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Abstract 

Background:  A better understanding of the genetic architecture of complex traits can contribute to improve 
genomic prediction. We hypothesized that genomic variants associated with mastitis and milk production traits 
in dairy cattle are enriched in hepatic transcriptomic regions that are responsive to intra-mammary infection (IMI). 
Genomic markers [e.g. single nucleotide polymorphisms (SNPs)] from those regions, if included, may improve the 
predictive ability of a genomic model.

Results:  We applied a genomic feature best linear unbiased prediction model (GFBLUP) to implement the above 
strategy by considering the hepatic transcriptomic regions responsive to IMI as genomic features. GFBLUP, an exten-
sion of GBLUP, includes a separate genomic effect of SNPs within a genomic feature, and allows differential weight-
ing of the individual marker relationships in the prediction equation. Since GFBLUP is computationally intensive, we 
investigated whether a SNP set test could be a computationally fast way to preselect predictive genomic features. 
The SNP set test assesses the association between a genomic feature and a trait based on single-SNP genome-wide 
association studies. We applied these two approaches to mastitis and milk production traits (milk, fat and protein 
yield) in Holstein (HOL, n = 5056) and Jersey (JER, n = 1231) cattle. We observed that a majority of genomic features 
were enriched in genomic variants that were associated with mastitis and milk production traits. Compared to GBLUP, 
the accuracy of genomic prediction with GFBLUP was marginally improved (3.2 to 3.9%) in within-breed prediction. 
The highest increase (164.4%) in prediction accuracy was observed in across-breed prediction. The significance of 
genomic features based on the SNP set test were correlated with changes in prediction accuracy of GFBLUP (P < 0.05).

Conclusions:  GFBLUP provides a framework for integrating multiple layers of biological knowledge to provide novel 
insights into the biological basis of complex traits, and to improve the accuracy of genomic prediction. The SNP set 
test might be used as a first-step to improve GFBLUP models. Approaches like GFBLUP and SNP set test will become 
increasingly useful, as the functional annotations of genomes keep accumulating for a range of species and traits.
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Background
In general, genetic variation in complex or quantitative 
traits is considered to be governed by a large number of 
loci with small to moderate effects, which are individu-
ally undetectable by genome-wide association studies 
(GWAS) with stringent significance thresholds [1–5]. 
A better understanding of the genetic architecture that 
underlies complex traits (e.g. the distribution of causal 
variants and their effects) could improve the predic-
tive ability of models [4, 6–9]. This would be beneficial 
for genomic prediction of disease risk in humans and for 
estimating genetic values in livestock and plant species of 
agricultural importance [4, 6–9].

The genomic best linear unbiased prediction (GBLUP) 
assumes that all genomic markers contribute equally 
to variability of a trait [10] and ignores any prior bio-
logical knowledge on genetic architecture of the trait. 
However, genomic markers that are associated with a 
complex trait may not be uniformly and randomly dis-
tributed over the genome, but rather be clustered in 
genes that are part of interconnected biological path-
ways and networks [2, 11, 12]. The genomic regions that 
are likely to be enriched in variants affecting a trait are 
defined as genomic features. Based on different biological 
hypotheses, genomic features can be defined from vari-
ous sources of biological knowledge, such as genes, gene 
ontologies, biological pathways, or other types of external 
evidence. Incorporating this biological information may 
improve the predictive abilities of models. We extended 
the GBLUP model to implement this strategy by includ-
ing a separate random effect for the joint action of sin-
gle nucleotide polymorphisms (SNPs) within a genomic 
feature [8], which we call a genomic feature BLUP (GFB-
LUP) model. As a result, individual SNP relationships 
can be weighted differentially in GFBLUP according 
to the variance explained by SNPs within and outside 
the genomic feature [8]. The GFBLUP model has been 
applied to three complex traits (i.e. chill coma recovery, 
starvation resistance and startle response) in the unre-
lated inbred lines of Drosophila melanogaster popula-
tions [8]. Compared to GBLUP, the prediction accuracy 
with GFBLUP was substantially improved when incorpo-
rating several gene ontology (GO) categories as genomic 
features [8]. A possible increase in prediction accuracy 
with GFBLUP would depend on whether the genomic 
feature is enriched in causal mutations.

The GFBLUP model is computationally intensive for 
evaluating many genomic features [8]. Therefore, it is 
important to develop a computationally fast approach. 
The SNP set test based on GWAS-derived single-SNP 
test statistics could be one such approach. It would be 
of interest to investigate the relationship between the 

significance of a genomic feature based on the SNP set 
test and the predictive ability of the GFBLUP model.

To date, there are many genes that are yet neither func-
tionally characterized nor mapped to any biological data-
bases [13–16], in particular in livestock populations. For 
example, in cattle only ~20% of the genes are annotated 
in Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
pathways [17]. However, transcriptomics studies have 
been conducted on small-scale experimental populations 
to investigate the dynamic state of the transcriptome in 
particular tissues, revealing thousands of genomic fea-
tures (e.g. genes and pathways) that are engaged in the 
biological processes of complex traits [18–20]. Such tran-
scriptomics studies provide tissue-specific genomic fea-
tures that are likely to be enriched in genomic variants 
affecting specific traits.

Mastitis, an inflammatory condition of the mammary 
gland, is often caused by invading pathogens. It is the 
most costly disease in the dairy industry due to treatment 
cost, reduction in milk production and milk quality, and 
in some cases culling of the affected cows [21]. Gram-
negative Escherichia coli (E. coli) is a common mastitis-
causing bacteria [22], and the lipopolysaccharides (LPS) 
released by E. coli induce acute inflammatory responses 
[23]. Genes with expression levels that are significantly 
affected during the early stage of infection have also been 
suggested to be involved in overall metabolism [19, 23–
26]. Moreover, it is well established that mastitis is unfa-
vorably correlated with milk production traits [25]. Since 
liver plays key roles in innate immune response and met-
abolic regulation [27], we hypothesized that hepatic tran-
scriptomic regions that are responsive to intra-mammary 
infection (IMI) may be enriched in genomic variants that 
impact mastitis and milk production traits. Using these 
regions as genomic features might provide more predic-
tive GFBLUP models compared to the GBLUP model. In 
addition, since gene expression patterns and molecular 
interaction networks are consistent across breeds [28], 
we further hypothesized that the use of transcriptomic 
data obtained on one breed may contribute to improve 
genomic prediction in other breeds.

In the current study, mastitis and three milk produc-
tion traits (i.e. milk, fat and protein yield) from Nordic 
Holstein (HOL, n =  5056) and Jersey (JER, n =  1231) 
cattle were analyzed using imputed sequence genotype 
data (~15 million SNPs) and hepatic transcriptome data 
from an IMI study. Our main objectives were to apply the 
GFBLUP model and SNP set test: (1) to investigate the 
genomic variance explained by transcriptomic regions 
that are responsive to IMI; (2) to improve the accuracy of 
within-breed and across-breed genomic prediction using 
GFBLUP compared to GBLUP; and (3) to investigate the 
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relationship between the predictive ability of GFBLUP 
and the significance of genomic features based on the 
SNP set test.

Methods
Intra‑mammary infection (IMI) study
The IMI experimental design and collection of liver 
biopsies were reported previously [23, 29]. In brief, 
eight healthy HOL dairy cows in their first lactation 
(9 to 12 weeks after calving) were selected for the experi-
ment. The udder quarters of all studied cows were free 
from mastitis pathogens based on bacteriological exami-
nations. Milk somatic cell count (SCC) for each stud-
ied quarter was <100,000. The right front quarter was 
infected with 200  µg of E. coli LPS (0111:B4) (Sigma-
Aldrich, Brøndby, Denmark) dissolved in 10  mL of a 
0.9% NaCl solution, while the left front quarter was used 
as a control and challenged with 10  mL of 0.9% NaCl 
solution only. Clinical signs, data on production traits 
together with milk and blood parameters associated 
with LPS infection were recorded throughout the trial 
and confirmed that mastitis inflammation was induced. 
Liver biopsies collected 22  h before and 3, 6, 9, 12 and 
48 h after LPS infection in three cows were used for RNA 
extraction. Sampling procedures for liver biopsies were 
described previously [30]. Finally, 18 RNA-Seq libraries 
(at each time point with three biological replicates) were 
sequenced using 100-bp paired-end sequencing in Illu-
mina Hiseq2000 sequencing technology.

Statistical analysis of RNA‑Seq data
Statistical approaches used for analysing RNA-Seq data 
were described previously [31]. Briefly, sequence reads of 
each sample were aligned to the bovine reference genome 
assembly (UMD 3.1), using a sensitive and efficient map-
ping program based on the seed-and-vote algorithm 
implemented in the Rsubread package in R/Bioconductor 
[32] _ENREF_65. The number of reads that were mapped 
to 24,616 Ensemble genes **(ftp://ftp.ensembl.org/pub/
release-86/gtf/bos_taurus) was counted using the func-
tion Feature-Counts in the Rsubread package with default 
settings. The average mapping rate across all samples was 
approximately 68%. Analysis of differential gene expres-
sion was conducted using edgeR [33]. A small num-
ber of highly expressed genes in a sample can cause an 
RNA composition effect, i.e. a substantial proportion of 
the total library size could be consumed by these highly 
expressed genes, which results in the remaining genes 
to be under-sampled [33]. Therefore, the most recom-
mended weighted trimmed means of M-values (TMM) 
were used to normalize the total count data (i.e. the total 
library size) between each pair of samples, in order to 

adjust for RNA composition effect [33]. After normali-
zation of the total library size, a negative binomial gen-
eralized linear model (GLM) was applied for each gene, 
because the count data of genes follow non-normal dis-
tributions, which commonly exhibit a quadratic mean–
variance relationship [33]. The relevant factors in the 
experimental design were also adjusted by the GLM, and 
gene differential expression was determined using a like-
lihood ratio test [33]. In the GLM model, where the num-
ber of reads mapped to gene g in sample i is denoted as 
ygi and the total number of mapped reads is denoted as 
Ni, it is assumed that ygi ∼ NB

(

µgi,φg
)

, where µgi and φg 
are the location and the dispersion parameters of the neg-
ative binomial distribution, respectively. To ensure stable 
inference for each gene, an empirical Bayes method was 
used to compress gene-wise dispersions towards a com-
mon dispersion for all genes [33]. Statistical tests for each 
analysis were adjusted for multiple-testing using the FDR 
method as implemented in R (version 3.2.4).

Defining genomic features
The differentially-expressed genes (DEG) (i.e. the hepatic 
transcriptome regions responsive to IMI) that were 
obtained from the above RNA-Seq analyses were used to 
define genomic features. First, 30 genomic features were 
defined using six false discovery rate (FDR) cut-off values 
(i.e. ≤5×10−2, 10−2, 10−3, 10−6, 10−8, and 10−10) in each 
of the five experimental comparisons (i.e. 3 vs. −22 h, 6 vs. 
−22 h, 9 vs. −22 h, 12 vs. −22 h and 48 vs. −22 h), respec-
tively. In addition, since the biological functions of up-
regulated and down-regulated genes can be quite different, 
each of these 30 genomic features was further divided into 
four subsets based on four log2(fold-change)s cut-off val-
ues (i.e. ≤−2, ≤−1, ≤1, and >2). Therefore, another 115 
genomic features were built, because five conditions were 
without DEG. In total, 145 genomic features were defined. 
The number of DEG in each genomic feature is summa-
rized in Table S1 (see Additional file 1: Table S1).

Phenotypic data
The phenotypes were de-regressed breeding values (DRP) 
from routine genetic evaluations by the Nordic Cattle 
Genetic Evaluation (NAV, http://www.nordicebv.info/), 
and were available for 5056 HOL and 1231 JER cattle. 
Detailed information of these phenotypes was previously 
described in [34, 35]. Heritabilities for milk, fat and pro-
tein yields and mastitis were equal to 0.39, 0.39, 0.39 and 
0.04, respectively in HOL, and very similar in JER [34, 
35]. The average reliabilities of the DRP for milk, fat and 
protein yields and mastitis were equal to 0.95, 0.95, 0.95 
and 0.83, respectively in HOL; and 0.92, 0.92, 0.92, and 
0.76, respectively in JER.

ftp://ftp.ensembl.org/pub/release-86/gtf/bos_taurus
ftp://ftp.ensembl.org/pub/release-86/gtf/bos_taurus
http://www.nordicebv.info/
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Genotypic data
Imputation from Illumina BovineSNP50 BeadChip (50 K) 
to Illumina BovineHD BeadChip (high-density, HD) 
genotypes for these individuals and further to whole-
genome sequence variants was described previously [36, 
37]. Briefly, genotypes from the 50  K SNP chip for each 
individual were first imputed to HD genotypes using a 
multi-breed reference of 3383 animals (1222 HOL, 1326 
Nordic Red, and 835 JER). A total of 648,219 SNPs were 
obtained after imputation to the HD chip. These imputed 
HD genotypes were then imputed to the whole-genome 
sequence level using a multi-breed reference population 
of 1228 individuals from Run4 of the 1000 Bull Genomes 
Project [38] and additional whole-genome sequences from 
Aarhus University including 368 HOL, 86 Nordic Red, and 
88 JER individuals [39]. Genotype imputation was done 
using Minimac2 [40]. In total, 22,751,039 biallelic variants 
(SNPs and Indel) were included in the imputed sequence 
genotypic data. The accuracy of imputation was above 
0.85 for the across-breed imputation of 19,498,365 SNPs. 
Detailed information about imputation accuracy was pre-
viously reported in [37]. For each breed, SNPs with a large 
deviation from Hardy–Weinberg proportions (P  <  10−6) 
or with minor allele frequency (MAF) <0.01 were fur-
ther excluded. A total of 15,355,382 and 13,403,916 SNPs 
remained for the HOL and JER datasets, respectively. 
The SNP locations were based on the UMD3.1 reference 
genome (http://www.ensembl.org/Bos_taurus/Info/Index). 
A SNP was considered to be linked with a genomic feature 
if its chromosome position was within the open reading 
frame of DEG in the particular genomic feature.

Training and validation populations
For within-breed prediction, each of the datasets (i.e. 
HOL and JER) was divided into training and validation 
sets based on birth-year of the animal to access predic-
tion accuracy. The birth-year cut-off was 2006 for HOL 
and 2004 for JER, and the younger animals were assigned 
to the validation dataset (Table  1). We chose this vali-
dation strategy considering routine animal breeding 
practice where the young bulls breeding values are pre-
dicted using a training population of older animals. For 
across-breed prediction, the complete HOL popula-
tion (n  =  5056) was used as training data to predict 

breeding values for all JER bulls (n = 1231). Both GBLUP 
and GFBLUP models were fitted to compare prediction 
accuracies.

Genomic models
For each genomic feature as defined before, SNPs were 
partitioned into two sets (i.e. within and outside the 
genomic feature), followed by the GFBLUP model analysis:

where y is the vector of phenotypic observations, 1 is 
a vector of 1s, µ is the overall mean, gf is the vector of 
genomic values captured by the SNPs within a genomic 
feature, g−f is the vector of genomic values captured by 
SNPs outside the genomic feature (i.e. the rest of genome), 
and e is the vector of residuals. Assumptions for all ran-
dom effects are given by:

where Gf and G−f are genomic relationship matrices that 
are built using the SNPs within and outside the genomic 
feature, respectively, which were calculated using the sec-
ond method described in [41]. Briefly, let M be the marker 
matrix that specifies which alleles the individual inherits, 
and P be the matrix that contains the frequencies of the 
second allele at locus (pi) expressed as a difference from 
the 0.5 value and multiplied by 2, that is, the column i of 
P is 2(pi − 0.5). Matrix Z was obtained as M − P, which 
allows mean values of the allele effects to be equal to 
0. Then, G = ZTZ′, where T is a diagonal matrix with 
Tii =

1
m[2pi(1−pi)]

. D is a diagonal matrix with diagonal 
elements equal to 1−r2

r2
, where r2 is the reliability of DRP, 

σ
2
f  ,σ

2
−f and σ2e are the variance components accounted for 

by the SNPs within and outside the genomic feature, and 
by the residuals, respectively.

The standard GBLUP model includes only one random 
genomic effect:

with the same notation as above except for g, which is 
the vector of genomic values captured by all genomic 
SNPs. The random genomic values and the residuals were 

y = 1µ+ gf + g−f + e,





gf
g−f

e



 ∼ N









0
0
0



,





Gfσ
2
f 0 0

0 G−fσ
2
−f 0

0 0 Dσ 2
e







,

y = 1µ+ g + e,

Table 1  Overview of training and validation population sizes for genomic predictions

Breed Number of  
training individuals

Number of validation  
individuals

Total number

Within HOL 4011 1054 5056

Within JER 975 256 1231

Across breeds 5056 1231 6287

http://www.ensembl.org/Bos_taurus/Info/Index
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assumed to be independently distributed: g ∼ N
(

0,Gσ2g

)

 
and e ∼ N

(

0,Dσ
2
e

)

.

Estimation of genomic parameters
The variance components, σ2f , σ

2
−f, σ

2
g and σ2e, were esti-

mated using an average information restricted maxi-
mum-likelihood (AI-REML) procedure [42] implemented 
in DMU [43]. The proportion of genomic variance 
explained by a genomic feature in the GFBLUP model: 

H2
f =

σ
2
f

σ
2
f +σ

2
−f

. The proportion of phenotypic variance 

explained by all SNPs: h2GFBLUP =
σ
2
f +σ

2
−f

σ
2
f +σ

2
−f+σ

2
e
 for GFBLUP, 

and h2GBLUP =
σ
2
g

σ
2
g+σ

2
e
 for GBLUP.

Validation of genomic prediction
Genomic breeding values (GEBV) were predicted using 
both GFBLUP and GBLUP models. In the GFBLUP and 
GBLUP models, GEBV is ĝtotal = ĝf + ĝ−f and ĝtotal = ĝ , 
respectively. Accuracy of predicted genomic breeding 
values (r) is calculated as the correlation between GEBV 
and DRP in the validation population. The bias of the 
genomic predictions with both GFBLUP and GBLUP 
was evaluated by the regression of DRP on the GEBV, i.e. 
bias = cov(DRP,GEBV)/σ2GEBV.

Single‑marker GWAS
Single-marker GWAS analyses for four traits were only 
conducted in the HOL training population, followed by 
SNP set test analyses for testing the associations between 
genomic features and traits. Single-marker GWAS was 
performed using a two-step variance component-based 
method, to account for population stratification, as 
implemented in EMMAX [44]. In the first step, the poly-
genic and residual variances were estimated using the fol-
lowing model:

where y is a vector of phenotypes; 1 is a vector of 1s; µ is 
the overall mean; a is a vector of breeding values, where 
a ∼ N

(

0,Gσ2a
)

, and G is the genome relationship matrix 
estimated using EMMAX based on HD SNP genotypes, 
but excluding the SNPs on the chromosome that harbours 
the SNP the effect of which is being estimated; and e is 
the vector of residuals, where e ∼ N

(

0, Iσ2e
)

 and I is an 
identity matrix. In the second step, the individual effects 
of SNPs were obtained using a linear regression model:

where y, 1 and µ are as defined above; x is a vector of 
imputed genotype dosages (ranging from 0 to 2), b is the 
vector of allele substitution effects (b), and η is a vector 
of random residual deviates with (co)variance structure 
Gσ2a + Iσ2e.

y = 1µ+ a + e,

y = 1µ+ xb+ η,

SNP set test
Summary statistic for a genomic feature
The summary statistic of a genomic feature was calcu-
lated as the sum of the test statistics (i.e. t2) of all SNPs 
within DEG (i.e. open reading frame) that belonged to 
the genomic feature:

where mf  is the number of SNPs located in a genomic 
feature, and t2m is the square of the t-statistics for each 
SNP in the genomic feature. The t-statistics was calcu-
lated as the estimate of the SNP effect (i.e. b) from sin-
gle-marker GWAS divided by its standard error. This 
summary statistic is more powerful compared to count-
based summary statistics, particularly in situations where 
genomic features harbor many SNPs each having a small 
to moderate effect [9, 45].

Testing for association between a genomic feature and a trait
Under the null hypothesis, all SNPs in a genome fea-
ture have the same joint effect as those in the randomly 
selected genomic features. To ensure a null hypothesis 
is competitive to the alternative hypothesis, the random 
genomic features must contain the same number of SNPs 
as the genomic feature being analysed, and the linkage 
disequilibrium (LD) structure among SNPs should be 
retained. An empirical distribution of the summary sta-
tistics of a genomic feature was therefore obtained by 
using the following cyclical permutation procedure as 
described previously [9, 46]. Briefly, the test statistics of 
SNPs (i.e. t2) were first ordered based on the chromo-
some position of the SNPs. A test statistic was randomly 
selected from this vector. All test statistics were then 
shifted to new positions, where the selected SNP became 
the first one, and the other SNPs shifted to new posi-
tions, but retained their original order. This uncouples 
any associations between SNPs and the genomic feature, 
while retaining the LD structure among SNPs. A new 
summary statistic was then calculated according to the 
original position of the genomic feature. The permuta-
tion was repeated 1000 times for each genomic feature, 
and an empirical P value was then calculated based on 
one-tailed tests of the proportion of randomly sampled 
summary statistics that were larger than that observed.

Biological function enrichment analysis
In order to investigate the biological function of a genomic 
feature, functional enrichment analysis of DEG in the par-
ticular genomic feature was conducted using a web-based 
tool, KOBAS2.0 (http://kobas.cbi.pku.edu.cn/home.do) 
[47], where a hypergeometric gene set enrichment test, 

Tsum =

mf
∑

i=1

t2m,

http://kobas.cbi.pku.edu.cn/home.do
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based on a gene ontology (GO) database, was applied. The 
FDR method [48] was used for adjusting multiple tests.

Results
The results for RNA-Seq analyses at different time-point 
comparisons (i.e. 3 vs. −22 h, 6 vs. −22 h, 9 vs. −22 h, 12 
vs. −22 h and 48 vs. −22 h) are summarized in Table S2 
(see Additional file  2: Table S2). The −log10(P) values of 
imputed sequence-level SNPs from single-marker GWAS 
for mastitis and milk production traits on the HOL training 
population are shown in the Manhattan plots of Figure S1 
(see Additional file 3: Figure S1). The GFBLUP and GBLUP 
models were compared for all four traits in within-breed 
(i.e. HOL and JER) genomic prediction, followed by across-
breed prediction (i.e. HOL as the training population and 
JER as the validation population). The degree of enrich-
ment (i.e. −log10(P values)) of genomic features based on 
the SNP set test in the HOL training population was com-
pared with the changes in prediction accuracy of GFBLUP 
within- and across-breed predictions, respectively.

GBLUP, GFBLUP and SNP set test analyses for Holstein 
population
Genomic parameters
As shown in Fig.  1a, 128, 106, 99, and 90 of the 145 
genomic features explained larger proportions of 
the total genomic variance (H2

f ) compared to their 

SNP-proportion over the whole genome for mastitis, 
protein, milk and fat yield, respectively. Detailed infor-
mation is summarized in Tables S3, S4, S5 and S6 (see 
Additional file 4: Tables S3, S4, S5 and S6). These results 
demonstrated that the genomic variance of the traits 
studied is not uniformly distributed along the genome, 
but appears to be enriched in a subset of hepatic tran-
scriptomic regions that are responsive to IMI. Therefore, 
the assumption of the GBLUP approach that a priori all 
markers contribute equally to trait variability does not 
hold good.

Prediction accuracy
Prediction accuracy of GBLUP was equal to 0.504 
(bias = 0.864) for mastitis, 0.602 (bias = 0.775) for pro-
tein yield, 0.635 (bias = 0.862) for milk yield, and 0.607 
(bias  =  0.808) for fat yield. Compared to the GBLUP 
model, 27, 44, 17 and 13 of the 145 genomic features 
resulted in higher prediction accuracies with GFB-
LUP (Δr ≥ 0.01) for mastitis, protein, milk and fat yield, 
respectively (see Additional file 4: Tables S3, S4, S5 and 
S6). Among these, we found 8 (9) up- (down-) regulated 
genomic features for mastitis, 26 (4) for protein yield, 2 
(9) for milk yield, and 4 (9) for fat yield (Fig.  2). These 
results indicate that down-regulated genes could be more 
often associated with milk and fat yield than up-regulated 
genes during IMI. The regression coefficient of DRP on 

Fig. 1  Proportion of genomic variance explained by the genomic features. Each point represents one of the 145 genomic features. a is for Holstein; 
b is for Jersey; the x axis represents the proportion of SNPs over the whole genome that are located in genomic features (i.e. SNPf); the y axis repre-
sents the proportion of genomic variance explained by the genomic features (i.e. H2

f
)
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GEBV (bias) for all GFBLUP analyses ranged from 0.862 
to 0.873 for mastitis, from 0.772 to 0.783 for protein yield, 
from 0.857 to 0.866 for milk yield, and from 0.778 to 
0.821 for fat yield (see Additional file 4: Tables S3, S4, S5 
and S6). The absolute value of (1-bias) tended to be nega-
tively correlated with the change in genomic prediction 
accuracy with GFBLUP across four traits (see Additional 
file  5: Figure S2), which indicates that more predictive 
genomic features lead to less biased predictions. The top 
five predictive genomic features for each of the four traits 
are presented in Table 2. The average increase in predic-
tion accuracy with the best-performing genomic feature 
across the four traits was 0.018, which corresponds to an 
increase of 3.2% relative to GBLUP.

Comparisons between degrees of enrichment based on the 
SNP set test and changes in prediction accuracy of GFBLUP
The results of SNP set tests for all 145 genomic features 
across four traits in the HOL training population are sum-
marized in Tables S3, S4, S5 and S6 (see Additional file 4: 
Tables S3, S4, S5 and S6). The changes in prediction accu-
racy of GFBLUP (Δr) were significantly (P  <  0.05) posi-
tively correlated with –log10(P) of genomic features based 
on the SNP set test across all four traits (Fig. 3). Correla-
tions of 0.69 (P < 2.2 × 10−16), 0.46 (P = 4.4 × 10−9), 0.46 
(P = 4.4 × 10−9) and 0.44 (P = 3.6 × 10−8) were found 
between changes in accuracy and −log10(P value) for 
mastitis, protein yield, milk yield, and fat yield, respec-
tively. These results demonstrated that the SNP set test 
could be used as a computationally simple way to develop 
more predictive GFBLUP models.

GBLUP and GFBLUP analyses for the Jersey population
Genomic parameters
As in the analyses for the HOL population (Fig.  1b), we 
observed that 125, 115, 99, and 83 of the 145 genomic fea-
tures for the JER population explained a larger proportion 
of the total genomic variance relative to their SNP-pro-
portion over the whole genome for mastitis, protein yield, 
milk yield, and fat yield, respectively. Detailed information 
is in Tables S7, S8, S9 and S10 (see Additional file 6: Tables 
S7, S8, S9 and S10). It should be noted that all genomic 
features were defined based on gene expression data that 
were obtained in HOL cattle. These results imply that a 
subset of hepatic transcriptomic regions responsive to 
IMI found for HOL were also enriched in genomic vari-
ants for mastitis, protein, milk and fat yield in JER.

Prediction accuracy
Prediction accuracy of the GBLUP model was equal to 
0.549 (bias  =  0.916) for mastitis, 0.530 (bias  =  0.760) 
for protein yield, 0.597 (bias =  0.796) for milk yield, and 
0.433 (bias = 0.669) for fat yield. Compared to the GBLUP 
model, 21, 14 and 2 genomic features resulted in higher 
prediction accuracy (Δr ≥ 0.01) with GFBLUP for mastitis, 
protein, and milk yield, respectively (see Additional file 6: 
Tables S7, S8, S9 and S10), among which 7, 13 and 0 were 
in common with those found for HOL, respectively. No 
genomic features resulted in an increase >0.005 in predic-
tion accuracy for fat yield in JER. The regression coefficient 
of DRP on GEBV (i.e. bias) for all the GFBLUP analyses 
ranged from 0.891 to 0.930 for mastitis, from 0.727 to 
0.807 for protein yield, from 0.760 to 0.809 for milk yield, 
and from 0.599 to 0.677 for fat yield. As observed in HOL, 
the absolute value of (1-bias) was negatively correlated 
with the change in prediction accuracy for all four traits in 
JER (see Additional file 7: Figure S3). The top five predic-
tive genomic features for each of the four traits are sum-
marized in Table  3. The average increase in prediction 
accuracy (Δr) with the best-performing genomic feature 
across the four traits was 0.020, which corresponds to a 
3.9% increase compared to GBLUP. These results indicate 
that the use of gene expression data obtained from one 
breed may improve marginally the genomic prediction 
accuracy in other breeds. It should be noted that, for JER, 
the increase in prediction accuracy with GFBLUP for milk 
and fat yield was very small (Table 3).

Comparisons between degree of enrichment from the SNP set 
test and changes in prediction accuracy of GFBLUP
The changes in prediction accuracy with GFBLUP on the 
JER validation population were also significantly posi-
tively correlated with −log10(P) based on the SNP set test 
on the HOL training population for mastitis and pro-
tein yield (Fig. 4). Correlations of 0.59 (P = 3.0 × 10−15), 

Fig. 2  Number of up- (down-) regulated genomic features that result 
in higher prediction accuracy (Δr > 0.01) with GFBLUP in Holstein 
population. Up represents up-regulated genomic features; down 
represents down-regulated genomic features
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0.52 (P = 3.1 × 10−11), 0.19 (P = 0.02) and 0.06 (P = 0.5) 
were found between changes in accuracy and −log10(P) 
for mastitis, protein yield, milk yield, and fat yield, 
respectively.

GBLUP and GFBLUP for across‑breed genomic prediction
When the complete HOL population was considered 
as training population to predict the genomic values 
of individuals in the JER population, prediction accu-
racy of GBLUP was very low, i.e. prediction accuracies 
were equal to −0.058 (bias = −0.343) for mastitis, 0.098 
(bias = 0.622) for protein yield, 0.160 (bias = 0.762) for 
milk yield, and 0.070 (bias =  0.482) for fat yield. Com-
pared to the GBLUP model, 60, 68, 71 and 44 of the 145 
genomic features resulted in higher prediction accuracy 
with GFBLUP (Δr ≥ 0.01) for mastitis, protein, milk and 
fat yield, respectively (see Additional file  8: Tables S11, 
S12, S13 and S14). The regression coefficient (i.e. bias) 

of DRP on GEBV for all GFBLUP analyses ranged from 
−0.463 to 0.277 for mastitis, from 0.151 to 1.265 for pro-
tein yield, from 0.413 to 0.826 for milk yield, and from 
0.002 to 0.577 for fat yield. It should be noted that more 
predictive genomic features lead to less biased predic-
tions across the four traits (see Additional file  9: Figure 
S4). In addition, for mastitis, protein and milk yield, the 
changes in accuracy with GFBLUP in across-breed pre-
diction were significantly correlated with the −log10(P) 
of SNP set test in the HOL training population (Fig. 5). 
The top five predictive genomic features for each of 
the four traits are summarized in Table  4. The absolute 
average increase in prediction accuracy (Δr) with the 
best-performing genomic feature across four traits was 
0.111, which corresponds to a 164.4% increase relative to 
GBLUP. Compared to within-breed prediction, the rela-
tive improvement in genomic prediction accuracy seems 
to be clearer in across-breed prediction.

Table 2  Top five predictive genomic features for mastitis, protein, milk and fat yield in Holstein cattle

a  Time points post intra-mammary infection with E. coli LPS
b  FDR values used to define genomic features from RNA-Seq analysis
c  Log2(fold-change) values used to define up- (down-) regulated genomic features from RNA-Seq analysis
d  P values from SNP set test on HOL training population
e  Proportion of SNPs in genomic features over the whole genome
f  Proportion of the total genomic variance explained by genomic features
g  Prediction accuracy with GFBLUP
h  The regression coefficient of de-regressed proofs (DRP) on predicted genomic breeding values (GEBV)
i  The change of prediction accuracy with GFBLUP relative to GBLUP
j  The genomic feature defined without log2(fold-change)

Trait Time (h)a
FDRbexp Log2(FC)c

Pdset - test SNPf (%)e
H2
f  (%)f r

g
GFBLUP

biash Δri

Mastitis 9 5 × 10−2 NAj 0.013 6.36 25.60 0.520 0.872 0.016

9 5 × 10−2 >1 0.027 2.32 13.71 0.519 0.872 0.015

6 5 × 10−2 NA 0.040 5.92 19.81 0.519 0.873 0.015

6 10−2 NA 0.043 4.68 18.83 0.518 0.871 0.014

6 10−3 NA 0.034 3.54 15.39 0.518 0.871 0.014

Protein 48 10−6 >2 0.021 <0.01 1.85 0.622 0.783 0.020

48 10−8 >2 0.029 <0.01 1.75 0.621 0.782 0.019

48 10−2 >2 0.023 0.02 3.28 0.621 0.779 0.019

48 10−8 >1 0.027 <.01 1.71 0.621 0.782 0.019

48 10−10 >2 0.026 <0.01 1.37 0.620 0.782 0.018

Milk 6 10−2 NA 0.026 4.68 31.90 0.651 0.863 0.016

6 10−3 NA 0.027 3.54 26.82 0.651 0.865 0.016

6 10−3 <−1 0.024 1.76 19.74 0.650 0.862 0.015

6 10−6 <−2 0.022 0.28 12.49 0.649 0.866 0.014

6 10−2 <−1 0.030 2.49 25.39 0.649 0.859 0.014

Fat 6 10−6 <−2 0.027 0.28 16.28 0.629 0.804 0.022

6 10−3 <−2 0.028 0.33 17.76 0.626 0.800 0.019

6 10−2 <−2 0.032 0.36 18.57 0.625 0.798 0.018

6 5 × 10−2 <−2 0.032 0.37 18.51 0.625 0.799 0.018

9 10−6 >1 0.055 0.84 20.94 0.621 0.815 0.014
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Discovery of gene sets associated with protein yield
Genomic features can be ranked based on the predictive 
ability of GFBLUP. Therefore, our GFBLUP can also be 
used to map gene sets that are associated with complex 
traits. For instance, a highly up-regulated genomic feature 

with 34 DEG (FDR < 10−6; log2(fold-change) > 2) that were 
detected in the 48 vs. −22  h comparison resulted in an 
increase of 0.204, 0.020 and 0.041 in prediction accuracy 
for protein yield among across-breed, and within HOL and 
JER predictions, respectively (see Additional file 10: Table 

Fig. 3  Comparisons between degree of enrichment from the SNP set test in the Holstein (HOL) training (reference) population and changes in 
prediction accuracy with GFBLUP in the HOL validation population. Each point represents one of the 145 genomic features
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S15). These 34 DEG, which include <0.01% of the total 
number of SNPs, explained 1.84 and 4.59% of the genomic 
variance for protein yield in HOL and JER, respectively. 
In addition, they explained 0.44 and 0.50% of the genomic 
variance for mastitis in HOL and JER, respectively, but did 
not improve genomic predictions for mastitis. Detailed 
information of GFBLUP analyses for these 34 DEG across 
three prediction scenarios is in Table 5. The P values based 
on the SNP set test were 0.021 and 0.18 for protein yield 
and mastitis, respectively, on the HOL training popula-
tion. The functional enrichment analysis of these 34 DEG 
revealed that they were significantly (FDR < 0.05) enriched 
in innate immune response and negative regulation of 
endopeptidase activity and protein metabolism (Fig. 6).

Discussion
In the current study, we demonstrated that a subset of 
the hepatic transcriptomic regions responsive to IMI was 
enriched in genomic variants associated with mastitis 

and milk production traits. When using these regions as 
genomic features, the genomic prediction accuracy with 
GFBLUP was improved marginally compared to GBLUP. 
In theory, both the GFBLUP model and SNP set test can 
easily be extended to incorporate other types of biologi-
cal information as genomic features, such as sequence 
annotation, biological pathways and eQTL.

Dissection of the genetic architecture and improvement 
of prediction accuracy for mastitis and milk production 
traits in dairy cattle
It has been suggested that milk production and disease 
resistance traits are controlled by several hundred up to 
several thousand loci in cattle, most of which have a very 
small effect [4, 49, 50]. Multiple studies, using different 
strategies, have been conducted to investigate the genetic 
architecture that underlies such complex phenotypes, 
and to improve genomic prediction accuracy within and 
across breeds [6, 17, 49, 51, 52].

Table 3  Top five predictive genomic features for mastitis, protein, milk and fat yield in Jersey cattle

a  Time points post intra-mammary infection with E. coli LPS
b  FDR values used to define genomic features from RNA-Seq analysis
c  Log2(fold-change) values used to define up- (down-) regulated genomic features from RNA-Seq analysis
d  Proportion of SNPs in genomic features over the whole genome
e  Proportion of the total genomic variance explained by genomic features
f  Prediction accuracy with GFBLUP
g  The regression coefficient of de-regressed proofs (DRP) on predicted genomic breeding values (GEBV)
h  The change of prediction accuracy with GFBLUP relative to GBLUP
i  The genomic feature defined without log2(fold-change)

Trait Time (h)a
FDRbexp Log2(FC)c SNPf (%)d

H2
f  (%)e r

f
GFBLUP

biasg Δrh

Mastitis 9 10−10 >1 0.46 15.79 0.567 0.927 0.018

12 10−2 NAi 3.98 37.31 0.566 0.930 0.017

9 10−10 NA 1.31 26.64 0.564 0.921 0.015

12 10−10 <−1 0.71 16.15 0.564 0.925 0.015

6 10−3 <−1 1.67 28.69 0.563 0.923 0.014

Protein 48 10−2 >2 0.02 6.42 0.576 0.807 0.046

48 10−6 >2 <0.01 4.59 0.571 0.797 0.041

48 10−10 >2 <0.01 4.11 0.569 0.787 0.039

48 10−8 >2 <0.01 4.28 0.569 0.796 0.039

48 5 × 10−2 >2 0.03 6.74 0.568 0.804 0.038

Milk 48 0.01 >2 0.02 2.19 0.608 0.805 0.011

9 10−2 <−1 3.02 12.85 0.607 0.801 0.010

12 10−8 <−1 0.88 10.39 0.606 0.809 0.009

48 5 × 10−2 >2 0.03 1.38 0.605 0.805 0.008

9 10−3 <−1 2.31 13.94 0.604 0.800 0.007

Fat 48 5 × 10−2 >1 0.30 4.04 × 10−7 0.438 0.672 0.005

6 5 × 10−2 >1 2.57 2.00 × 10−7 0.437 0.672 0.004

48 5 × 10−2 NA 0.35 2.24 × 10−6 0.437 0.672 0.004

9 10−6 >2 0.32 5.93 × 10−7 0.437 0.672 0.004

9 10−8 >2 0.28 5.68 × 10−7 0.437 0.672 0.004
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Genetic architecture and biological interpretation
The approaches that partition genomic variance based 
on adjacent genomic regions (e.g. 50-SNP genomic seg-
ments) or single chromosomes may not provide enough 
biological insights into the genetic architecture of a trait 

[6, 51, 53]. Our results provide evidence that results 
from gene expression experiments can give additional 
information about the biological and genetic basis of 
complex traits. In the current study, we used RNA-Seq 
data from an IMI experiment as an example to study the 

Fig. 4  Comparisons between degree of enrichment from the SNP set test in the Holstein (HOL) training (reference) population and changes in 
prediction accuracy with GFBLUP in the Jersey (JER) validation population. Each point represents one of the 145 genomic features
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genetic and biological basis of mastitis and milk produc-
tion traits. We found that a subset of hepatic transcrip-
tomic regions responsive to IMI is enriched in genomic 
variants associated with these traits. We also found that 

down-regulated genes are more often associated with 
milk and fat yield, which together with the fact that the 
liver is a crucial organ for host immune responses and 
metabolism, including lipogenesis, gluconeogenesis, and 

Fig. 5  Comparisons between degree of enrichment from the SNP set test in the Holstein (HOL) training (reference) population and changes in 
prediction accuracy with GFBLUP in the across-breed prediction. Each point represents one of the 145 genomic features
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cholesterol metabolism [54, 55], implies that the immune 
responses in the liver during mastitis impair milk pro-
duction. This is in agreement with a recent study that 
demonstrated that immune relevant pathways (e.g. leu-
kocyte trans endothelial migration and chemokine sig-
nalling pathways) are strongly associated with milk and 
fat yield in HOL [17].

Within‑breed prediction
In populations with a high degree of linkage disequilib-
rium (LD), such as highly selected dairy cattle breeds, 
the genomic relationship based on genome-wide mark-
ers provides accurate information about the genomic 
variation of the traits [56], although it does not use any 
prior biological information. In addition, the LD struc-
ture makes it more difficult to partition genomic variance 
based on genomic features. Therefore, the increase in 

prediction accuracy with GFBLUP is small compared to 
GBLUP, i.e. we observed average increases of 0.018 and 
0.022 across four traits within HOL and JER, respectively. 
This is consistent with a recent study [52] that applied a 
Bayesian genomic feature model (i.e. BayesRC) to milk 
production traits. Incorporating 790 candidate genes 
associated with milk production traits as a genomic fea-
ture, they found that the increases in within-breed pre-
diction accuracy with BayesRC were quite small (<0.01) 
compared to BayesR, which ignores any prior biological 
information [52].

Across‑breed prediction
Across-breed genomic prediction accuracies for milk 
production traits were close to zero, when HOL was used 
as training population to predict genomic values for JER 
using the GBLUP approach. This is in agreement with 

Table 4  Top five predictive genomic features for mastitis, protein, milk and fat yield in across-breed prediction

a  Time points post intra-mammary infection with E. coli LPS
b  FDR values used to define genomic features from RNA-Seq analysis
c  Log2(fold-change) values used to define up- (down-) regulated genomic features from RNA-Seq analysis
d  Proportion of SNPs in genomic features over the whole genome
e  Proportion of the total genomic variance explained by genomic features
f  Prediction accuracy with GFBLUP
g  The regression coefficient of de-regressed proofs (DRP) on predicted genomic breeding values (GEBV)
h  The change of prediction accuracy with GFBLUP relative to GBLUP
i  The genomic feature defined without log2(fold-change)

Trait Time (h)a
FDRbexp Log2(FC)c SNPf (%)d

H2
f  (%)e r

f
GFBLUP

biasg Δrh

Mastitis 6 10−3 <−1 1.94 9.98 0.063 0.277 0.121

6 5 × 10−2 <−1 3.53 14.03 0.046 0.178 0.104

6 10−2 <−1 2.72 12.68 0.044 0.171 0.102

9 5 × 10−2 NAi 6.99 25.98 0.034 0.115 0.092

12 5 × 10−2 >1 2.34 12.84 0.034 0.112 0.092

Protein 48 10−6 >2 0.01 2.24 0.302 1.250 0.204

48 10−8 NA 0.01 2.04 0.298 1.264 0.200

48 10−8 >2 <0.01 2.09 0.295 1.265 0.197

48 10−3 >2 0.01 2.66 0.292 1.245 0.194

48 10−10 NA <0.01 1.60 0.282 1.172 0.184

Milk 9 10−3 <−1 2.69 24.65 0.232 0.798 0.072

9 10−6 NA 2.60 14.41 0.229 0.805 0.069

9 10−6 <−1 1.67 8.20 0.228 0.808 0.068

48 10−6 >2 0.01 0.25 0.222 0.826 0.062

12 10−8 <−1 1.02 3.95 0.221 0.802 0.061

Fat 6 10−3 >1 1.98 19.66 0.117 0.577 0.047

9 10−6 NA 2.61 24.48 0.104 0.477 0.034

6 10−6 <−1 0.95 20.29 0.102 0.446 0.032

3 5 × 10−2 >2 0.11 0.85 0.101 0.567 0.031

3 10−2 >2 0.11 0.72 0.100 0.560 0.030
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observations in [50, 56]. When validation and training 
populations are distantly related (i.e. the LD structure 
becomes weak), genomic feature modelling approaches 
such as GFBLUP and BayesRC are expected to perform 
better than models that ignore prior biological infor-
mation such as GBLUP and BayesR, provided that the 
genomic feature is enriched in the genomic variants of 
the traits across breeds [8, 52]. Therefore, shifting the 
focus from the complete set of genomic markers to those 
that are more likely to have functional effects might con-
tribute to improve across-breed genomic predictions [7], 
as observed in our study. However, breed differences in 
the segregation of quantitative trait loci (QTL), minor 
allele frequencies and breed-specific SNP effects could 
add to the complexity in across-breed prediction.

GFBLUP and alternatives
Factors that influence the performance of GFBLUP
The assumption made in the GBLUP model (i.e. the 
genomic variance is evenly distributed along the whole 
genome) does not match the real genetic architecture 
that underlies the traits. It puts equal weights to the ele-
ments in the genomic relationship, whereas the GFBLUP 
allows putting different weights to the individual genomic 
relationships in the prediction equation according to the 
estimated genomic parameters [8]. Prediction accuracy 
of GFBLUP is influenced both by the genomic variance 

explained by the genomic features and by the number 
of non-causal SNPs in the feature [8, 9]. The GFBLUP 
model performs better as the genomic feature contains 
more causal variants (i.e. explaining more genomic vari-
ance) and less non-causal markers [8, 9]. However, if the 
estimated genomic parameters deviate from the true val-
ues, it will lead to reduced prediction accuracy, as shown 
in the current study (Figs.  3, 4, 5), because too much 
weight is put on the “wrong” genomic relationships in the 
prediction equations. Our GFBLUP has two components 
for genomic effects (i.e. f  and −f), but in theory it is pos-
sible to include multiple genomic feature effects [57, 58], 
which might improve genomic predictions more com-
pared to the current GFBLUP. However, when the corre-
lations among multiple genomic relationship matrices are 
high, the variance components are not reliably estimated 
and thus there is no improvement in prediction accuracy 
[8, 57]. Therefore, further work is needed to investigate 
the performance of the GFBLUP model with multiple 
genomic features, in particular in livestock populations 
with large LD structures.

Bayesian mixture model and Bayesian GF mixture model
Bayesian mixture models, such as BayesR [50], which 
ignore prior genomic feature information, are consid-
ered to be relevant alternative methods. Both GFBLUP 
and Bayesian mixture models allow assigning mark-
ers to different distributions. GFBLUP assigns a marker 
set (i.e. genomic feature) to a certain distribution [i.e. 
f ∼ N

(

0,Gfσ
2
f

)

 or −f ∼ N
(

0,G−fσ
2
−f

)

] using prior bio-
logical knowledge, whereas Bayesian mixture models 
attempt to assign markers to predefined distributions 
based on the data themselves. Previous studies dem-
onstrated that an externally informed genomic feature 
is necessary for a successful partitioning of genomic 
variance, while the data themselves may not necessarily 
suggest which marker should have the greatest weight 
[8, 50]. The external biological information can also be 
incorporated into Bayesian mixture models, such as 
BayesRC [52]. All genomic feature models including 
GFBLUP and BayesRC are computationally intensive, 
and they do not necessarily perform better than standard 
models (i.e. GBLUP and BayesR) when genomic features 
are less enriched in causal variants [8, 59].

SNP set test
The SNP set test based on single-marker test statistics 
derived from GWAS is a computationally fast way to 
evaluate a large number of genomic features [60]. The 
results of the SNP set test could be used to develop 
more predictive GFBLUP and similar models. The 

Table 5  GFBLUP analyses of 34 genes detected in the com-
parison 48 h vs. −22 h (FDR < 10−6; log2(fold-change) > 2) 
for mastitis, protein, milk and fat yield

a  Proportion of total genomic variance explained by the genomic feature
b  Prediction accuracy with GFBLUP
c  Regression of coefficient of de-regressed proofs (DRP) on predicted genomic 
breeding values (GEBV)
d  Change in prediction accuracy with GFBLUP relative to GBLUP

Scenario Trait H2
f  (%)a r

b
GFBLUP

biasc Δrd

Within HOL Mastitis 0.44 0.505 0.865 0.001

Protein 1.84 0.622 0.783 0.020

Milk 0.32 0.643 0.863 0.008

Fat 0.15 0.607 0.809 0.000

Within JER Mastitis 0.50 0.550 0.918 0.001

Protein 4.59 0.571 0.797 0.041

Milk 0.00 0.596 0.789 −0.001

Fat 0.00 0.434 0.671 0.001

Across-breed Mastitis 0.46 −0.063 −0.373 −0.005

Protein 2.24 0.302 1.250 0.204

Milk 0.25 0.222 0.826 0.062

Fat 0.09 0.079 0.491 0.009
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current SNP set test method assesses the association 
between a genomic feature and a trait based on the 
sum of t2 of SNPs within the genomic feature. Another 
commonly used approach for the SNP set test is based 
on counting associations exceeding a pre-defined sig-
nificance threshold within the genomic feature [61–
63]. One important limitation of this count-based 
approach is the dichotomization of association signals 
into significant and non-significant sets, based on a 
pre-specified significance level, which ignores infor-
mation regarding the strength of association. Since 
the genomic variance of mastitis and milk production 
traits is typically governed by very many markers, each 
with a small effect [4, 49, 50], the current SNP set test 
is more likely to match the genetic basis of complex 

phenotypes, and is more powerful than the count-
based approach [9, 45, 46].

Appropriate genomic features facilitate improved biological 
interpretation
In order to test different biological hypotheses, many 
genomic features can be constructed using different 
sources of prior information, such as prior QTL regions, 
chromosomes, sequence, biological pathways, and other 
types of external evidence. The gain in biological knowl-
edge of complex traits relies highly on the genomic fea-
ture classification strategies. Since associated genomic 
markers are not evenly, or necessarily physically, clus-
tered along the genome [2, 51], partitioning genomic var-
iance based on adjacent genomic regions (e.g. haplotypes 

Fig. 6  Significantly enriched (FDR < 0.05) biological processes (BP) for the 34 genes detected in the comparison 48 versus −22 h (FDR < 10−6; 
log2(fold-change) >2). The significance of enrichment (as −log10(FDR)), the % of differentially expressed genes (DEG) over all genes in the BP (as % 
genes in BP), and the number of DEG in the BP (as the value on each bar)
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and chromosomes) is not an ideal way to facilitate the 
interpretation of biological mechanisms underlying the 
traits. Biological interpretation may be better served 
by the use of pathways and gene ontologies as genomic 
features; however, the quantity and quality of the genes 
that are functionally annotated in current pathway data-
bases are limited [15], particularly for livestock and plant 
genomes. Here, we used information from gene expres-
sion data to define genomic features, providing novel 
insights into the genetic and biological basis of mastitis 
and milk production traits and improving genomic pre-
diction accuracy with GFBLUP.

Since mastitis can be caused by various pathogens, the 
current RNA-Seq data that originate only from E. coli 
mastitis may be limited to detect all the genes that are 
functionally relevant with mastitis. Thus, more RNA-Seq 
data from infections with other types of pathogens could 
help the detection of genomic features that are associ-
ated with mastitis and milk production. In addition, 
since gene expression patterns depend highly on time, 
cell types, and tissues, some trait-associated genes might 
not show differential expression in certain cell types and 
tissues at a certain physiological stage. Therefore, incor-
porating more molecular biological information from 
more tissues (e.g. mammary gland, blood and adipose 
tissue) and more physiological stages could be important 
to define the appropriate genomic features that are highly 
enriched in causal variants.

Conclusions
Compared to GBLUP, GFBLUP models increased the 
accuracy of genomic prediction for mastitis and milk 
production traits in dairy cattle by incorporating bio-
logical information from gene expression data, and thus 
provide novel biological insights into the genetic basis 
of such complex traits. Compared to within-breed pre-
diction, the increase in prediction accuracy seems to be 
more apparent in across-breed prediction. In addition, 
the SNP set test can be used as a computationally fast 
way to develop more predictive GFBLUP or similar mod-
els. The current genomic feature modelling approaches 
provide a general framework for incorporating biologi-
cal knowledge from independent functional genomics 
studies to study the genetic architecture and to improve 
genomic prediction for complex traits. Approaches such 
as GFBLUP and SNP set test will be increasingly use-
ful as the biological knowledge of functional genomic 
regions keep accumulating for a range of traits and 
species.
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