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Estimation of genetic connectedness 
diagnostics based on prediction errors 
without the prediction error variance–
covariance matrix
John B. Holmes1*, Ken G. Dodds2 and Michael A. Lee1

Abstract 

Background:  An important issue in genetic evaluation is the comparability of random effects (breeding values), par-
ticularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connected-
ness. While various measures of connectedness have been proposed in the literature, there is general agreement that 
the most appropriate measure is some function of the prediction error variance–covariance matrix. However, obtain-
ing the prediction error variance–covariance matrix is computationally demanding for large-scale genetic evaluations. 
Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error 
variance–covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and 
functions of the variance–covariance matrix of estimated contemporary group fixed effects.

Results:  In this paper, we show that a correction to the variance–covariance matrix of estimated contemporary 
group fixed effects will produce the exact prediction error variance–covariance matrix averaged by contemporary 
group for univariate models in the presence of single or multiple fixed effects and one random effect. We dem-
onstrate the correction for a series of models and show that approximations to the prediction error matrix based 
solely on the variance–covariance matrix of estimated contemporary group fixed effects are inappropriate in certain 
circumstances.

Conclusions:  Our method allows for the calculation of a connectedness measure based on the prediction error 
variance–covariance matrix by calculating only the variance–covariance matrix of estimated fixed effects. Since the 
number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random 
effect levels, the computational requirements for our method should be reduced.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
A goal of genetic evaluation is to predict genetic merit, 
while optimising accuracy and minimising bias. Ide-
ally, a breeder of seed stock should be able to compare 
all individuals in an evaluation irrespective of contem-
porary group. This is problematic when there is little or 
no genetic connectedness between groups, unless there 
is a belief that the model assumptions, specifically 

assumptions concerning genetic relationships between 
animals, completely describe the population in question, 
which is not the case in general. Estimation and report-
ing of genetic connectedness are important as there are, 
taking the example of the New Zealand sheep industry, 
hundreds of flocks evaluated over disparate environ-
ments and within each, there are many more contempo-
rary groups. There is sharing of genetic material (rams) 
between groups and individual seedstock breeders and 
a centrally co-ordinated progeny test to increase genetic 
connectedness [1], but many flocks or groups of flocks 
likely lack genetic connectedness to allow comparison, 
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therefore, in New Zealand, genetic connectedness is 
reported to seed stock (rams) breeders [2].

In the work of Foulley et  al. [3, 4] and Laloë et  al. [5, 
6], genetic connectedness is regarded as a measure of 
predictability, where predictability is the random effect 
extension of estimability [7]. More recently, this was the 
approach to connectedness taken by Kerr et  al. [8]. An 
estimable function [9, 10] is defined in the context of a 
fixed effect model. In particular, a function is said to be 
estimable if vectors a and k exist such that E(a′y) = k′β . 
For random effects, all linear combinations can be pre-
dicted, regardless of their distribution [3], even if they are 
not estimable when treated as fixed effects. To get around 
this, connectedness was defined as the loss of informa-
tion due to a lack of orthogonality [4] measured by using 
the Kullback–Leibler divergence. It was shown in Laloë 
[5] that for a linear mixed model, the expected informa-
tion is a function of the ratio of the posterior and prior 
variance for u, alternatively known as the prediction error 
variance–covariance matrix (PEV) and the relationship 
matrix, respectively. They also showed that the expected 
information could be re-arranged to give a co-efficient of 
determination (CD) statistic [5, 6]. To reduce the compu-
tational cost of this measure, simulation and the repeated 
use of iterative solvers were proposed [11].

Alternative measures of connectedness have been 
designed either to ease interpretability or minimise com-
putational cost [12–14]. Usually these measures attempt 
to measure the level of genetic linkage between contem-
porary groups. They often also allow for the possibility 
that the model is incorrectly specified, such as omitting 
genetic groups. They include methods based on PEV, the 
variance–covariance matrix of estimated fixed effects 
Var(β̂), the covariance structure fitted for the random 
effects (the relationship matrix), or a combination of 
these. Those based on PEV include the ratio in determi-
nants between full and reduced models [4], differences in 
PEV of contrasts [12] and correlations of random effect 
contrasts [15]. Methods based on the variance–covari-
ance matrix of estimated fixed effects include variance of 
differences between estimated fixed effects (VED) [12], 
and correlations between estimated fixed effects referred 
to as connectedness rating (CR) [16]. The fixed effect 
usually considered is contemporary group (such as flock 
by year or herd by year). Methods based on the relation-
ship matrix include genetic drift variance [17] and direct 
genetic links [18, 19].

The focus here is on measures of connectedness that 
are functions of the PEV or the variance covariance 
matrix of estimated fixed effects, the links between them 
and the changes observed as the fitted effect structure is 
changed. The inclusion of genotype data was also con-
sidered to assess the impact changes in the relationship 

matrix have on the relationship between PEV and the 
variance–covariance matrix of estimated fixed effects 
and on the connectedness measure being considered.

The first of the measures that we investigated was the 
PEV of contemporary group differences (PEVDij) [12]. 
This is calculated from Z, the incidence matrix indicat-
ing which animals have records, xij, a vector of contrasts 
comparing two groups i and j and Var(û − u), the predic-
tion error variance–covariance matrix of random effects.

If the groups i and j being compared are contemporary 
groups such that x′iju is the difference in the mean ran-
dom effect between group i and j, PEVD can be simplified 
to a function of the prediction error variance–covari-
ance matrix of random effects averaged by contemporary 
group.

The coefficient of determination (CD(xij)) [5, 6] is also 
calculated from Z, xij and Var(û − u) but it also includes 
Var(u).

Flock correlation (r) [15] is calculated from the elements 
of the prediction error variance–covariance matrix of 
random effects averaged by contemporary group.

For the variance of differences in management unit 
effects (VED), Kennedy and Trus [12] used the variances 
and covariances of estimated contemporary group fixed 
effects, where β̂i is the estimated effect for contemporary 
group i and β̂j is the estimated effect for contemporary 
group j.

The basis for using VED is that Var(β̂) is an approxima-
tion of Var(û − u) [12] . In this scenario, VED should 
estimate the PEV of contemporary group differences, 
PEVD. As a connectedness rating (CR), [16] used the var-
iances and covariances of estimated contemporary group 
fixed effects, where β̂i is the estimated effect for contem-
porary group i and β̂j is the estimated effect for contem-
porary group j.

PEVDij = x′ijZVar(û − u)Z′xij .

PEVDij = Var(û − u)ii + Var(û − u)jj − 2Var(û − u)ij .

CD(xij) =
x′ijZVar(û)Z

′xij

x′ijZVar(u)Z
′xij

=
x′ijZ(Var(u)− Var(û − u))Z′xij

x′ijZVar(u)Z
′xij

.

rij =
Var(û − u)ij

√

Var(û − u)iiVar(û − u)jj

.

VEDij = Var(β̂)ii + Var(β̂)jj − 2Var(β̂)ij .
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Using the same argument as for VED, CR approximates 
the flock correlation. The aim of this paper is to give an 
exact measure of Var(û − u) using functions of the vari-
ance-covariance matrix of the estimated fixed effects. We 
also demonstrate that, under certain circumstances, the 
approximations provide poor estimates of Var(û − u) 
and hence are poor predictors of genetic connectedness.

For the remainder of this paper, Var(û − u) will be 
referred to as PEV and Var(û − u) as PEVMean.

Materials and methods
Data
The data available, collected by New Zealand seed stock 
(ram) breeders and previously used in Holmes et al. [20], 
consisted of 40,837 animals with live-weight recorded at 
eight months of age. These animals were born between 
2011 and 2013. Together with ancestors, 84,802 animals 
with pedigree information were obtained from the data-
base of the New Zealand genetic evaluation system for 
sheep, Sheep Improvement Limited (SIL) [2]. A total of 
269 animals were genotyped using the 50K Illumina SNP 
chip and of these, 21 had live-weight records. A total 
of 31,615 animals without genotype information were 
descendants of a genotyped animal. As these data were 
previously collected by commercial seed stock breeders, 
special animal ethics authorisation was not required.

Methods
Models
For modelling purposes, we considered the following 
variables as fixed effects. The contemporary group vari-
able was flock-sex-contemporary group combination, as 
is standard for growth traits in SIL. There were 202 flock-
sex-contemporary groups in the dataset. The combina-
tion of birth and rearing rank (four levels) and age of dam 
(three levels) were treated as categorical variables. Date 
of birth was treated as a continuous covariate and defined 
as the difference (in days) between the animals date of 
birth and the average date of birth in its flock and year 
combination. Weaning weight was fitted as a continu-
ous covariate. Three models were fitted. Model 1 fitted 
flock-sex-contemporary group combination as the only 
fixed effect. Model 2 fitted flock-sex-contemporary group 
combination, date of birth, and birth rearing rank as fixed 
effects. Model 3 fitted all available fixed effects. The ani-
mal genetic effect was fitted into all models as a random 
effect. Two variations on the variance-covariance matrix 
of the random animal effect were considered. These were 
A and H. Matrix A used only the pedigree information 

CRij =
Var(β̂)ij

√

Var(β̂)iiVar(β̂)jj

.
available to construct the variance–covariance matrix. 
The method of Meuwissen and Luo [21] was used to 
construct the inverse of A required for the mixed-model 
equations. Matrix H used genotype and pedigree infor-
mation to construct the variance–covariance matrix. The 
genomic component of the variance–covariance matrix 
G was constructed using the first method of VanRaden 
[22] and the inverse of H was constructed using the 
method outlined in Aguilar et.al. [23]. The variance com-
ponents were estimated for Model 3 using A to model 
the covariance structure of the animal effect in ASReml 
[24]. Estimates of variance components were σ 2

g = 1.81 
and σ 2

e = 7.43 resulting in a heritability of 0.20. Standard 
errors for the variance components were 0.13 and 0.11 
respectively. The variance components were then fixed at 
these values for all other models, regardless of whether 
the variance–covariance matrix of the random effect was 
A or H.

Functions of the fixed effects considered
Three functions of the variance–covariance matrix of 
estimated fixed effects were compared to the directly 
calculated PEVMean. Function 1 is the approximation 
Var(β̂1), where β̂1 is the vector of contemporary group 
fixed effects. The elements of this function were used to 
calculate CR [16] and VED [12]. Function 2 is the func-
tion of the variance–covariance matrix of estimated fixed 
effects that gives PEVMean for a model with only one 
fixed effect fitted.

Function 3 is the function of the variance–covariance 
matrix of estimated fixed effects that gives PEVMean for 
a model with multiple fixed effects fitted.

The derivations and notations for function 2 and function 
3 are in the “Appendix”.

Correction factors used in function 2 and function 3
Both function 2 and function 3 are matrix additions to 
function 1, Var(β̂1). Therefore, the extra calculations 
required can be regarded as correction factors to obtain 
PEVMean. In function 2, we subtracted σ 2

e (X
′
1
X1)

−1 
from function 1, where (X′

1
X1)

−1 is a diagonal matrix 
with entries ii equal to 1

ni
, where ni is the number of 

observations in contemporary group i. Therefore, 
σ 2
e (X

′
1
X1)

−1 is the correction factor for the number of 

PEVMean = Var(β̂)− σ 2
e (X

′X)−1
.

PEVMean =
(

X′
1X1

)−1
X′
1X2Var(β̂2)X

′
2X1(X

′
1X1)

−1

+ (X′
1X1)

−1X′
1X2Var(β̂2, β̂1)

+ Var(β̂1, β̂2)X
′
2X1(X

′
1X1)

−1

+ Var(β̂1)− σ 2
e (X

′
1X1)

−1
.
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records. Due to the inverse relationship with contempo-
rary group size, this correction is more pronounced for 
small contemporary groups. Function 3 is the addition of 
(X′

1
X1)

−1
X
′
1
X2Var(β̂2)X

′
2
X1(X

′
1
X1)

−1 + (X′
1
X1)

−1
X
′
1
X2

Var(β̂2, β̂1)+ Var(β̂1, β̂2)X
′
2
X1(X

′
1
X1)

−1 to function 2. 
This addition is therefore the correction to account for 
the inclusion of other fixed effects in the model.

Calculation of connectedness measures and their comparison
The fixed effect variance covariance matrix Var(β̂) and 
PEV were extracted from the inverse of the mixed model 
equations. PEVMean was calculated from PEV. From 
this, the PEV of contemporary group differences (PEVD) 
and flock correlation were calculated. From Var(β̂1), VED 
and CR were calculated. All calculations used R [25].

The three functions described earlier were compared 
using correlations between the elements of PEVMean 
and the corresponding elements of the function in ques-
tion. Diagonal elements were considered separately from 
off-diagonal elements.

As mentioned in the “Background” section, CR is the 
analogue to the flock correlation and VED is the analogue 
to PEVD under the assumption that Var(β̂1) approxi-
mates PEVMean. Therefore, correlations between the 
flock correlation and CR and between VED and PEVD 
were calculated to assess whether variance of differences 
or correlation functions of Var(β̂1) gave a more accu-
rate approximation to the corresponding functions of 
PEVMean than the individual elements of Var(β̂1) did for 
the individual elements of PEVMean. Both Pearson and 
Spearman correlations were considered for all examples 
to assess whether a linear relationship or just the relative 
rank was maintained.

Results
Model 1: Flock‑sex‑contemporary group interaction is the 
only fixed effect fitted
Correlations between the elements of PEVMean and the 
elements of function 1 and function 2 are in Table 1. For 
function 1, correlations were high for diagonal elements 
(Pearson: 0.994 for A, 0.994 for H. Spearman: 0.932 for 
A, 0.928 for H), regardless of whether A or H was used 
as the variance–covariance matrix of the animal ran-
dom effect. The off-diagonal elements of PEVMean and 
Var(β̂1) were exactly equivalent. As expected from the 
derivations earlier, function 2 produced an exact one to 
one correspondence with PEVMean.

A high correlation between the elements of PEVMean 
and the elements of function 1 and function 2 was 
observed because the correction to function 1 that is 
required to obtain PEVMean, when only one fixed effect 
is fitted, is the correction for the number of records. As 

mentioned earlier, the correction factor for the number 
of records was a diagonal matrix and the off-diagonal 
elements of Var(β̂) were unchanged when converting to 
PEVMean. The diagonal elements of PEVMean will be 
less than Var(β̂) (Fig.  1), in particular for contemporary 
groups with few records. This also means that CR con-
sistently gave lower values than the flock correlation.

The basis for using VED was that Var(β̂) approximated 
PEVMean. By the same logic, CR should also approxi-
mate the flock correlation. Correlations of CR with the 
flock correlation and of VED with PEVD are in Table 2. 
Pearson correlations of CR with the flock correlation 
were lower than the correlation between the elements of 
function 1 and PEVMean, which are in Table  1. Spear-
man correlations of CR with the flock correlation were 
higher. Correlations between VED and PEVD were high, 
but Pearson correlations were higher than Spearman cor-
relations. This was as expected based on the high correla-
tions for both the diagonals and off-diagonals. However, 

Table 1  Pearson and  Spearman correlations of  PEVMean 
with  functions 1, 2 and  3 for  three models and  two rela-
tionship matrices (A and H)

Measure 3 is not applicable for Model 1. Correlations marked with a* round to 1 
as opposed to being exactly 1

Model Function

1 2 3

1
A

Diagonals Pearson 0.994 1 NA

Diagonals Spearman 0.932 1 NA

Off-diagonal Pearson 1 1 NA

Off-diagonal Spearman 1 1 NA

1
H

Diagonals Pearson 0.994 1 NA

Diagonals Spearman 0.928 1 NA

Off-diagonal Pearson 1 1 NA

Off-diagonal Spearman 1 1 NA

2
A

Diagonals Pearson 0.994 1.000* 1

Diagonals Spearman 0.932 0.999 1

Off-diagonal Pearson 0.995 0.995 1

Off-diagonal Spearman 0.625 0.625 1

2
H

Diagonals Pearson 0.994 1.000* 1

Diagonals Spearman 0.928 1.000* 1

Off-diagonal Pearson 0.996 0.996 1

Off-diagonal Spearman 0.710 0.710 1

3
A

Diagonals Pearson 0.994 1.000* 1

Diagonals Spearman 0.935 0.980 1

Off-diagonal Pearson 0.481 0.481 1

Off-diagonal Spearman 0.423 0.423 1

3
H

Diagonals Pearson 0.994 1.000* 1

Diagonals Spearman 0.931 0.985 1

Off-diagonal Pearson 0.534 0.534 1

Off-diagonal Spearman 0.491 0.491 1
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the values of VED were in a higher range than PEVD due 
to the inflation of diagonal elements of Var(β̂) compared 
to PEVMean. The inflation of VED compared to PEVD, 

due to not applying the correction factor for the number 
of records, was most pronounced for small contemporary 
groups.

Model 2: Contemporary group, date of birth and birth 
rearing rank fitted
Correlations between the elements of PEVMean and the 
elements of function 1, function 2 and function 3 are in 
Table 1. Correlations between the elements of PEVMean 
and function 1 were high for diagonal elements but lower 
for off-diagonal elements. Due to the inclusion of non-
contemporary group fixed effects, elements of function 
2 did not give an exact correspondence to the elements 
of PEVMean. In function 2, correlations with the diago-
nal elements of PEVMean increased compared to func-
tion 1, while the off-diagonal elements were unchanged 
because the correction factor for the number of records 
applied to diagonals only. As expected from the deriva-
tions obtained above, function 3 produced an exact one 
to one correspondence with PEVMean.

The diagonal elements of function 2 gave almost a one 
to one correspondence with the diagonal elements of 
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Fig. 1  PEVMean against functions 1, and 2 for Model 1 when A was used. First column is diagonal elements, second column is off-diagonal elements. 
The red line is equality

Table 2  Pearson and  Spearman correlations of  the flock 
correlation with  CR and  PEVD with VED for  three models 
and two relationship matrices (A and H)

Model Correlation 
type

Flock correlation 
against CR

PEVD 
against VED

1
A

Pearson 0.943 0.994

Spearman 0.999 0.942

1
H

Pearson 0.945 0.994

Spearman 0.999 0.938

2
A

Pearson 0.914 0.994

Spearman 0.534 0.942

2
H

Pearson 0.927 0.994

Spearman 0.636 0.938

3
A

Pearson 0.430 0.994

Spearman 0.258 0.939

3
H

Pearson 0.481 0.994

Spearman 0.345 0.934
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PEVMean regardless of whether A (Fig. 2) or H was used. 
This indicates that the magnitude of the correction factor 
to account for the other fixed effects was negligible rela-
tive to the magnitude of function 2. The correction factor 
lowered the off-diagonal elements of Var(β̂1) uniformly. 
For both diagonal and off-diagonal elements, the relative 

impact of including the correction for other fixed effects 
in the model was therefore higher for elements with a 
lower absolute value.

Inclusion of other fixed effects lowered the correla-
tion between CR and the flock correlation and between 
VED and PEVD compared to model 1. CR usually gave 
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Fig. 2  PEVMean against functions 1, 2, and 3 for Model 2 when A was used. First column is diagonal elements, second column is off-diagonal ele-
ments. The red line is equality
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lower values than the flock correlation. Exceptions were 
due to both the diagonal and off-diagonal elements of 
Var(β̂1) that overestimated the corresponding element 
of PEVMean. Correlations between VED and PEVD were 
high; with Pearson correlations higher than Spearman 
correlations. As in Model 1, VED had a higher range than 
PEVD.

Model 3: Contemporary group, age of dam, date of birth, 
birth rearing rank and flock × sex interaction fitted
Correlations between the elements of PEVMean and 
function 1 were high for diagonal elements but lower 
for off-diagonal elements. Inclusion of additional fixed 
effects means that, as in Model 2, elements of function 
2 did not give an exact correspondence to the elements 
of PEVMean. Correlations of the diagonal elements 
of function 2 with the diagonal elements of PEVMean 
increased compared to function 1, while the off-diagonal 
elements were unchanged because the correction factor 
for the number of records applies to diagonals only. As 
expected from the derivations obtained above, function 
3 produced an exact one to one correspondence with 
PEVMean.

The correction factor to account for the other fixed 
effects in the model was typically about 35 times larger 
than in Model 2. As a result, diagonal elements of func-
tion 2 were increased compared to diagonal elements 
of PEVMean (Fig. 3). For the off-diagonal elements, the 
correction factor accounting for other fixed effects in 
the model was uniform when the off-diagonal element 
of PEVMean moved away from zero. There was more 
variation in the correction factor when the off-diagonal 
element of PEVMean was near zero. Inflation seen in 
off-diagonal elements of function 1 compared to off-
diagonal elements of PEVMean was due primarily to not 
correcting for other fixed effects rather than not correct-
ing for the number of records. CR generally gave larger 
estimates than the flock correlation and over-estima-
tion was most pronounced when off-diagonal elements 
of PEVMean and hence the flock correlation were near 
zero.

Inclusion of weaning weight and age of dam in the 
model decreased the correlations of CR with the flock 
correlation compared to Models 1 and 2 (Table 2). In par-
ticular, flock correlations that approach 0 in this model 
may have a high CR. The reasons for this will be elabo-
rated in the “Discussion” section. The largest difference 
between CR and the flock correlation was between con-
temporary groups 98 and 107 when A was used (flock 
correlation = 0.022, CR = 0.818), and between contem-
porary groups 147 and 152 when H was used (flock cor-
relation = 0.056, CR = 0.803). The correlation between 
VED and PEVD remained high in Model 3.

Impact of using H compared to A to model the variance–
covariance of the animal random effect
The use of H instead of A did not significantly change 
the Pearson correlation of PEVMean with the approxi-
mations functions 1 and 2, except for the off-diagonals 
in Model 3 (Table 1). Similarly, it did not result in large 
differences in the Pearson correlations between CR 
and the flock correlation or between VED and PEVD, 
except between CR and the flock correlation in Model 
3 (Table  2). The use of H increased the Spearman cor-
relations for off-diagonal elements of PEVMean with 
functions 1 and 2 (Table 1) and of CR with the flock cor-
relation (Table 2) for Models 2 and 3.

Additional file 1: Figure S1 shows the impact of using H 
as opposed to A, which was to increase PEVMean, par-
ticularly when the value of PEVMean using A was near 
zero. This was particularly obvious for the off-diagonals. 
The result was an increase in the flock correlation and CR 
compared to the equivalent model in which A was fitted.

Patterns in the correction factor accounting for the 
inclusion of other fixed effects in the model
The relationship between the correction factor and the 
PEVMean for the two models (Models 2 and 3), for which 
the correction factor was relevant is in Fig. 4. The correc-
tion factor was similar for both the diagonal and off-diag-
onal elements. There was no relationship between the 
value of the correction factor and the value of PEVMean, 
except for an increase in variability in the correction fac-
tor when the element of PEVMean was near zero. The 
correction factor was approximately 35 times larger in 
Model 3 than in Model 2, as indicated by traces of the 
correction factor. The low degree of variation in the cor-
rection factor for other fixed effects suggested that the 
dataset that we used was approximately balanced across 
contemporary groups.

Patterns in connectedness rating (CR) and variance 
of estimated differences of management units (VED)
Connectedness rating
The flock correlation was compared to CR (Fig.  5). As 
mentioned, CR underestimated the flock correlation 
in Model 1 for all pairs of contemporary groups and for 
most pairs in Model 2. Conversely, CR overestimated the 
flock correlation for most pairs in Model 3. In Model 2 
and especially in Model 3, there was a collection of con-
temporary group pairs for which the flock correlation 
was near zero (completely disconnected), while the cor-
responding CR estimate was much higher than zero. This 
was due to the correction factor for the other fitted fixed 
effects, which was similar for both the diagonal and off-
diagonal elements, and had the largest impact on very 
small covariances and hence correlations. The divergence 
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between CR and the flock correlation when the flock 
correlation was near zero was also a function of con-
temporary group size. Since the variances were inversely 
dependent on the number of records in the contempo-
rary group, the most pronounced differences between CR 

and flock correlation occurred between contemporary 
groups that were not linked and had a large number of 
records. Additional file  2: Figure S2 shows the relation-
ship between the harmonic mean 2

1
n1

+ 1
n2

 and CR when 

diagonal(PEVMean)

di
ag

on
al

(F
un

ct
io

n 
1)

off−diagonal(PEVMean)

of
f−

di
ag

on
al

(F
un

ct
io

n 
1)

diagonal(PEVMean)

di
ag

on
al

(F
un

ct
io

n 
2)

off−diagonal(PEVMean)

of
f−

di
ag

on
al

(F
un

ct
io

n 
2)

diagonal(PEVMean)

di
ag

on
al

(F
un

ct
io

n 
3)

0.0 0.5 1.0 1.5 0.00 0.05 0.10 0.15

0.0 0.5 1.0 1.5 0.00 0.05 0.10 0.15

0.0 0.5 1.0 1.5 0.00 0.05 0.10 0.15

0
2

4
6

8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
0

0.
5

1.
0

1.
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
0

0.
5

1.
0

1.
5

0.
00

0.
05

0.
10

0.
15

off−diagonal(PEVMean)

of
f−

di
ag

on
al

(F
un

ct
io

n 
3)

Fig. 3  PEVMean against functions 1, 2, and 3 for Model 3 when A was used. First column is diagonal elements, second column is off-diagonal ele-
ments. The red line is the 45 degree line
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the corresponding flock correlation is low. For Model 
2 and especially Model 3, higher harmonic means were 
associated with higher CR.

Variance of estimated differences of management units 
(VED)
Unlike CR compared to the flock correlation, VED 
showed a stronger relationship with PEVD (Fig. 5). How-
ever, for all three models, there were certain pairs of con-
temporary groups that had similar VED, but substantially 
different PEVD. This variation increased PEVD and was 
probably due to VED not correcting for the number of 
records in each contemporary group because VED, PEVD 
and the correction factor for the number of records were 
all inversely dependent on the number of records in the 
contemporary groups in question. Table  3 shows that 
VED corrected for the number of records was equivalent 
to PEVD in Model 1, as expected, while the corrected 
VED showed a near one to one relationship with PEVD 
for both Models 2 and 3. An almost exact one to one 

relationship between corrected VED and PEVD for Mod-
els 2 and 3 was due to the correction factor for the other 
fixed effects being fairly uniform and thus cancelling out 
in the calculation of variances of differences, which both 
VED and PEVD are examples of.

Discussion
Sensitivity to the presence of other fixed effects in the 
model fitted
In the example used by Kennedy and Trus [12], a correla-
tion of 0.995 was found between Var(β̂1) and the mean 
PEV. However, they only considered a model where 
contemporary group was the only fixed effect. For the 
three models that we fitted, the correlation between the 
variance–covariance matrix of estimated contemporary 
group fixed effects and the prediction error variance–
covariance matrix of contemporary group averages was 
sensitive to the inclusion of other fixed effects in the 
model. This sensitivity depended on the correction factor 
for the other fixed effects included in the model.
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Situations where it is unnecessary to use the correction factor 
for other fixed effects included in the model
If we assume that the incidence matrices for the con-
temporary group effect X1 and the other fixed effects X2 
are orthogonal, then X′

1
X2 = 0. In this scenario, the cor-

rection factor for the other fixed effects included in the 
model becomes zero and the calculation of PEVMean 
from the variance–covariance matrix of estimated fixed 
effects can be done as if the contemporary group is the 
only fixed effect. An individual element ij of matrix X′

1
X2 

represents the number of observations of effect j in con-
temporary group level i if the other effect is a factor and 
is the sum of the covariate values for effect j in the con-
temporary level i if effect j is continuous. In practice, 
X′
1
X2 = 0 would be limited to the situation where the 

other fixed effects considered in the model are continu-
ous, centred on zero and balanced across all levels of the 
contemporary group effect, i.e. the mean of the other var-
iables is zero for all contemporary group levels.

Situations where parts of the correction factor for the other 
fixed effects in the model can be ignored
If all the columns of the other fixed effects present in 
the model lie in the null-space of X′

1
Var(y)−1, where X1 

is the incidence matrix of contemporary group effects 
and Var(y) = ZVar(u)Z′ + σ 2

e I is the variance–covari-
ance matrix of the observations, then Var(β̂2, β̂1) = 0 
and the correction factor for the other fitted fixed effects 
reduces to (X′

1
X1)

−1X′
1
X2Var(β̂2)X

′
2
X1(X

′
1
X1)

−1. The 
variance–covariance matrix of estimated contemporary 
group effects Var(β̂1) is unchanged when moving from 
the reduced model, (only contemporary group is fitted) 
compared to a full model where other fixed effects are fit-
ted. To measure how close the model considered could 
come to such a state, the covariance ratio [26] was con-
sidered. The covariance ratio is the ratio of determinants 
for Var(β̂) between a full and reduced model. Therefore, 
it is similar to the γ statistic proposed by Foulley et  al. 

[3]. In our particular case, we considered the covari-
ance ratio of contemporary group effects between a full 
and reduced model. If the correction factor reduced to 
(X′

1
X1)

−1X′
1
X2Var(β̂2)X

′
2
X1(X

′
1
X1)

−1, the covariance 
ratio was equal to 1. A covariance ratio that diverged 
from 1 indicates that estimates of Var(β̂)1 are influ-
enced by the addition of more fixed effects. The covari-
ance ratios of the three models fitted are in Table 4. The 
covariance ratio for Model 1 compared to Model 2 (0.406 
when A was used and 0.452 when H was used) is close to 
one, while for Model 1 compared to Model 3, it was not 
(0.005 when A was used, 0.006 when H was used).

Correction factor for other fixed effects in the model 
when those effects are balanced across contemporary 
groups.
When all other effects in the model are balanced across 
contemporary group, defined as having equal means (if 
continuous) or occurring for the same proportion of obser-
vations (if factors) for all contemporary groups, then the ele-
ments in each row of the incidence matrix (X′

1
X1)

−1X′
1
X2 

are the same. Therefore, (X′
1
X1)

−1X′
1
X2 = 1r′, where 

1 and r are column vectors of length p1 and p2, respec-
tively, and p1, p2 are the number of contemporary group 
and non-contemporary group effect levels in the model.  
As a consequence, (X′

1
X1)

−1
X
′
1
X2Var(β̂2)X

′
2
X1(X

′
1
X1)

−1  
= 1r

′Var(β̂2)r1
′ = r

′Var(β̂2)r11
′ = c11′ , where c is the 

constant r′Var(β̂2)r and 11′ a p1 × p1 matrix of ones. In 
this situation, the relationship between VED and PEVD 
simplifies to the result below when contemporary group is 
the only fixed effect fitted.

Table 3  Simple linear regression between  VED corrected 
for  the number of  records and  PEVD for  three models 
and two relationship matrices (A and H)

Numbers with a * only round to and are not exactly 0 or 1

Model Intercept Slope r
2

1, A 0 1 1

1, H 0 1 1

2, A 0.000* 1.001 1.000*

2, H 0.000* 1.001 1.000*

3, A 0.004 1.002 1.000*

3, H 0.004 1.002 1.000*

Table 4  Covariance ratio for  the variance–covariance 
matrix of  estimated contemporary group fixed effects 
for three models and two relationship matrices (A and H)

Covariance ratio is defined as det(Var(β̂)AVar(β̂)−1

B
) where A and B represent 

nested models. The model indicated in the column heading is A, the model in 
the row heading is B

Var(β̂)

Model 1 Model 2 Model 3

A

Var(β̂)−1

 Model 1 1 2.462 210.041

 Model 2 0.406 1 85.239

 Model 3 0.005 0.001 1

H

Var(β̂)−1

 Model 1 1 2.213 166.744

 Model 2 0.452 1 75.354

 Model 3 0.006 0.013 1
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Sensitivity to the mean of continuous covariates fitted in the 
model
To obtain the relationship between PEVMean and the 
variance–covariance matrix of estimated contempo-
rary group fixed effects, the intercept must be absorbed 
into the contemporary group effects. The variance of 
the intercept depends on the mean of the variables 
included in the model [9]. By absorbing the inter-
cept into the contemporary groups, Var(β̂1) becomes 
dependent on the means of the other variables included 
in the model. Since PEVMean itself is invariant to res-
caling of continuous fixed effects, the impact of the cor-
rection factor for the other fixed effects in the model is 
itself influenced by the means of the other effects. This 
can be illustrated by fitting a fourth model. Model 4 is 
equivalent to Model 3 except that the weaning weight 
covariate is standardised to have a mean of 0 and stand-
ard deviation of 1. The zero mean for weaning weight 
minimises the influence of the weaning weight covari-
ate on Var(β̂1). While the PEVMean was unchanged 
when moving from Model 3 to Model 4, Additional 
file  3: Figure S3 shows that the correction factor for 
the other fixed effects in the model was reduced. It also 
reduced but did not eliminate the overestimation of 
flock correlation when using CR, particularly when the 
flock correlation was near zero.

Link to postulated mixed model r2 and correction factor 
for the inclusion of other fixed effects
To measure the impact of including fixed effects other 
than contemporary group into the model, we considered 
the coefficient of determination (r2). Unlike the general 
linear model, linear mixed models do not have a com-
monly agreed r2 statistic. We considered two methods to 

PEVDij =Var(β̂1)ii + Var(β̂1)jj − 2Var(β̂1)ij

+ c(11′)ii + (1r′Var(β̂2, β̂1))ii

+ c(11′)jj + (1r′Var(β̂2, β̂1))jj

− 2c(11′)ij − 2(1r′Var(β̂2, β̂1))ij

+ (Var
(

β̂1, β̂2

)

r1
′)ii + (Var(β̂1, β̂2)r1

′)jj

− 2(Var(β̂1, β̂2)r1
′)ij − σ 2

e (X
′
1X1)

−1
ii − σ 2

e (X
′
1X1)

−1
jj

=Var(β̂1)ii + Var(β̂1)jj − 2Var(β̂1)ij

+ Var(r′β̂2, β̂1)i + Var(r′β̂2, β̂1)j

− 2Var(r′β̂2, β̂1)j + Var(r′β̂2, β̂1)i

+ Var(r′β̂2, β̂1)j − 2Var(r′β̂2, β̂1)i

− σ 2
e (X

′
1X1)

−1
ii − σ 2

e (X
′
1X1)

−1
jj

=Var(β̂1)ii + Var(β̂1)jj − 2Var(β̂1)ij

− σ 2
e (X

′
1X1)

−1
ii − σ 2

e (X
′
1X1)

−1
jj

=VEDij − σ 2
e (X

′
1X1)

−1
ii − σ 2

e (X
′
1X1)

−1
jj

measure r2m for the fixed effect component of the model. 
The first was marginal r2 [27]. This was calculated as:

where ŷ were the predicted values for the observation 
without the random effects. The second method was r2β 
[28]. This is calculated as a function of the Wald F statis-
tic, β̂

′
V(β̂)−1β̂ with n− p as ν, where n was the number of 

observations, and p was the number of fixed effects to be 
estimated.

While we did find the r2 statistics useful for indicating 
improvement in model fit, we did not find any relation-
ship with the correction factor. Therefore, r2 statistics like 
those considered should not be used as a diagnostic of 
the impact that the inclusion of additional fixed effects in 
the model had on the correction factor.

A diagnostic to assess the need to include the correction 
factor
The value of the correction factor for calculating 
PEVMean from Var(β̂) can be assessed as the trace 
of the matrix of the correction factor for other fixed 
effects included in the model. Specifically, the trace 
was considered as a diagnostic to determine whether it 
is appropriate to just use Var(β̂1)− (X′X)−1σ 2

e  as an 
approximation to PEVMean. The trace of the correc-
tion factor can be written as 2Tr(Var(β̂2, β̂1)(X′

1
X1)

−1
X
′
1
  

+Tr(Var(β̂2)X
′
2
X1(X

′
1
X1)

−1(X′
1
X1)

−1
X
′
1
X2) . This for-

mulation was less computationally demanding when 
the number of contemporary group fixed effect levels 
was greater than the number of other fixed effect levels. 
Traces that were further from zero indicated that the cor-
rection factor had a greater impact in the calculation of 
PEVMean. Table 5 provides the traces of the correction 
factor for the inclusion of other fixed effects in the model. 
For Model 3 the trace is approximately 35 times greater 
than for Model 2, which suggests that ignoring the other 
fixed effects in Model 3 results in a poor approximation 
of PEVMean.

r2m =
Var(ŷ)

Var(ŷ)+ σ 2
e + σ 2

g

,

r2β =
(q − 1)F(β̂,Var(Y))

ν + (q − 1)F(β̂,Var(Y))
.

Table 5  Trace of  the correction factor for  the inclusion 
of additional fixed effects

Model A H

2 −0.3310 −0.3298

3 −11.4795 −11.5005
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Utility of the method
Solving blocks of the mixed model equations
The exact PEVMean given by function 3 requires the 
calculation of the variance–covariance matrix for 
all estimated fixed effects in the model. This can be 
done directly by calculating (X′Var(y)−1X)−1, where 
Var(y) = ZVar(u)Z′ + σ 2

e I. This is computationally 
demanding since the direct inversion of Var(y) requires 
n2(n+ 1)/2 operations, where n is the number of obser-
vations. An alternative method is to find the block of 
the mixed model equation inverse corresponding to the 
fixed effects. Mathur et al. [16] wrote a program that cal-
culated these blocks for CR. Many software programs 
have in-built functions that can be used to solve equa-
tions of the form AX = B, where A and B are known 
matrices. Examples include the  solve() function in 
R [25]. Using this method to find Var(β̂), A would be the 
mixed model equation matrix and B would be the first p 
columns of the identity matrix, where p is the number of 
fixed effects to be estimated in the model. The elements 
of PEVMean can then be calculated from Var(β̂). How-
ever this method would also calculate Var(β̂, û − u) in 
addition to Var(β̂).

Calculating PEVMean from Var(β̂)
After Var(β̂) is obtained, the number of operations 
required to obtain the components that go into func-
tion 3 is as follows. To avoid re-calculation of the same 
matrix, we assume that these steps are done in the order 
outlined in Table  6. Since X′X is required to form the 
mixed model equations, X′

1
X2 is assumed to have no cost. 

In the number of operations, p1 represents the number of 
contemporary group fixed effects and p2 represents the 
number of other fixed effects estimated.

In the models we considered p1 >> p2. This means 
that the number of operations required to obtain 
PEVMean after Var(β̂) was obtained is of order p2

1
.

Conclusions
For single-trait models in which only one random effect 
is fitted, a function of the variance-covariance matrix of 
all fixed effects fitted can be used to calculate the predic-
tion error variance-covariance matrix averaged by con-
temporary group. Depending on the other fixed effects 
included, the use of just the elements of the variance–
covariance matrix of the estimated contemporary group 
fixed effects can give suboptimal estimates of connected-
ness. This is particularly the case when correlation-based 
measures are used, such as CR. These inaccuracies can be 
reduced by centring any continuous variables included in 
the model to have a mean of zero. When difference-based 
measures such as PEVD are used, the need to consider 
the other fitted fixed effects is eliminated when those 
effects are balanced across the contemporary groups 
effect levels. Nevertheless, there was always a notable 
improvement in the approximation of PEVMean by sub-
tracting σ 2

e (X
′
1
X1)

−1 from Var(β̂1).
The proposed formula for calculating PEVMean from 

Var(β̂) can be also used to calculate the flock correlation, 
the prediction error variance of differences, and the PEV 
component of the coefficient of determination for con-
trasts between contemporary groups by calculating only 
the block of the inverse of the mixed model equations cor-
responding to the fixed effects, rather than the full predic-
tion-error variance–covariance matrix of random effects. 
By being able to calculate PEVMean exactly from functions 
of Var(β̂), a more accurate assessment of connectedness 
can be obtained in livestock genetic evaluation compared 
to traditional fixed effect based measures such as connect-
edness rating and VED, without the computational cost of 
PEV based measures. A future goal of research is to give 
tractable solutions to calculate this for industry evalua-
tions which may include millions of animals. In addition, 
tens of thousands of these animals will typically have geno-
type data and in the future this number will increase and 

Table 6  Operations required to calculate the correction factor

Step Component Number of operations

1 (X′
1X1)

−1 p1

2 X
′
1X2Var(β̂2)X

′
2X1

p1p
2
2 + p21p2

3 Multiplying (X′
1X1)

−1 on both sides of step 2 2p21

4 X
′
1X2Var(β̂2, β̂1) p21p2

5 Multiplying (X′
1X1)

−1 on the left side of step 4 p21

6 Addition to obtain correction factor for other fixed effects 2p21

7 Addition of step 6 to Var(β̂1) p21

8 Completing PEVMean p1

Total calculations 2p1 + 6p21 + p1p2(2p1 + p2)
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hence will require a re-evaluation of the connectedness 
measures used in the New Zealand sheep industry. Bet-
ter measures of genetic connectedness between groups 
will allow seed stock breeders to make better decisions on 
the appropriateness of comparing animals in evaluations, 
which will, in an industry such as the New Zealand sheep 
industry, lead to increased genetic gain.

Appendix
Derivation of the PEVMean as a function of the variance–
covariance matrix of estimated fixed effects only
The equation of a linear mixed model has the following 
matrix form:

Solutions for β,u can be found by solving the mixed 
model equations derived by Henderson [29]:

The exact relationship between PEV and the variance of 
estimated fixed effects Var(β̂) was found by taking the 
variance on both sides of Eq. (1) and applying the results 
for the variances from mixed model equations [10].

y = Xβ+ Zu + e,Var(u) = G,Var(e) = R.

(1)X′R−1Xβ̂+ X′R
−1

Zû = X′R
−1

y

(2)Z′R−1Xβ̂+ (Z′R
−1

Z+G−1)û = Z′R
−1

y.

Formula for function 2
If contemporary group is the only fixed effect included, 
X′X is a diagonal matrix with the entry (X′X)ii corre-
sponding to the number of observations in contempo-
rary group i. The entries of X′Z are an incidence matrix 
indicating which contemporary group a particular animal 
belongs to. In this setting, the matrix (X′X)−1X′Z is the 
linear transformation from u to ū, where ū is the vector 
of breeding values averaged by contemporary group. This 
simplifies Eq. 4 as follows.

Thus, in this scenario PEVMean = Var(β̂)− σ 2
e (X

′X)−1 
as shown above.

Formula for function 3
If contemporary group is not the only fixed effect 
included, the incidence matrix, X, is split into two parts. 
X1 is the incidence matrix for contemporary groups 
and X2 is the incidence matrix for other contemporary 

(X′X)−1Var(X′Z(û − u))(X′X)−1
= (X′X)−1(Var(X′Xβ̂)

− σ 2
e X

′X)(X′X)−1

Var((X′X)−1X′Z(û − u)) =Var(β̂)− σ 2
e (X

′X)−1

Var(û − u) =Var(β̂)− σ 2
e (X

′X)−1

groups. In this setting, the matrix (X′
1
X1)

−1X′
1
Z is the 

linear transformation from u to ū with respect to contem-
porary groups. To derive function 3, Eq. 4 was re-written 
partitioning X as described and similarly partitioning β̂ 
into β̂1, β̂2, which are the vectors of estimated contem-
porary group and non-contemporary group fixed effects 
respectively.

(3)

Var(X′R
−1

Xβ̂+ X′R
−1

Zû) = Var(X′R
−1

y)

Var(X′R
−1

Xβ̂)+ Var(X′R
−1

Zû) = Var(X′R
−1

y)

X′R
−1

(XVar(β̂)X′
+ ZVar(û)Z′)R−1X = X′R

−1
(Var(Zu)+ Var(e))R−1X

X′R
−1

(XVar(β̂)X′
+ ZVar(û)Z′)R−1X = X′R

−1
(ZVar(u)Z′

+ R)R−1X

X′R
−1

(XVar(β̂)X′
− R)R−1X = X′R

−1
(ZVar(u)Z′

− ZVar(û)Z′)R−1X

X′R
−1

(XVar(β̂)X′
− R)R−1X = X′R

−1
Z(Var(u)− Var(û))Z′R−1X

X′R
−1

XVar(β̂)X′R
−1

X − X′R
−1

X = X′R
−1

ZVar(û − u)Z′R
−1

X

To simplify the result, we assumed that R = σ 2
e I where I 

is the identity matrix. This simplified the result in Eq. (3) 
to:

For the derivations of function 2 and function 3, it was 
assumed that the intercept was absorbed into the con-
temporary group fixed effect.

(4)
X′XVar(β̂)X′X − σ 2

e X
′X =X′ZVar(û − u)Z′X

Var(X′Xβ̂)− σ 2
e X

′X =Var(X′Z(û − u)).
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To complete the derivation, the top left block of Equa-
tion  5 which corresponds to Var(X′

1
Z(û − u)) was 

re-arranged.

(5)

(

X′
1
Z

X′
2
Z

)

Var(û − u)
(

Z′X1 Z′X2

)

=

(

X′
1
X1 X′

1
X2

X′
2
X1 X′

2
X2

)(

Var(β̂1) Var(β̂1, β̂2)

Var(β̂2, β̂1) Var(β̂2)

)

×

(

X′
1
X1 X′

1
X2

X′
2
X1 X′

2
X2

)

− σ 2
e

(

X′
1
X1 X′

1
X2

X′
2
X1 X′

2
X2

)

.
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Var(X′
1Z(û − u)) =X′

1X1Var(β̂1)X
′
1X1 + X′

1X2Var(β̂2)X
′
2X1

+ X′
1X2Var(β̂2, β̂1)X

′
1X1 + X′

1X1Var(β̂1, β̂2)X
′
2X1 − σ 2

e X
′
1X1

Var((X′
1X1)

−1X′
1Z(û − u)) = (X′

1X1)
−1X′

1X1Var(β̂1)X
′
1X1(X

′
1X1)

−1

+ (X′
1X1)

−1X′
1X2Var(β̂2, β̂1)X

′
1X1(X

′
1X1)

−1

+ (X′
1X1)

−1X′
1X1Var(β̂1, β̂2)X

′
2X1(X

′
1X1)

−1

+ (X′
1X1)

−1X′
1X2Var(β̂2)X

′
2X1(X

′
1X1)

−1

− σ 2
e (X

′
1X1)

−1X′
1X1(X

′
1X1)

−1

Var(û − u) =Var(β̂1)+ (X′
1X1)

−1X′
1X2Var(β̂2)X

′
2X1(X

′
1X1)

−1

+ (X′
1X1)

−1X′
1X2Var(β̂2, β̂1)

+ Var(β̂1, β̂2)X
′
2X1(X

′
1X1)

−1
− σ 2

e (X
′
1X1)

−1

Thus in this scenario, PEVMean = Var(β̂1)+ (X′
1
X1)

−1 
X
′
1
X2Var(β̂2)X

′
2
X1(X

′
1
X1)

−1 + (X′
1
X1)

−1
X
′
1
X2Var(β̂2, β̂1)

+Var(β̂1, β̂2)X
′
2
X1(X

′
1
X1)

−1 − σ 2
e (X

′
1
X1)

−1 as shown 
above.
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