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Abstract 

Background:  Extending the reference set for genomic predictions in dairy cattle by adding large numbers of cows 
with genotypes and phenotypes has been proposed as a means to increase reliability of selection decisions for 
candidates.

Methods:  In this study, we explored the potential of increasing the reliability of breeding values of young selec‑
tion candidates by genotyping a fixed number of first-crop daughters of each sire from one or two generations in a 
balanced and regular system of genotyping. Using stochastic simulation, we developed a basic population scenario 
that mimics the situation in dual-purpose Fleckvieh cattle with respect to important key parameters. Starting with 
a reference set consisting of only genotyped bulls, we extended this reference set by including increasing numbers 
of daughter genotypes and phenotypes. We studied the effects on model-derived reliabilities, validation reliabilities 
and unbiasedness of predicted values for selection candidates. We also illustrate and discuss the effects of a selected 
sample and an unbalanced sampling of daughters. Furthermore, we quantified the role of selection with respect to 
the influence on validation reliabilities and contrasted these to model-derived reliabilities.

Results:  In the most extended design, with 200 daughters per sire genotyped from two generations, single nucleo‑
tide polymorphism (SNP) effects were estimated from a reference set of 420,000 cows and 4200 bulls. For this design, 
the validation reliabilities for candidates reached 80 % or more, thereby exceeding the reliabilities that were achieved 
in traditional progeny-testing designs for a trait with moderate to high heritability. We demonstrate that even a mod‑
erate number of 25 genotyped daughters per sire will lead to considerable improvement in the reliability of predicted 
breeding values for selection candidates. Our results illustrate that the strategy applied to sample females for geno‑
typing has a large impact on the benefits that can be achieved.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic selection and genomic breeding value estima-
tion were implemented in several cattle breeding pro-
grams in the last few years. Since the introduction of 
this methodology, there has been a constant attempt 
to further improve it and to increase the reliabilities 
of genomic breeding values. One key factor is the size 
of the reference set [1, 2]. Nowadays, there are several 

international organizations that promote the exchange 
of genotypes on a regular basis to enlarge reference sets 
and to improve the quality of genomic predictions of the 
participating countries. In dual-purpose Fleckvieh (FV) 
cattle, genomic selection was implemented in 2011 and 
genetic evaluation centers in Germany and Austria coop-
erate in a joint genetic and genomic evaluation that uses 
a common genotype pool [3]. Currently, the reference set 
for FV includes approximately 9000 bulls with pheno-
typic measures on most traits.

Several studies have reported that sharing genotypes 
within breeds results in large benefits for the reliability of 
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genomic predictions e.g. [4–6]. However, most opportu-
nities to increase the genotype pool by exchanging geno-
types have been exploited and, in most cases, the growth 
of reference sets within breeds is restricted to the yearly 
increase in number of genomically preselected young 
bulls receiving daughter proofs. As a consequence, fewer 
bulls are progeny-tested than in pre-genomic selection 
programs [7, 8] and the proportion of old bulls increases 
over time. Since the reliability of genomic predictions also 
depends on the degree of relationship between reference 
and predicted animals [9], this ‘aging’ of the reference set 
may lead to decreased reliabilities. As a demonstration of 
that effect, Cooper et al. [10], for example, excluded sub-
sets of old bulls and found that older bulls in the refer-
ence set had only a minimal impact on the reliability of 
the genomic breeding values of predicted animals. In 
addition, preselection of young reference bulls may influ-
ence the quality of genomic predictions. Schaeffer [11] 
predicted a situation where considerable bias was intro-
duced on genomic evaluations by strong preselection 
[12–14] of young bulls based on their genomic breeding 
values.

Another possibility to increase the size of the reference 
set is to use information from genotyped and pheno-
typed females, which can have a beneficial influence on 
the quality of genomic predictions. Thomasen et al. [15] 
found that, by adding female genotypes in the reference 
set, more genetic gain with a lower rate of inbreeding 
can be achieved compared to a breeding scheme where 
the reference set grows only from the addition of newly 
progeny-tested bulls. Pryce et al. [8] showed that by add-
ing 10,000 cows to a reference set of 3000 Holstein bulls, 
the reliability of genomic predictions of 437 young bulls 
in the validation set was improved by 4 to 8 %. Calus et al. 
[16] also combined cows and bulls in a single reference 
set and found that the highest validation accuracies were 
achieved with the combined dataset compared to scenar-
ios with a reference set that included only cows or only 
bulls. Furthermore, since usually cows are not strongly 
preselected, inclusion of their genotypes and phenotypes 
may also contribute to reduce the biasing effects of prese-
lection as pointed out by Schaeffer [11]. Last but not 
least, genotyping cows might be especially important for 
creating reference sets for so-called new traits or expen-
sive-to-measure traits [7, 17, 18] and, most likely, will be 
the basis of new and useful management tools for farm-
ers [8].

If female genotypes are to be included in a genomic 
system, one of the key questions is which cows should be 
genotyped. Pryce et al. [8], Wiggans et al. [19] and Das-
sonneville et al. [20] discussed preferential treatment as a 
potential problem related to the inclusion of bulls’ dams 
into the reference set. Dassonneville et al. [20] found that 

the inclusion of records on elite cows resulted in overesti-
mation of genomic enhanced breeding values for all ani-
mals. Thus, even if genotypes are available for elite cows 
as a consequence of using genomic predictions for the 
selection of bulls’ dams, in the end, they should not be 
part of the reference set.

In a preliminary study [21], we performed a determinis-
tic simulation based on nuclear pedigrees extracted from 
the German-Austrian FV population and showed that 
there is a benefit from including genotyped cows into the 
reference set. We quantified the effects of this inclusion 
on the reliability of genomic breeding values of young 
selection candidates and found marginal to considerable 
gains in reliability (between 1 and 40  %) depending on 
the scenario. However, we were not able to quantify the 
effects of selection on the results and we could not quan-
tify the cumulative effects at the population level. There-
fore, in this study, we examined the following three main 
effects by means of a stochastic simulation: (1) effects of 
selection on validation reliability, (2) effects of genotyp-
ing randomly selected cows on the accuracy of predic-
tion, and (3) effects of some alternative strategies for 
sampling the genotyped daughters.

Methods
Simulation
We used the open access software QMSim [22] to run a 
simulation with five repetitions. Our aim was to simulate 
a population that resembled the German-Austrian dual-
purpose Fleckvieh cattle population for several key char-
acteristics (e.g. linkage disequilibrium (LD) structure, 
allele frequencies and effective population size).

Simulation of the population
QMSim first simulated a so-called historical popula-
tion, which consisted of 2000 unrelated animals with a 
balanced sex ratio. These animals were randomly mated 
for 2500 generations. To create a sufficiently strong LD 
structure as observed in FV, a bottleneck was introduced 
after 2500 generations by reducing the number of breed-
ing animals to 150 for one generation, which corresponds 
approximately to the effective population size in FV i.e. 
160 based on the observed LD structure [23]. This esti-
mate is quite close to that based on pedigree data [24]. 
After this bottleneck, population size was increased 
within one generation again to 31,500 animals (30,000 
dams and 1500 sires), which represented the founder 
animals (generation 0) of the so-called ‘recent’ or pedi-
greed population. The recent population was propa-
gated for another 10 generations. In each generation of 
the recent population, 15,000 female and 15,000 male 
offspring were generated by mating 30,000 dams and 
1500 breeding sires. Generations overlapped and in each 
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generation 30 % of the dams and 70 % of the sires were 
replaced. These two replacement parameters were quite 
similar to the situation observed in the real FV popula-
tion. Breeding animals were selected based on their esti-
mated breeding value (EBV) which was calculated within 
QMSim with a reliability of 0.6. This was done to mimic 
a genomic selection program where dams are selected 
based on a combination of pedigree information and 
own performance and sires are selected on their genomic 
breeding value.

Males of generation 5 to 10 were genotyped (Table 1). 
Sires belonging to generations 5  to  8 (n  =  4200) were 
assigned to the reference set. The remaining animals 
of generations 9 and 10 were used as validation set for 
forward prediction. Note that whereas sires in genera-
tion 9 (n = 1050) were young bulls that were selected by 
QMSim based on a genomic breeding value but without 
daughter performances, the animals of generation 10 
(n = 15,000) were unselected candidates. The validation 
animals were further characterized by the status of their 
sire i.e. a reference animal or not. Figure 1 gives an over-
view of the structure of the simulation. 

Simulation of the genome
We simulated 30 chromosomes, each 100  cM long. On 
each chromosome, 1660 single nucleotide polymor-
phisms (SNPs) and 30 quantitative trait loci (QTL) were 
evenly distributed (49,800 SNPs and 900 QTL in total). 
After routine checks [3, 25], nearly 38,000 valid SNPs 
and approximately 700 QTL that were still segregat-
ing in the reference set (both numbers slightly varying 
between replicates of the simulation) were available. 
The routine checks were as follows: (1) SNPs that devi-
ated from Hardy–Weinberg equilibrium (HWE) with a 
p-value less than 10−5 and (2) SNPs with a minor allele 
frequency (MAF) lower than 0.02 were excluded from 
the dataset. We assumed a sex-linked trait and a single 

observation for each female with a heritability set to 0.4. 
The polygenic nature of the trait was ensured by the rela-
tively large number of QTL and their effects were drawn 
from a uniform distribution (option ‘uniform’ from 
QMSim) to prevent the occurrence of a few isolated large 
QTL effects. With a uniform distribution, the mean of 
the effects is related to the variance and, thus, the range 
of the QTL effects is limited. We performed a couple of 
tests with QMSim and the results confirmed our assump-
tions (data not shown).

Simulation of the daughter sets
In the main part of the simulation, we generated 200 
daughters for each of the reference bulls of generations 
7 and 8 (which represented a total of 420,000 additional 
female genotypes and phenotypes). Due to memory 
requirements and some limitations of the QMSim soft-
ware, we did not simulate the daughter genotypes with 
QMSim directly. Instead, based on the known haplo-
types (SNPs and QTL) of the reference bulls of these 
two generations, we simulated different male gametes by 
recombination and randomly mated them with gametes 
of potential dams of the same cohort (excluding sisters, 
daughters and dams) that was simulated by applying 
the same strategy. Assuming a Poisson distribution for 
cross-overs, recombination was simulated by generat-
ing on average one random cross-over per Morgan for 
each chromosome. Using the observed QTL status of 
each daughter and the known (true) QTL effects from 
the QMSim simulation, we calculated the true breeding 
value (TBV) for each daughter.

Phenotypes
We generated yield deviations (YD, [26]) for daughters 
using the TBV and a random residual. Depending on 
the design investigated, these daughter phenotypes were 
used to calculate daughter yield deviations (DYD, [26]) 

Table 1  Assignment of animals to the reference or validation set in the different scenarios

Validation animals were further divided according to the status of the corresponding sire (member of the reference set or not), resulting in three validation groups. 
Sires of validation animals in generations 9 and 10a were part of the reference set and sires of validation animals in generation 10b were not part of the reference set. 
First, daughters of the sires of generation 8 were added to the reference set (step 1) and then daughters of the sires of generation 7 were also added (step 2)

Generation Number of individuals Explanation

Base scenario Extended scenarios step 1 Extended scenarios step 2

5 1050 1050 1050 Reference set

6 1050 1050 1050

7 1050 1050 1050 + daughters

8 1050 1050 + daughters 1050 + daughters

9 1050 1050 1050 Validation set

10a 4516 4516 4516

10b 10,484 10,484 10,484
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of the corresponding bull or were directly included in 
the reference set. In this way, YD of the reference daugh-
ters were automatically omitted from the daughter yield 
deviation (DYD) of the sire and double-counting in the 
extended scenarios was avoided. To account for different 
variances of the YD and DYD, phenotypes were weighted 
with the equivalent number of own performances (EOP, 
[27]) calculated as 

where � =
σ
2
e

σ2a
 with σ2a being the additive genetic variance 

and σ2e the residual variance and R2
phen the reliability of 

the DYD or YD.

EOP = �
R2
phen

1−R2
phen

,

Designs
In a more general analysis, we investigated the effects 
of selection on validation reliability and model-
derived reliability parameters. To be able to identify 
these selection effects, we repeated the basic scenario 
using the same parameters for QMSim except that 
we replaced directional selection on EBV by random 
selection.

In the main part of the simulation, we included large 
numbers of genotyped cows into the reference set. The 
general sampling strategy was to genotype a random 
sample of fixed size of phenotyped daughters of each arti-
ficial insemination (AI) bull in defined cohorts. We inves-
tigated 10 different scenarios: one base scenario and nine 
extended scenarios. In the base scenario, the reference 

Fig. 1  Structure of the simulation
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set consisted only of sires of generations 5  to 8. For the 
extended scenarios, an increasing number of the gener-
ated female genotypes and phenotypes were integrated 
into the reference set. Tables 1 and 2 give an overview of 
the different scenarios.

To assess how robust the benefits are with respect to 
our general sampling strategy, we changed the compo-
sition of the sample of scenario –/50 (Table 2). Instead 
of including a random sample of daughters as was done 
in scenario –/50, we selected the best 50 daughters of 
each sire for scenario –/50s (selection was done on 
YD). In the scenario –/25r25s, we selected 25 daugh-
ters at random and combined them with the 25 best 
remaining daughters of the corresponding sire. Finally, 
we also ran one unbalanced scenario (–/50ub) with dif-
ferent numbers of daughters per sire to test the effect 
of moderate unbalancedness but the overall number 
of genotyped females was kept the same as in scenario 
–/50. This was done by randomly selecting five daugh-
ters for 330 sires, 50 daughters for 621 sires and all 200 
daughters for 99 sires. The different numbers of the 
daughter sets per sire were chosen arbitrarily but we 
ensured that the total number of genotyped females 
was maintained and that each sire was represented by 
at least some daughters. Moreover, random assign-
ment of the different numbers of daughters to the sires 
was also conducted.

Genomic prediction
Due to the large number of genotypes, we used a SNP-
best linear unbiased prediction (BLUP) model [28] to cal-
culate direct genomic values (DGV) and reliabilities. The 
model equation is as follows:

and the corresponding mixed model equations are:

where 

and y is the vector of observations (here DYD or YD), b 
the vector of fixed effects (in our simulation only an over-
all mean), g is the vector of random marker effects, and e 
the vector of residual effects. Matrix X is a design matrix 
which links the observations to the respective fixed 
effects and M is the centered coefficient matrix of marker 
genotypes and pj and qj are base allele frequencies of 
marker j estimated for generation 0 [29]. Centering was 
done by subtracting two times the base allele frequency 
estimate from the corresponding column of M. Matrix R 
is a diagonal matrix with σ2e/wi on the diagonal, where wi 
is the EOP of the i-th observation and matrix I is an iden-
tity matrix of order m (number of markers).
DGV are calculated as:

and the corresponding predicted error variances (pev) 
are calculated as:

where M∗ is matrix M extended with a column of ones, and 
C−1
s  is the inverse of the left hand side of the SNP-BLUP-

MME (mixed model equation). The inclusion of the over-
all mean in the calculation of the pev can be questioned 
and may lead to slightly higher theoretical reliabilities. We 
empirically compared results including and omitting the 
overall mean and found differences that were smaller than 
the rounding precision of the results. Moreover, because 
the overall mean is included in each scenario, its impact on 
the contrasts between scenarios can be ignored.

The reliability of the DGV of the i-th animal can then 
be calculated as:

where diag(pev(DGV))i is the i-th diagonal element of 
the pev(DGV) and diag(G)i the i-th diagonal element of 

y = Xb+Mg + e,

(

X′R−1X X′R−1M

M′R−1X M′R−1M + I/σ 2
g

)(

b̂
ĝ

)

=

(

X′R−1y

M′R−1y

)

σ
2
g =

σ
2
a

∑m
j=1(2pjqj)

,

DGV = b̂+Mĝ,

pev(DGV) = M∗C−1
s M∗′,

R2
i = 1−

diag(pev(DGV))i

diag(G)iσ2a
,

Table 2  Scenarios with  corresponding number of  animals 
and composition of the reference set

The names of the extended scenarios are derived from the number of daughters 
per sire which are included in the reference set and the sire’s generation. The 
number before the slash in the scenario’s name is the number of daughters per 
progeny-tested bull of generation 7 (i.e. step 2 of the extended scenarios) and 
the number after the slash is the number of daughters per progeny-tested bull 
of generation 8 (i.e. step 1 of the extended scenarios). The –/50s is a scenario in 
which the best daughters were selected to be genotyped, –/25r25s is a scenario 
in which 25 random daughters per sire and the 25 best daughters per sire 
were selected and genotyped and –/50ub is a scenario in which an unbalanced 
number of daughters for all sires was selected

Scenario Reference set

Number of sires Number of daughters

Base 4200 0

–/25 4200 26,250

–/50 4200 52,500

–/100 4200 105,000

–/200 4200 210,000

50/50 4200 105,000

100/100 4200 210,000

200/200 4200 420,000

–/50s 4200 52,500

–/25r25s 4200 52,500

–/50ub 4200 52,500
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the genomic relationship matrix (G) which is 1 plus the 
genomic inbreeding coefficient. Matrix G is defined as 
follows:

In addition, we calculated a weighted regression of TBV 
on DGV for validation animals. We used the model fit of 
this regression as a measure of validation reliability (ρ2) 
and the slope (b) as a measure of the bias that describes 
the inflation of estimates [30].

To quantify the effect of incomplete LD between SNPs 
and QTL on the difference between model-derived theo-
retical reliabilities and validation reliabilities, we included 
an analysis where we extended the marker genotype 
coefficient matrix M by QTL genotypes. We present the 
results in the context of the comparison between designs 
with directional and with random selection (ρ2QTL).

Results
Comparison of the simulated dataset with the Fleckvieh 
population
Comparison of the extent of LD between the simulated 
dataset and the real Fleckvieh dataset [31], revealed a 
good agreement with slightly higher values of the link-
age parameter r2 [32] for the simulated data at shorter 
distances. The average distance between a QTL and the 
nearest SNP in the simulated data was 60 kb. Allele fre-
quencies for the simulated dataset were more evenly dis-
tributed than those for the real FV data, for which a slight 
shift to lower allele frequencies was observed. These 
results are illustrated in Figure S1 [see Additional file 1: 
Figure S1] and Figure S2 [see Additional file 2: Figure S2].

Simulation
For ease of interpretation, we separated the presentation 
of results for generation 9 from those for generation 10, 
in order to highlight the fact that generation 9 represents 
a group of individuals that are already pre-selected on an 

G =
MM′

∑m
j=1(2pjqj)

.

EBV including Mendelian sampling information in the 
course of the simulation process. This selection does have 
an effect on validation statistics [30]. In contrast, genera-
tion 10 is strictly unselected. Results for generation 10 
were further divided according to the status of the sire 
(member of the reference group or not). A more detailed 
categorization of the results for these two generations is 
provided in Tables S1 and S2 [see Additional file 3: Tables 
S1 and S2]. There was a general tendency for scenarios 
with the same number of genotyped females (scenario 
–/100 compared to scenario 50/50 and scenario –/200 
compared to scenario 100/100) showing nearly identical 
results. For the sake of clarity, we do not present results 
for the redundant scenarios. All the results shown are 
averages over five repetitions of the simulation. Stand-
ard errors of the results presented in the main body of 
the paper were less than 1.3 % for validation reliabilities 
(except for one scenario i.e. –/25r25s where standard 
errors were between 3.2 and 4.1 %) and less than 0.02 for 
regression slopes.

General effects of selection
Table  3 shows model-derived reliabilities (R2) and vali-
dation reliabilities (ρ2) for a scenario with directional 
selection and a scenario with random selection. Model-
derived reliabilities were slightly higher for the scenario 
with directional selection than for the scenario with 
random selection, which indicated that, with directional 
selection, the pattern of family sizes differs and results 
in a more informative structure for validation animals. 
Comparing R2 with ρ2 for randomly selected populations, 
we found slightly lower validation reliabilities when only 
SNPs were considered. When QTL were included in the 
SNP panel, validation reliabilities (ρ2QTL) were slightly 
higher than R2. In the scenario with directional selection 
the validation reliabilities for generation 10 were lower 
than with random selection (40  to  51 and 33  to  40  %, 
respectively). When, in addition, the validation sample 
was selected on information that included Mendelian 
sampling information as in generation 9, the decrease 

Table 3  Model-derived reliabilities (R2) and validation reliabilities (ρ2) in the base scenario with directional and random 
selection

Validation animals were divided according to whether their sire was in the reference set or not. For the purpose of illustration (and only here), we included results of 
analyses in which the segregating QTL were included in the SNP panel used for estimation and prediction (ρ2

QTL
)

Validation set Sire status Number of individuals Base scenario

Random selection Directional selection

R2 ρ
2

ρ
2
QTL

R2 ρ
2

ρ
2
QTL

9 Reference 1050 54 51 59 58 26 32

10a Reference 4516 54 51 58 58 40 48

10b Not reference 10,484 48 40 49 48 33 41
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in validation reliabilities was even more pronounced 
(26 to 51 %). Selection on parent average (PA) in the vali-
dation group did not result in inflated predictions (slope 
estimates ranged from 0.93 to 0.99 for generation 10a).

Effects of genotyped daughters
Table 4 presents validation reliabilities for the three vali-
dation groups for the basic scenario and five extended 
scenarios. Using results for group 10a as a starting point, 
it can generally be stated that introducing an increas-
ing number of genotyped daughters into the reference 
set clearly had a positive impact on the validation reli-
ability. Beginning with scenario –/100, validation reli-
abilities reached values of 70  % and more. If the sire of 
a validation animal was not a member of the reference 
set (generation 10b), the overall validation reliability was 
reduced, but the general trend observed was the same. 
As expected, the effect of the contribution of a missing 
sire to the overall reliability decreased as information 
increased. When the validation group itself was selected 
(generation 9), the validation reliabilities for all scenarios 
were lower than for the other validation groups. Again, 
the impact of this decrease was more pronounced when 
the number of cows in the reference set was smaller.

Effects of the composition of the daughter samples
Table 5 illustrates some aspects of the composition of the 
sample of daughters that were chosen for genotyping. 
Starting with values for R2, ρ2 and b for scenario –/50 as 

a reference point, we found a lower validation reliability 
and a noticeable increase in inflation of genomic predic-
tions when a selected daughter group was genotyped (sce-
nario –/50s), even if selection was based on the criterion 
of moderate reliability as in this case. Comparing the base 
scenario (Table 4) to scenario –/50s (Table 5), the benefit 
from adding 52,500 genotyped daughters was small with 
respect to validation reliability. The negative effect of this 
preselection can be partially compensated by a combina-
tion of directly and randomly selected daughters (sce-
nario –/25r25s, Table 5), but nevertheless the results were 
lower than those for a scenario where only 25 randomly 
selected daughters per sire were included (scenario –/25, 
see Table 4). A moderately unbalanced scenario (scenario 
–/50ub, Table 5), however, had no detectable effect on reli-
abilities or regression slopes.

Discussion
In this study, we show that even small groups of daugh-
ters per sire can have large beneficial effects on model-
derived reliabilities as well as validation reliabilities. 
A straightforward strategy to achieve these beneficial 
effects is to genotype a balanced random sample of 
daughters per sire. With respect to the structure of the 
validation sample, the results for generation 10 represent 
the ideal validation sample because it comprises the com-
plete male offspring of the previous generation. In the 
following discussion, we refer to the results for validation 
group 10a unless otherwise indicated.

Table 4  Validation reliability (ρ2) for six different scenarios

Validation animals were divided according to whether their sire was in the reference set or not

Validation set Sire status Number of individuals ρ
2

Base –/25 –/50 –/100 100/100 200/200

9 Reference 1050 26 44 53 62 72 80

10a Reference 4516 40 56 65 73 80 86

10b Not reference 10,484 32 51 60 69 77 84

Table 5  Model-derived reliabilities (R2 were virtually equal across all scenarios), validation reliability (ρ2) and regression 
slopes of the –/50 scenario and the three additional scenarios

Validation animals were divided according to whether their sire was in the reference set or not
a  Higher standard error compared to the other scenarios

Scenarios –/50 –/50s –/25r25s a –/50ub

Validation set Sire status Number of individuals R2 ρ
2 b ρ

2 b ρ
2 b ρ

2 b

9 Reference 1050 81 53 0.82 35 0.60 40 0.98 53 0.79

10a Reference 4516 81 65 0.95 42 0.76 48 1.22 65 0.95

10b Not reference 10,484 76 60 0.92 37 0.70 44 1.14 60 0.91
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Effects of selection
This section is included to illustrate the general effects of 
selection on validation statistics and to clarify the extent 
to which the results obtained can be explained by the 
fact that our population is under selection. The results 
(Table  3) are in good agreement with expectations and 
results found by other authors [33–35]. Surprisingly, at 
first, model-derived theoretical reliabilities were slightly 
higher for the scenario with directional selection than 
for the scenario with random selection. However, by ana-
lyzing family structures, we found that with directional 
selection the pattern of family sizes differed, resulting in 
a more informative structure for validation animals in 
scenarios with directional selection (results not shown). 
Model-derived theoretical reliabilities and validation reli-
abilities show relatively good agreement for the scenario 
with random selection. The slightly lower values for vali-
dation reliabilities are presumably a consequence of the 
fact that the LD between SNPs and QTL is not perfect 
and consequently some parts of the additive-genetic vari-
ance are not captured by SNPs [36]. However, by simply 
adding the QTL to the model, we found that validation 
reliabilities were slightly higher than model-derived theo-
retical reliabilities. In this case also, the theoretical model 
is only an approximation of the underlying true model.

The lower values for validation reliabilities under direc-
tional selection must be considered as a consequence 
of selection in the parental generation [33]. When the 
validation sample itself was selected on a criterion that 
included Mendelian sampling information, as was the 
case in generation 9, the decrease in validation reli-
abilities was even more pronounced. These results are 
in agreement with previous studies about the effects of 
selection on theoretical and validation reliabilities [35, 
37].

Size and structure of the daughter samples
We tested different scenarios for which increasing 
numbers of genotyped and phenotyped daughters per 
sire were included in the reference set. By genotyp-
ing 25 daughters per sire from a single generation (cor-
responding to an overall number of 26,250 genotyped 
females, Table 2), the validation reliability was consider-
ably improved, from 40  % in the base scenario to 56  % 
(Table  4, scenario –/25). As the number of daughters 
increased, the validation reliability showed a nearly linear 
increase. If we assume that proofs from progeny-testing 
typically show a validation reliability of about 70 % [38], 
this threshold is reached in scenario –/100 for validation 
group 10a and in scenario 100/100 for all other validation 
groups. With the largest number of genotyped daughters 
in scenario 200/200 (corresponding to a total of 420,000 
genotyped females in the reference set), all validation 

groups reached reliabilities of 80  % or more. This indi-
cates that large numbers of (unselected) females in the 
reference set can largely compensate for unfavorable 
effects such as selection in the parental generation or the 
effect of a sire for which daughter proofs are not avail-
able. As already mentioned, we did not find any relevant 
differences between scenarios with equal total numbers 
of females (e.g. scenarios 50/50 and –/100). The similarity 
between the results of these scenarios is interesting. We 
expected that a scenario with daughters from two gen-
erations such as scenario 50/50 would lead to (slightly) 
higher validation reliabilities than scenario –/100 
because with overlapping generations a larger number of 
sires would have genotyped daughters in scenario 50/50 
and therefore more haplotypes would have been sam-
pled. However, it seems that the existing diversity of hap-
lotypes is already sufficiently covered when genotyping 
only one generation. In addition, beneficial effects can 
be reduced by an additional round of meiosis [21]. This 
implies that a large fraction of the benefits can be already 
generated in the first generation of a genotyping strategy 
that considers randomly selected females. Other studies 
found increases in validation reliabilities when including 
cows in the reference set but the reported increases were 
generally much lower e.g. [8, 16, 39]. We see several rea-
sons for such differences. The most obvious one is cer-
tainly the larger number of cows that were assumed to be 
genotyped and phenotyped. Pryce et al. [8] and Koivula 
et  al. [39] added approximately 10,000 genotyped cows 
to the reference set and Calus et al. [16] only ~1600 first 
lactation heifers. Other reasons might be related to key 
parameters such as the reliability of the phenotype [36], 
effective population size or the LD structure. Moreover, 
all studies mentioned above used real data that can be 
differently influenced by selection.

The concept that we propose here is based on geno-
typing and phenotyping a random sample of (preferably) 
first-crop daughters of each sire from a generation. We 
examined how deviations from this design would influ-
ence results. Comparison of the results of scenario –/50 
(random daughter sample, Table  4) and scenario –/50s 
(selected daughter sample, Table  5), showed that with 
scenario –/50s the beneficial effect of an additional pool 
of 52,500 genotypes in the reference set on validation 
reliability is almost null when compared to the base sce-
nario. Even worse, preselection of daughters caused an 
increase in inflation as indicated by the low regression 
slopes (Table  5). One possible explanation is that refer-
ence animals that are selected based on their within-family 
deviation lead to biased family means and also to biased 
estimates of the deviations from the family mean. Schaef-
fer [11] argued that the animal model might become obso-
lete due to the fact that, in the future, only preselected 
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young bulls will become reference animals. The conse-
quence of this preselection would be that the phenotyped 
sons of a sire would not represent a random sample of all 
sons of this sire. Schaeffer [11] expected a relevant increase 
in inflation as a consequence of this development and 
given our results this expectation might be at least partly 
justified. Although not explicitly covered here, it seems 
likely that the integration of elite cows in the reference set 
will result in an even stronger bias, because elite cows are 
not only selected, they frequently receive also preferential 
treatment so that even their phenotypes are biased. Stud-
ies of Wiggans et al. [19] and Dassonneville et al. [20] dealt 
with the consequences of preferential treatment and pro-
vide further evidence of its biasing effects.

The negative result of scenario –/50s can be only partly 
removed by a combination of selected and unselected 
daughters (scenario –/25r25s; same number of daugh-
ters, Table  5). This result indicates that the combination 
of selected and unselected data cannot yield precise and 
unbiased estimates. Moreover, the results of scenario 
–/25r25s are lower than those of scenario –/25 (Table 4), 
which indicates that it might be relevant to exclude the 
genotypes of (pre-)selected daughters from the reference 
set if this information is available. This kind of monitoring 
presents an additional challenge especially to single-step 
genomic BLUP, in which putting a restriction on the refer-
ence set is not conceptually intended, an important aspect 
that was already emphasized by other authors [40].

Another factor with a strong impact on the validation 
results is the heritability of the trait. In a pilot study [21], 
we found that for traits with medium to high heritabilities 
(h2 = 0.35), 100 genotyped daughters per bull increased 
the marginal reliability [41] by up to 17  % (depend-
ing on the scenario) whereas in situations with very low 
heritabilities (h2 = 0.05), the same number of daughters 
increased the reliability by up to 4 % only. Our study was 
limited to a trait with a heritability of 0.4 to investigate 
several other questions. However, it may be expected that 
with a lower heritability, less substantial improvements 
would be found.

In the literature, there are other strategies for genotyp-
ing cows. Jiménez-Montero et al. [42] found higher reli-
abilities when cows selected from both extremes of the 
distribution of phenotypes were genotyped instead of the 
best ones or a random sample. We hypothesize that such 
a strategy would be better suited for traits for which only 
a few QTL with large effects segregate. Such traits are not 
common in dairy cattle [43] and therefore we focused our 
study on a trait with polygenic characteristics, for which 
no advantage of genotyping extreme animals is expected. 
Moreover, such a sampling strategy would require trait-
specific daughter samples, which is an obstacle for prac-
tical implementation. In Calus et al. [16], cow genotypes 

of entire herds are integrated in the reference set. This 
strategy could indeed ensure the representativeness of 
the cow sample if some precautions are taken. We found 
no disadvantages with moderate unbalancedness in sce-
nario –/50ub in which we ensured that each bull was at 
least represented by a sample of five daughters. Further 
investigations on this subject are necessary to clarify 
which degree of unbalancedness can be tolerated before 
the accuracy of prediction deteriorates.

In real world breeding programs, it is reasonable to 
assume that there is a limited interest for the farmers to 
genotype randomly selected cows and to keep all of them 
for an unbiased performance recording. Thus, for practical 
implementation, it would be necessary to find a solution to 
finance the genotyping costs and to keep track of the cows 
sampled for the reference set. However, this independent 
financing solution, once established as a component of the 
breeding program, might be the only way to ensure a neu-
tral, unselected daughter sample in the long term.

The simple balanced genotyping designs proposed 
here led to very stable improvements as indicated by the 
small standard errors of reliabilities and slopes. The only 
exception was for scenario –/25r25s, which showed more 
variation in the results. This indicates that some sampling 
designs are more robust than others with respect to the 
improvements that can be achieved.

Conclusions
Extending the reference set by adding a large number of 
cows with genotypes and phenotypes increases the reli-
ability of breeding values of young selection candidates 
and may overcome the deterioration of validation reli-
abilities that are caused by intense preselection of young 
bulls. We showed the benefits from genotyping a random 
sample of (first-crop) daughters of all sires from one or 
two generations. It is possible to obtain reliabilities for 
selection candidates that are as high as, or even higher 
than, the reliabilities that have been formerly observed 
for young progeny-tested bulls. We found that the bene-
fits that can be achieved are sensitive to the strategy used 
to sample females for genotyping.
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