Response to selection
The increases in average genetic value Ḡ and in the aver-
age inbreeding F̄ were measured over ten generations of
selection. The reductions in the accuracy of MEBV and of
σ 2
G during selection were also measured because on the

one hand they are affected by past selection and on the
other hand they affect the genetic progress that can be
obtained with future selection (i.e. ΔG = i · r · sG).
Genetic architecture had a strong impact on the maxi-

mum increase in Ḡ that was reached after ten genera-
tions of selection. The maximum increase in Ḡ was
321% for the low-unequal architecture and between 372
and 384% for the other three architectures (Table 3).
The pattern of much lower levels of Ḡ with the low-
unequal architecture, compared to the other three
genetic architectures, was the same for all estimation
methods. The low-unequal architecture showed a fast

Table 2 Simulated marker and QTL data

QTL SNP QTL

number MAF r2 number MAF r2 R2

Low 1429.4 (2.6) 0.09 (0.00) 0.05 (0.01) 34.4 (0.1) 0.27 (0.02) 0.01 (0.00) 0.46 (0.05)

High 1429.2 (2.6) 0.09 (0.00) 0.05 (0.01) 339.9 (1.2) 0.27 (0.01) 0.15 (0.01) 0.47 (0.02)

Average (standard error) of the number, minor allele frequency (MAF), and linkage disequilibrium (r2) with flanking markers, of markers and QTL and average
maximum linkage disequilibrium between a marker and each QTL (R2); simulated number of QTL was low or high; summary of 30 replicated simulations
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reduction of genetic variance, indicating that the few
QTL were quickly moved towards small minor allele
frequencies. The order of the other three genetic archi-
tectures for final level of Ḡ was not consistent across
estimation methods, but differences between these three
genetic architectures were generally small. The response
to the first generation of selection was similar for the
three genomic evaluation methods when compared
within a specific genetic architecture (Table 3). Increases
of Ḡ declined over generations for all selection
approaches. For pedigree BLUP, Ḡ reached a plateau
after about two generations of selection.
The pattern of results differed between the low-

unequal and the other three genetic architectures. In the
low-unequal architecture, the BM method was expected
to do well because it gives specific emphasis to big QTL.
BM was indeed the best genomic selection approach, on
average, across reference population structures, both in
generation 1 and after ten generations. The three other
genetic architectures showed a consistent but different
pattern from the low-unequal architecture, with GBLUP
performing best in generation 1, while PLSR performed
best in generation 10 for approaches that used a shallow
reference population, and GBLUP performed best in gen-
eration 10 for approaches that used a deep reference
population (Table 3).

In generation 1, selection on MEBV from a shallow
reference population always resulted in a greater response
in Ḡ compared to selection on MEBV from a deep refer-
ence population (Table 3). Only in a few scenarios did we
observe the expected superiority in level of Ḡ from a deep
reference population after long-term selection, but the dif-
ferences in levels of Ḡ between the deep and shallow
reference populations were small for all scenarios.

Inbreeding
The accumulation of F̄ was always below 1% per genera-
tion, except for selection on pedigree BLUP EBV for
which the increase in F̄ was 1.7% per generation. No dif-
ferences in accumulation of F̄ were seen between the dif-
ferent genetic architectures (Table 4). Besides the high
inbreeding with the pedigree BLUP selection method, the
highest levels of F̄ were incurred with the PLSR and BM
selection approaches for all genetic architectures, with F̄
after ten generation ranging from 7.0% to 7.7% for PLSR
and from 6.9% to 7.6% for BM. Random selection only
incurred a F̄ of 4.7% to 4.9% after ten generations. GBLUP
incurred only 1.4% to 1.7% more inbreeding after ten gen-
erations than random selection and incurred 0.6% to 0.9%,
or roughly one tenth, less inbreeding than PLSR and BM
(Table 4). No effect on the accumulation of inbreeding

Table 3 Response to genomic selection

Generation Unequal Equal

Model Low High Low High

1

BM 1 93.1 (3.6) 88.1 (1.5) 79.7 (2.0) 86.7 (1.9)

BM 5 85.4 (4.0) 74.8 (2.2) 66.9 (2.2) 74.4 (2.3)

PLSR 1 86.5 (2.4) 89.6 (1.9) 86.3 (1.8) 90.0 (1.8)

PLSR 5 78.5 (2.3) 80.2 (2.3) 76.2 (2.1) 77.0 (3.2)

GBLUP 1 91.2 (2.3) 93.9 (1.5) 89.0 (1.7) 91.0 (1.3)

GBLUP 5 75.9 (2.2) 79.4 (2.0) 78.2 (1.6) 77.3 (1.7)

BLUP 85.0 (1.6) 86.1 (1.1) 85.5 (1.3) 86.0 (1.4)

RANDOM -0.3 (1.7) -1.9 (2.0) -0.8 (1.4) 0.1 (1.8)

10

BM 1 312.6 (19.2) 354.3 (16.3) 346.8 (12.6) 366.7 (12.1)

BM 5 317.7 (17.6) 333.1 (13.8) 343.9 (14.1) 326.3 (14.3)

PLSR 1 305.0 (17.4) 384.0 (14.4) 379.8 (15.1) 372.4 (11.5)

PLSR 5 306.1 (15.7) 348.6 (14.4) 364.7 (13.0) 327.5 (19.4)

GBLUP 1 321.5 (18.2) 365.2 (12.1) 361.5 (13.1) 366.0 (9.6)

GBLUP 5 298.4 (15.9) 369.2 (11.4) 372.4 (12.4) 367.5 (9.9)

BLUP 129.9 (11.0) 131.2 (6.5) 136.1 (10.9) 132.9 (12.1)

RANDOM -2.1 (6.0) -9.2 (6.5) 4.4 (6.0) 4.2 (5.0)

Cumulative response (standard deviation), after one and ten generations of selection (as a percentage of the genetic standard deviation in the reference
population) in genetic architectures with a low number of QTL of unequal variance (column 3), a high number of QTL of unequal variance (column 4), a low
number of QTL of equal variance (column 5) and a high number of QTL of equal variance (column 6); selection was on breeding values estimated with a
Bayesian method (BM), partial least square regression (PLSR), genomic BLUP (GBLUP) or pedigree BLUP (BLUP), or selection was at random (RANDOM); numbers 1
and 5 behind estimation methods indicate the number of generations used in the training population

Bastiaansen et al. Genetics Selection Evolution 2012, 44:3
http://www.gsejournal.org/content/44/1/3

Page 6 of 13



was observed from differences in reference population
structure or genetic architecture.

Accuracy
Accuracies obtained within the reference population
were similar for all the genomic estimation methods,
with an average of 0.63 ± 0.03. For all scenarios, the
accuracies dropped steeply in the first generations of
selection, after which the decline became more or less
linear. After ten generations of selection with the low-
unequal genetic architecture, all genomic selection
approaches showed an accuracy between 0.07 and 0.10.
For the three other genetic architectures, the accuracy
after ten generations was only slightly higher, with
values between 0.12 and 0.16.
The shallow reference population structure resulted in

higher accuracies (0.63 ± 0.03) in the first generation of
selection candidates compared to the deep reference
population (0.55 ± 0.03). In the shallow reference struc-
ture, all selection candidates were included in the refer-
ence population with own phenotypes while in the deep
reference structure, only 20% of the selection candidates
were included in the reference population with own phe-
notypes. In generation 10, however, accuracies were no

longer different between the two structures for a given
genetic architecture and estimation method (Table 5).
MEBV were also estimated in each generation of the

RANDOM selection scenarios based on training in the
shallow reference population. Accuracies in the RAN-
DOM selection scenarios were well above accuracies
from the same model when directional selection was
applied (Figure 1). The largest difference was seen in
the low-unequal genetic architecture where accuracy
decreased quickly with the application of selection, pri-
marily due to reduction of genetic variance. In the other
three genetic architectures, differences were smaller, but
the accuracies for the RANDOM selection scenarios
were still 18% higher, on average. In the low-unequal
architecture, accuracy was higher after ten generations
of RANDOM selection with BM compared to the two
other genomic evaluation methods. In this architecture
with few QTL, BM could identify markers close to the
QTL with a good predictive ability for several genera-
tions because recombinations between these markers
and the QTL were rare, due to the short distance
between them.

Genetic variance
Similar to the results for accuracy, a much bigger reduc-
tion in genetic variance was observed for the low-
unequal architecture compared to the three other

Table 4 Inbreeding in genomic selection

Generation Unequal Equal

Model Low High Low High

1

BM 1 0.8 (<0.1) 1.0 (<0.1) 0.8 (<0.1) 1.0 (<0.1)

BM 5 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 0.8 (<0.1)

PLSR 1 1.0 (<0.1) 1.0 (<0.1) 1.0 (<0.1) 0.9 (<0.1)

PLSR 5 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1)

GBLUP 1 0.7 (<0.1) 0.8 (<0.1) 0.9 (<0.1) 0.8 (<0.1)

GBLUP 5 0.9 (<0.1) 0.8 (<0.1) 0.8 (<0.1) 0.9 (<0.1)

BLUP 0.8 (<0.1) 0.7 (<0.1) 0.8 (<0.1) 0.9 (<0.1)

RANDOM 0.4 (<0.1) 0.5 (<0.1) 0.4 (<0.1) 0.5 (<0.1)

10

BM 1 7.1 (<0.1) 7.6 (0.1) 7.1 (0.1) 7.2 (0.1)

BM 5 7.2 (0.1) 6.9 (0.1) 7.0 (0.1) 7.0 (0.1)

PLSR 1 7.4 (0.1) 7.7 (0.2) 7.4 (0.2) 7.6 (0.2)

PLSR 5 7.0 (0.1) 7.3 (0.1) 7.3 (0.1) 7.2 (0.2)

GBLUP 1 6.2 (<0.1) 6.5 (<0.1) 6.5 (<0.1) 6.4 (<0.1)

GBLUP 5 6.3 (<0.1) 6.6 (<0.1) 6.4 (<0.1) 6.6 (<0.1)

BLUP 16.6 (0.3) 17.2 (0.3) 17.1 (0.3) 16.9 (0.3)

RANDOM 4.9 (<0.1) 4.8 (<0.1) 4.8 (<0.1) 4.7 (<0.1)

Cumulative change (standard deviation) in level of inbreeding, after one and
ten generations of selection (as a percentage) in genetic architectures with a
low number of QTL of unequal variance (column 3), a high number of QTL of
unequal variance (column 4), a low number of QTL of equal variance (column
5) and a high number of QTL of equal variance (column 6); selection was on
breeding values estimated with a Bayesian method (BM), partial least square
regression (PLSR), genomic BLUP (GBLUP) or pedigree BLUP (BLUP), or
selection was at random (RANDOM); numbers 1 and 5 behind estimation
methods indicate the number of generations used in the training population

Table 5 Accuracy of genomic selection

Generation Unequal Equal

Model Low High Low High

1

BM 1 0.47 (0.04) 0.37 (0.01) 0.31 (0.02) 0.35 (0.02)

BM 5 0.48 (0.04) 0.32 (0.01) 0.31 (0.01) 0.33 (0.01)

PLSR 1 0.40 (0.02) 0.38 (0.01) 0.39 (0.01) 0.37 (0.02)

PLSR 5 0.37 (0.02) 0.35 (0.02) 0.35 (0.01) 0.35 (0.02)

GBLUP 1 0.38 (0.01) 0.37 (0.01) 0.35 (0.01) 0.36 (0.01)

GBLUP 5 0.35 (0.01) 0.35 (0.01) 0.32 (0.01) 0.35 (0.01)

BLUP 0.23 (0.02) 0.24 (0.02) 0.22 (0.01) 0.22 (0.01)

10

BM 1 0.08 (0.01) 0.12 (0.01) 0.15 (0.01) 0.14 (0.01)

BM 5 0.05 (0.02) 0.13 (0.02) 0.11 (0.01) 0.13 (0.01)

PLSR 1 0.08 (0.02) 0.11 (0.02) 0.15 (0.02) 0.15 (0.01)

PLSR 5 0.09 (0.01) 0.11 (0.02) 0.13 (0.02) 0.12 (<0.01)

GBLUP 1 0.08 (0.01) 0.14 (0.02) 0.14 (0.01) 0.14 (0.01)

GBLUP 5 0.08 (0.01) 0.13 (0.01) 0.15 (0.02) 0.15 (0.01)

BLUP 0.01 (0.02) 0.01 (0.03) 0.02 (0.03) 0.00 (0.03)

Accuracy (standard deviation), after one and ten generations of selection in
genetic architectures with a low number of QTL of unequal variance (column
3), a high number of QTL of unequal variance (column 4), a low number of
QTL of equal variance (column 5) and a high number of QTL of equal variance
(column 6); selection was on breeding values estimated with a Bayesian
method (BM), partial least square regression (PLSR), genomic BLUP (GBLUP) or
pedigree BLUP (BLUP); numbers 1 and 5 behind estimation methods indicate
the number of generations used in the training population
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genetic architectures in all selection approaches. After
the first generation of selection, an important reduction
was seen in genetic variance for all selection methods
(Table 6). After the initial drop of genetic variance in
the first generation of selection, a small rebound in
genetic variance was seen in some scenarios before

variance started to decrease again. This rebound could
be partially attributed to the reduced accuracy of selec-
tion in later generations, as it was not observed with
BM in the low-unequal scenario, where accuracies in
generation 1 were substantially higher. Genetic variance
can be increased by favorable QTL alleles moving to
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Figure 1 Accuracy of estimated breeding values. Accuracy of MEBV in generations 0 to 10 averaged over 30 replicates; panels show results
from genetic architectures with a low number of QTL of unequal variance (row 1), a low number of QTL of equal variance (row 2), a high
number of QTL of unequal variance (row 3) and a high number of QTL of equal variance (row 4); estimation methods are BM (column 1), PLSR
(column 2), GBLUP (column 3) and pedigree BLUP (column 4); levels of accuracy are shown for selection with training on phenotypes from one
generation (shallow reference population, red circles) or from five generations (deep reference population, blue diamonds); accuracies of MEBV
under RANDOM selection are shown as gray triangles; symbols for some scenarios may be hidden if values overlap.
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more intermediate frequencies. In scenarios with lower
accuracies, the balance of increasing genetic variance
from changing allele frequencies and decreasing variance
from selection resulted in a small increase of variance.
Genetic variance steadily decreased over the next gen-
erations of selection, except in the pedigree BLUP selec-
tion method, which became rather ineffective after a few
generations, therefore limiting the loss of genetic var-
iance, even though the inbreeding rate was high for this
approach.
The final percentage of genetic variance remaining in

generation 10 ranged from 29.4% with BM in the low-
unequal genetic architecture to 90.5% with pedigree BLUP
in the low-equal genetic architecture. Comparing between
the genomic selection approaches, GBLUP was best, it
retained the highest genetic variance (43.2% to 81.2%),
PLSR the worst (42.1% to 66.2%) and BM (29.4% to 69.4%)
roughly in the middle between GBLUP and PLSR, with
the exception of the low-unequal architecture for which
the lowest genetic variance was retained by BM.
In summary, GBLUP could retain the highest genetic

variance while PLSR retained the lowest genetic var-
iance, except in the low-unequal genetic architecture
where BM retained up to 15% less genetic variance than

GBLUP (Table 6). The deep reference population
resulted in a smaller reduction in genetic variance after
one generation of selection than the shallow reference
population, but after ten generations, the differences in
genetic variance were very small (Table 6).

Discussion
In this study, response to selection was determined over
ten generations with different selection approaches that
combined one of the following estimation methods BM,
BLUP, GBLUP or PLSR with a deep or shallow refer-
ence population structure. It has been found that
accuracies of MEBV reduce with increasing distance
between reference and selection candidates [7,17] and
that selection increases the effect of distance on accu-
racy and hence, on response to selection [5,11]. The dif-
ferent selection approaches were compared under four
different genetic architectures to investigate the effects
of evaluation methods and reference population on
accuracy of MEBV and selection response. The results
of this study can help to choose MEBV methods for dis-
tinct scenarios.

Breeding value estimation methods
Genetic architecture affects the comparison of methods to
estimate genomic breeding values. In the frequently simu-
lated low-unequal architecture, which has a few QTL,
there is a clear benefit for the BM method. In the low-
unequal scenario, BM appears to be able to identify mar-
kers in LD with QTL, giving this method an advantage in
early generations and in long-term response. The increase
in Ḡ with the PLSR method was comparable to results
obtained with GBLUP in the low-unequal scenario. This
result is different from the pattern observed in [29], where
PLSR showed considerably lower accuracy than BM and
GBLUP in a simulated dataset that was very similar to the
low-unequal architecture used here. A reason for this dif-
ference could lie in the implementation of PLSR. The
results in [29] were obtained by a two-step procedure
where variable selection preceded model fitting, which is
suboptimal to the simultaneous selection and fitting of the
model that was applied to obtain the results presented
here. When the number of QTL increases, as for the three
genetic architectures other than low-unequal, the conclu-
sions change. The three genomic methods performed dif-
ferently in terms of genetic improvement, with GBLUP
performing best in generation 1 and PLSR or GBLUP per-
forming best in generation 10 for approaches that used a
shallow or deep reference population, respectively (Table
3). GBLUP had a clear advantage in generation 10,espe-
cially in comparison to PLSR and BM, with a smaller
increase in inbreeding and smaller reduction of genetic
variance. The GBLUP method combined a good response
in Ḡ with a smaller increase in F̄ .

Table 6 Genetic variance and genomic selection

Gen. Unequal Equal

Model Low High Low High

1

BM 1 -11.4 (5.1) -14.5 (2.0) -11.9 (2.1) -15.0 (1.8)

BM 5 -7.2 (4.8) -6.8 (2.2) -9.5 (2.0) -8.7 (2.3)

PLSR 1 -13.6 (4.0) -14.8 (1.9) -16.3 (1.9) -15.6 (2.2)

PLSR 5 -12.2 (3.9) -9.6 (2.3) -11.9 (2.1) -8.0 (2.3)

GBLUP 1 -14.6 (4.3) -14.2 (1.7) -17.0 (1.5) -14.9 (2.2)

GBLUP 5 -10.5 (4.1) -9.7 (2.5) -14.8 (2.0) -11.6 (1.5)

BLUP -9.3 (4.4) -11.9 (1.8) -15.2 (1.9) -11.8 (1.6)

RANDOM 0.4 (2.4) -0.9 (1.7) -1.6 (1.9) 2.5 (2.4)

10

BM 1 -70.6 (4.1) -31.9 (2.6) -30.6 (2.7) -37.2 (2.4)

BM 5 -67.5 (4.7) -31.0 (2.5) -31.9 (1.9) -33.8 (2.4)

PLSR 1 -57.9 (5.2) -39.5 (3.2) -39.2 (2.4) -40.1 (2.3)

PLSR 5 -56.0 (7.3) -37.9 (3.0) -33.8 (2.9) -36.9 (2.4)

GBLUP 1 -56.8 (4.5) -19.2 (4.2) -20.0 (2.9) -26.4 (2.6)

GBLUP 5 -52.0 (5.2) -18.8 (3.0) -21.1 (3.1) -25.8 (2.1)

BLUP -18.7 (6.3) -13.0 (3.7) -9.5 (3.8) -13.5 (3.5)

RANDOM -7.4 (3.9) 2.1 (2.7) -5.4 (2.9) 0.2 (2.7)

Cumulative change (standard deviation) in genetic variance, after one and ten
generations of selection (as a percentage of the genetic variance in the
reference population) in genetic architectures with a low number of QTL of
unequal variance (column 3), a high number of QTL of unequal variance
(column 4), a low number of QTL of equal variance (column 5) and a high
number of QTL of equal variance (column 6); selection was on breeding
values estimated with a Bayesian method (BM), partial least square regression
(PLSR), genomic BLUP (GBLUP) or pedigree BLUP (BLUP), or selection was at
random (RANDOM); numbers 1 and 5 behind estimation methods indicate the
number of generations used in the training population
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Although the priors were set to the true values for
genetic variance and number of QTL, which would be
difficult in practice, BM resulted in somewhat smaller
increases in Ḡ compared to the other genomic evalua-
tion methods for all architectures except the low-
unequal one where BM resulted in an intermediate
increase in G. Low-unequal is an architecture that fits
the approach of the BM model well, since having fewer
QTL improves the power to select the correct SNP into
the model [16,20].
Selection is an important factor when comparing meth-

ods to estimate genomic breeding values, especially for
traits with a low-unequal architecture. In populations
under selection, the pattern of decrease in accuracy was
not very different between estimation methods. However,
without selection in the RANDOM scenarios, BM per-
formed better to keep high accuracies up to ten genera-
tions past the reference population. It is important to
realize that this advantage disappears when one is actually
selecting on the MEBV. Genomic selection approaches are
expected to incur less inbreeding than pedigree BLUP
selection [11,30]. When the estimation methods BM,
PLSR and GBLUP became inaccurate in later generations,
they caused much smaller increases in inbreeding com-
pared to the pedigree BLUP method. The lower inbreeding
from genomic estimation compared to pedigree BLUP
agreed with earlier results that indicated that genomic esti-
mation methods can track mendelian sampling within
families [30] and that pedigree BLUP tends to select family
members [31].
Accuracies of pedigree BLUP breeding values in genera-

tion 0, and hence the response to selection on pedigree
BLUP in generation 1 were at the same level as accuracies
and response for genomic selection methods. The pedigree
BLUP accuracy in generation 1, of approximately 0.60, was
as expected with a heritability of 0.25 and phenotypes on
the selection candidates and several of its sibs. The accura-
cies for genomic evaluation methods depend, among other
factors, on the size of the reference population. The refer-
ence population size was chosen to yield an intermediate
accuracy to allow for differences in accuracies from esti-
mation method and/or reference population structure to
become evident. Accuracies that are obtained as an output
of the genetic evaluation model, i.e. obtained from the
mixed model equations in pedigree BLUP, can be biased if
pre-selection occurs on for instance MEBV [32]. Similarly,
the estimated genetic progress can be affected by bias in
the accuracies of MEBV when they are obtained from the
evaluation model. These biases were not found in our
simulation results because accuracies were obtained from
correlations of MEBV with the true breeding values and
selection response was calculated as the increase in aver-
age true breeding values.

Importance of reference population structure
Differences between reference populations with a deep
or shallow structure were most apparent in the first
generations of selection. Methods to estimate MEBV
used not only the LD in the population but also any
family structure within the reference population that
was detectable by markers. When predicting MEBV in
generation 1 with data from the shallow reference popu-
lation, a considerable contribution to the accuracy of
those MEBV will originate from family structure
detected by markers [21]. Especially in a small breeding
population, individuals may need to be included from
multiple generations to make up a sizeable reference
population. The deep reference population that covered
multiple generations increased the average genetic dis-
tance of candidates with reference individuals and
reduced the accuracy of the MEBV and resulting selec-
tion response in generation 1. In later generations, the
advantage of the shallow reference population decreased
and accuracies and levels of response became similar to
those obtained with a deep reference population. In
these later generations, the markers lost their ability to
explain family structure, which appeared to benefit the
shallow reference structure more. In later generations
the deep reference structure probably benefited from
having less focus on capturing family structure and bet-
ter use of LD information but it was concluded that the
impact of reference population structure on long-term
response was small. Only in a few scenarios did we see
the expected pattern where cumulative genetic gain
from a deep reference structure overtakes the accumu-
lated gain from the shallow reference structure. Early
gains made by the shallow reference structure are diffi-
cult to overcome by the greater gains made in later gen-
erations with the deep reference structure. One reason
may be that accuracy, and also genetic variance,
declined over time, which made early gains even more
important.
In contrast to the small impact of reference population

structure found in our results, Muir [11] showed a large
impact of reference population structure on accuracy of
MEBV after one to eight generations of random selec-
tion. The result of Muir [11] was obtained in a simulated
population in two-locus Hardy Weinberg equilibrium,
which meant absence of LD between markers and
between markers and QTL. A deep reference population,
named TG4, made up of generations 1 to 4, was com-
pared to a shallow reference population, named TG2,
made up of generations 1 and 2. TG2 resulted in an accu-
racy that was about 15% lower compared to TG4 in the
sixth generation after training. We expect that in these
results, the more persistent accuracy from the deep refer-
ence population was due to the fact that TG4 had two
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more generations to build up LD after starting the popu-
lation in linkage equilibrium. In addition, the effect of
building up more LD in the TG4 compared to the TG2
scenarios was strenghtened by the smaller effective popu-
lation size in TG4 (Ne = 64) compared to TG2 (Ne =
128). In our simulations, we kept Ne equal and the same
level of historic LD was present in the deep and shallow
reference population structures.

Selection strategy
In this study, we used information from a reference
population with ten generations of selection to evaluate
the long-term impact of reference population structure
and the persistency of methods. Many other choices for
genotyping and phenotyping strategies could have been
made and selecting on the same marker effects for ten
generations is not a practical application, given the low
accuracies that were obtained after ten generations
under all genetic architectures. One exception might be
the low-unequal architecture, where genomic selection
resulted in a reduction of up to 71% of genetic variance
and re-training the model would not have much value.
In all other scenario’s, retraining the models after a
number of generations is expected to considerably
improve response in later generations, as was shown by
Sonesson and Meuwissen [17]. Selection without
retraining can still be of practical value. Traits that are
difficult or expensive to measure can warrant the use of
the same reference population for several generations.
To address our main questions, the impact of estimation
methods and reference population structure on long-
term selection, we chose to simulate genomic selection
scenarios without retraining. Retraining, or adding more
generations with phenotypes would have obscured the
assessment of the persistency of methods (i.e. the ability
of a method to assign genetic variance to markers in
close LD with the QTL) and would have reduced the
contrast between the deep and shallow reference popu-
lation by making both populations “deeper” each gen-
eration. It should be realized that without retraining,
our results do not show the maximum potential of
genetic progress from genomic selection but that was
not the aim of this study.

Inbreeding
Accumulation of inbreeding was calculated based on
pedigree relationships. The pedigree measure of inbreed-
ing is supposed to capture genome-wide increase in
homozygosity but this may not be the most relevant mea-
sure if genetic variance is due to a few QTL, and selec-
tion changes allele frequencies at these specific genome
positions. In this case, average homozygosity may
increase only a little although the favorable QTL are
(nearly) fixed. In this situation a direct measure of genetic

variance may be more valuable to describe the opportu-
nities that remain for response to selection. For traits
that are not under selection, pedigree-estimated inbreed-
ing will still be a reasonable measure, assuming that loci
that affect fitness are located away from the QTL with
allele frequencies rapidly changed by genomic selection.

Accuracy
A number of studies have described the accuracy of
MEBV for individuals that are up to six [4,7,33], nine
[11,17], ten [21], or 19 [5] generations away from the
reference population. Of these studies, only Muir [11],
Sonesson and Meuwissen [17] and Jannink [5] applied
selection based on the MEBV, while random selection was
applied in the other studies. In the study of Muir [11],
accuracy of MEBV decreased quickly when the number of
generations between the reference and the evaluation
population increased, because of the very small number of
QTL that were simulated, comparable to our low-unequal
genetic architecture. Therefore the resulting decrease in
accuracy of the MEBV was largely due to the reduction in
genetic variance. Any change in LD patterns may have
played a minor role. In actual breeding programs, the
reduction of genetic variance has been relatively small [34]
and therefore changes in LD, due to drift and selection,
are expected to play a much bigger role in reducing accu-
racy of MEBV in breeding programs that apply GS. The
study by Sonesson and Meuwissen [17] showed a pattern
of the decrease in accuracy and genetic response from
their FIRST-GEN scenario, which is comparable to our
results in the low-unequal scenario with BM. Their
FIRST-GEN scenario was similar to our approach because
it did not retrain the model. Their simulated genetic archi-
tecture was similar to our low-unequal architecture
because QTL effects were sampled from a Γ(0.4,1.66) dis-
tribution which has a high density at low values. The
study by Jannink [5] applied genomic selection to an
inbred crop, and investigated the use of genomic breeding
values prior to phenotyping. An increase in early selection
gains was shown, especially when additional weight was
placed on favorable alleles with low frequencies. The loss
of favorable alleles was not evaluated in our study. In
future research, we will extend the comparison of estima-
tion methods and reference population structures for their
effect on genomic parameters such as LD and allele fre-
quencies of QTL. The differences seen in reductions of
genetic variance for the different estimation methods indi-
cate that these genomic parameters of LD and allele fre-
quencies of QTL may be affected differently by different
methods.

Conclusions
Under selection, applying GBLUP leads to lower inbreed-
ing and a smaller reduction of genetic variance especially
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in comparison to PLSR but also to BM, while a similar
genetic improvement is achieved with these estimation
methods for traits that have a moderate to large number
of QTL. With a small number of large QTL, BM and
PLSR were expected to result in greater response over ten
generations of selection but differences were small and
most progress was made by one of the scenarios that
applied GBLUP. Without selection and with a small num-
ber of large QTL, accuracies of MEBV from BM remained
high for 10 generations past the reference population and
were always higher than accuracies from the other meth-
ods. When selection on MEBV was applied however, no
important differences were seen among the methods.
Response to selection on MEBV for traits with a small
number of large QTL, a common simulation scenario in
recent literature, was limited in the long-term by a rapid
reduction of accuracy over time, which was caused by a
strong reduction in genetic variance. When the trait was
affected by more QTL, reduction of genetic variance was
limited and the decline in accuracy was smaller. The struc-
ture of the reference population had a limited effect on
long-term accuracy and genetic gain. Based on these
results, use of a reference population made up of indivi-
duals that are most closely related to the selection candi-
dates is recommended. This approach gave early benefits
but in later generations, without updating marker effects,
the estimation of marker effects based on less related
reference individuals did not pay off.
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