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Abstract 

Background:  Parentage verification by molecular markers is mainly based on short tandem repeat markers. Single 
nucleotide polymorphisms (SNPs) as bi-allelic markers have become the markers of choice for genotyping pro-
jects. Thus, the subsequent step is to use SNP genotypes for parentage verification as well. Recent developments of 
algorithms such as evaluating opposing homozygous SNP genotypes have drawbacks, for example the inability of 
rejecting all animals of a sample of potential parents. This paper describes an algorithm for parentage verification by 
constrained regression which overcomes the latter limitation and proves to be very fast and accurate even when the 
number of SNPs is as low as 50. The algorithm was tested on a sample of 14,816 animals with 50, 100 and 500 SNP 
genotypes randomly selected from 40k genotypes. The samples of putative parents of these animals contained either 
five random animals, or four random animals and the true sire. Parentage assignment was performed by ranking of 
regression coefficients, or by setting a minimum threshold for regression coefficients. The assignment quality was 
evaluated by the power of assignment (Pa) and the power of exclusion (Pe).

Results:  If the sample of putative parents contained the true sire and parentage was assigned by coefficient ranking, 
Pa and Pe were both higher than 0.99 for the 500 and 100 SNP genotypes, and higher than 0.98 for the 50 SNP geno-
types. When parentage was assigned by a coefficient threshold, Pe was higher than 0.99 regardless of the number of 
SNPs, but Pa decreased from 0.99 (500 SNPs) to 0.97 (100 SNPs) and 0.92 (50 SNPs). If the sample of putative parents 
did not contain the true sire and parentage was rejected using a coefficient threshold, the algorithm achieved a Pe of 
1 (500 SNPs), 0.99 (100 SNPs) and 0.97 (50 SNPs).

Conclusion:  The algorithm described here is easy to implement, fast and accurate, and is able to assign parentage 
using genomic marker data with a size as low as 50 SNPs.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The advent of DNA markers has facilitated verification of 
candidate parents thus enabling more accurate pedigrees 
for genetic evaluation, resolution of conflicts in the trad-
ing of breeding animals, and basic parent identification 
in extensive production systems. For the last two dec-
ades, this verification was based on short tandem repeat 
markers  (STR), which are commonly called micro-satel-
lites, are highly polymorphic and thus allow discrimina-
tion between individuals even when the total number of 
markers used is small. Due to their highly polymorphic 
character, parentage assignment on the basis of STR can 

be done by simple exclusion or by categorical allocation. 
For an exhaustive review of parentage assignment algo-
rithms see [1].

However, in the last decade bi-allelic single nucleotide 
polymorphisms (SNPs) have quickly become the marker 
of choice for genotyping projects. Their sheer abundance 
has made them much more suitable for genome-wide 
association studies than other polymorphic markers. 
Furthermore, imputation techniques provide a compat-
ibility layer between different SNP genotypes relieving 
researchers of the necessity to regenotype ancient ani-
mals as SNP panels change. Gradually, SNP genotypes 
have become the backbone of genomic selection which 
is now replacing pedigree selection in many livestock 
industries [2].
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Animal breeding is done within an economic envi-
ronment, and it was only a matter of time before ques-
tions arose about the need to genotype animals twice, 
with STR for parentage verification and with SNPs for 
genomic selection. Since many ancient animals have 
been genotyped with STR only, a first step to merge 
both approaches was to impute STR from SNP geno-
types [3]. While this provides the necessary compatibility 
link between STR-based parentage verification and SNP 
genotypes during a transition period, parentage veri-
fication should omit imputation and rely on SNPs once 
SNP genotypes for both parents and offspring are avail-
able. However, compared to STR the bi-allelic nature of 
SNPs requires many more markers for a successful parent 
identification and based on results from simulations and 
real data it was suggested that between 50 to 500 markers 
were necessary [4–7]. In addition, it has been necessary 
to develop new algorithms that could exploit informa-
tion from SNP genotypes for that purpose. One method 
counts the number of opposing homozygous marker 
loci (OHL), and the result is used as a possible measure 
of parentage [8, 9]. With this method, parents are identi-
fied as having the smallest number of loci with a homozy-
gosity status opposite to that of the offspring because 
opposing homozygosity between parents and offspring 
is theoretically impossible, but can result from genotyp-
ing errors. Although improvements in the computational 
efficiency have made application of the method practi-
cal [10], its main shortcoming remains, which is that the 
sample of putative parents must contain one or two true 
parents, and knowledge about how many true parents are 
in the sample must exist [11]. Likelihood-based meth-
ods (LH) [12, 13], which were originally developed to use 
STR, can allow for the absence of the true parents but 
are slow. Modified likelihood methods have been devel-
oped for application to SNP genotypes but have difficulty 
assigning parents when the number of SNPs is small (100 
or less) [11].

This article describes a non-linear optimisation 
approach for parentage assignment, called “constrained 
genomic regression”  (CGR), which overcomes the limi-
tation of OHL counting. The algorithm was tested on a 
data set of 19,051 Australian Angus beef cattle SNP geno-
types which contained 14,816 sire-offspring pairs. CGR 
results were compared to results from parentage assign-
ment via OHL counting [8, 9] and to LH-based parentage 
assignment implemented in the publicly available soft-
ware “Cervus” [12].

Methods
Model
The problem to solve can be written as a simple linear 
regression equation:

where y is the vector of marker genotypes of the animal 
with uncertain parentage (explained animal), X is a column 
matrix of marker genotypes of the possible parents (explan-
atory animals), and e is the vector of residuals which can-
not be explained. Columns in X can be genotypes of single 
animals  (e.g. sire or dam), or functions of genotypes of 
single animals or several animals (e.g. population allele fre-
quencies or expected gene content). Values in vector b are 
regression coefficients regressing y on the columns in X.

Assuming that the variance of y is equal to Iσ 2, mini-
mising e’e would yield an ordinary least square solution. 
Since the parameter space of values in b is unconstrained, 
regression coefficients may become negative. To avoid 
this, the parameter space of b can be constrained to the 
interval between zero and ∞, and the sum over b can be 
constrained to be equal to 1. Thus, Eq. 1 becomes:

Minimising Eq. 2 with respect to b constrained by Eqs. 3 
and 4 yields a vector b with values that explain the geno-
type in y as a linear function of genotypes in X. Coeffi-
cients in b are interpreted as the proportion of values in 
vector Xb explained by each column in X. Note that only 
the combination of constraints 3 and 4 guarantees that 
coefficients in b have this meaning.

If X contained genotypes of putative sires and dams 
only, values in b are not guaranteed to give unambiguous 
results for parentage assignment. Thus, it is highly advis-
able to always add to X the vector of population allele fre-
quencies, or depending on the allele coding, the vector of 
expected gene content.

Data
Genotypes of 19,051 animals of the Australian Angus 
beef cattle breed were used as a test data set which 
included 14,816 sire-offspring pairs (thus multiple prog-
eny per sire). The genotypes were obtained from the Aus-
tralian Beef Cooperative Research Center (www.beefcrc.
com, Beef CRC) database and from cooperating breed-
ers using the Illumina 50K Bead Chip, and were coded 
as “0” and “2” for the homozygous genotypes and “1” for 
the heterozygous genotype. After quality control, 40,627 
SNPs were used in the analysis.

(1)y = Xb+ e,

(2)arg min
b

f (b) = y′y − 2y′Xb+ b′X′Xb

(3)
subject to

bi ≥ 0 {i = 1, . . . ,N }

(4)
N∑

i

bi = 1.

http://www.beefcrc.com
http://www.beefcrc.com
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Configuration of genotypes
Subsets of 500, 100 and 50 SNPs were randomly selected 
from the full 40k genotypes. To ensure sufficient contrast 
between individual genotypes, the sample space for the 
100 and 50 SNP set was restricted to those SNPs with a 
minor allele frequency higher than 0.3.

Animal assignment to the equation
From the full set of 19,051 animals, 14,816 animals were 
selected which had a genotyped sire in the data set. 
These animals will be called “explained animals” in the 
remainder of the article. For each of these animals, a 
unique Eq.  1 was formed where the genotype was used 
to construct the y vector. Matrix X always contained 
six columns, but they were filled in two different ways: 
(1) two columns for the genotype of the known sire and 
the vector of expected gene contents, and the remain-
ing columns for the genotypes of a set of four randomly 
selected animals (Xsire), and (2) one column for the vec-
tor of expected gene contents and the remaining columns 
for the genotypes of a set of five randomly selected ani-
mals (Xran). Columns in X might be interpreted as a pool 
of putative parents. This pool will be called “explanatory 
animals” in the remainder of the article.

Note that the randomly selected animals excluded par-
ents, offspring, full sibs and half sibs of the animal in y, 
and were re-sampled for every y. Furthermore, the allele 
coding required use of the expected gene content rather 
than the allele frequency.

Parentage assignment
Two different methods were used to assign parentage to 
individuals in X. The first (CGRR) ranked the coefficients 
in b after excluding the coefficient for the expected gene 
content. The sire was the individual with the greatest 
coefficient. Note that this method is similar to ranking of 
OHL counting results and does not allow for the rejec-
tion of all putative parents. It also requires knowledge 
about the number of true parents in the data set. It was 
therefore used only for the test runs using Xsire.

The second method  (CGRT) requires setting a mini-
mum threshold for the coefficients in b. Every animal 
which has a coefficient below this threshold is ruled out 
as a potential parent. If the threshold is set appropri-
ately  (higher than 13), constrained Eq.  4 will ensure that 
the number of explanatory animals with coefficients 
higher than the threshold is lower or equal to 2, thus 
avoiding parentage over-assignment.

Assignment statistics
Coefficients in b were summarised within each com-
bination of SNP genotype set and X matrix in terms of 
means, standard deviations, minimum and maximum 

for single columns in X (sire, expected gene content) and 
for the sub-matrix in X containing the randomly chosen 
animals.

In addition, the power of assignment  (Pa) was calcu-
lated as:

where the denominator was 14,816, which is the total 
number of true parents in the data set when Xsire was 
used. The power of exclusion (Pe) was calculated as:

where the denominator was 29,632, which is twice 
the number of progeny or the total number of possible 
parents.

Parentage verification based on counting opposing 
homozygous loci and likelihood evaluation
CGR results were compared to OHL counting [8, 9] 
and a LH-based methodology [12]. Since OHL count-
ing requires that the sample of putative parents contains 
at least one true parent, this method was applied to the 
Xsire set only.

Software
CGR was implemented in a FORTRAN program which 
called the NLopt library [14]. The optimisation solver 
used the augmented Lagrangian algorithm as a global 
solver and the method of moving asymptotes as a local 
solver. Note that the NLopt library is also available as an 
R package. Thus, the interested reader may implement 
the above methodology in a simple R script.

For LH-based parentage verification, the publicly avail-
able software “Cervus” was used [12]. Cervus requires 
three steps: (1) allele frequency analysis, (2) parentage 
simulation, and (3) parentage assignment. Parameters 
for step 2 were set as follows: type =  “parent pair with 
unknown sex”, number of offspring = 10,000, number of 
candidate parents per offspring =  5, proportion of par-
ents sampled = 1, proportion of loci typed = 1, propor-
tion of loci mistyped  =  0.01, confidence is calculated 
using  =  delta, confidence levels  =  80%(relaxed) and 
95%(strict). Parameters for step 3 were set as follows: 
type = “parent pair with unknown sex”. Note that the lat-
ter analysis type was chosen because it does not require 
prior knowledge about the data set.

Cervus results were evaluated for each y only for the 
parent pair with the highest lod score. For the Xsire data 
set, two cases were distinguished: Case (A) the lod score 
was not significant. If the true sire was in the parent pair, 
the numerator of Eq. 5 was increased by one. Case (B) the 

(5)
number of correct parent assignments

maximum number of true parents
,

(6)1−
number of wrong parent assignments

maximum number of parents
,
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lod score was significant. If the true sire was in the par-
ent pair, the numerators of Eqs. 5 and 6 were increased by 
one. If the true sire was not in the parent pair, the numer-
ator of Eq. 6 was increased by two. For Xran data set, the 
numerator of Eq. 6 was increased by 2 for every signifi-
cant parent pair only.

All computations were carried out on a computer with 
an Intel(R) Core(TM) i7-3770 processor and 32GB of 
memory.

Results
Parentage assignment
Tables  1 and  2 summarise the results for parentage 
assignment using different SNP genotypes and different 
pools of explanatory animals. For the CGRT algorithm, 
the threshold to assign parentage was set to 13. Descriptive 
statistics for the regression coefficients are in Table 1.

When 500 randomly selected SNPs were used as geno-
types and the sample of putative parents contained the 
true sire, Pa of all algorithms was higher than 0.99 with 
marginal differences between the methods. Thus, CGRR , 
CGRT, OHL counting and LH detected the true sire 
equally well. When the sample of putative parents did not 
contain the true sire, CGRT and LH successfully rejected 
the randomly selected animals as parents with CGRT 
resulting in four and LH in zero incorrect assignments 
out of 29,632 possible assignments  (see Table  2, upper 
part).

Decreasing marker density to 100 SNPs randomly 
selected from those which had a minor allele frequency 
higher than 0.3 made the correct assignment more dif-
ficult  (see Table  2, middle part). When the sample of 
putative parents contained the true sire, the best results 
were achieved by LH which detected 14,735 true sires 

correctly, followed by CGRR with 14,711 and OHL count-
ing with 14,699 correctly assigned sires. It should be 
noted that OHL counting, as well as CGRR, will auto-
matically assign a wrong parent if the true parent is 
missed. The same data set yielded the opposite ranking 
of algorithms when parameter Pe was evaluated. CGRT 
achieved the best result with only 15 incorrectly assigned 

Table 1  Mean (x), standard deviation (s), minimum (min) and maximum (max) of the regression coefficients

Number of SNPs used as genotypes: upper part = 500 SNPs, middle part=100 SNPs and lower part = 50 SNPs. Xsire: the sample of the putative parents contained the 
true sire, four randomly selected animals and the vector of expected gene contents. Xran: the sample of the putative parents contained five randomly selected animals 
and the vector of expected gene contents. sire: statistics for the coefficients regressing the focused animal on the genotype of the true sire. mean: statistics for the 
coefficients regressing the focused animal on the vector of expected gene contents. ran: statistics for the coefficients regressing the focused animal on randomly 
selected animals. The number of random animals was 4 when the sample of putative parents contained the true sire, and 5 otherwise

Coefficient Xsire Xran

x s Min Max mean s Min Max

Sire 0.492 0.065 0.000 0.764 – – – –

Ran 0.018 0.028 0.000 0.337 0.022 0.035 0.000 0.413

Mean 0.435 0.085 0.034 1.000 0.891 0.077 0.389 1.000

Sire 0.492 0.091 0.000 0.831 – – – –

Ran 0.036 0.054 0.000 0.478 0.042 0.063 0.000 0.535

Mean 0.363 0.139 0.000 1.000 0.789 0.141 0.000 1.000

Sire 0.492 0.119 0.000 0.904 – – – –

Ran 0.050 0.074 0.000 0.548 0.059 0.087 0.000 0.773

Mean 0.308 0.177 0.000 1.000 0.704 0.197 0.000 1.000

Table 2  Power of  assignment  (Pa) and  power of  exclu-
sion (Pe)

The numerator of the related equations is given in brackets. Number of SNPs 
used as genotypes: upper part = 500 SNPs, middle part = 100 SNPs and lower 
part = 50 SNPs. Xsire: the sample of the putative parents contained the true sire, 
four randomly selected animals and the vector of expected gene contents. Xran:  
the sample of the putative parents contained five randomly selected animals 
and the vector of expected gene contents. Pa: probability of assigning the right 
parent if the sample of putative parents contained the true sire. Pe: probability 
of rejecting the wrong parent in favour of the right parent or the vector of 
expected gene contents. SNPs were randomly selected from 40k genotypes with 
the sample space for the 100 and 50 sets restricted to those SNPs with a minor 
allele frequency >0.3

Algorithm Xsire Xran

Pa Pe Pa Pe

CGRT 0.990 (14,664) 1.000 (1) – 1 (4)

CGRR 0.994 (14,730) 0.997 (86) – –

OHL counting 0.993 (14,717) 0.997 (99) – –

LH 0.995 (14,744) 1.000 (5) – 1 (0)

CGRT 0.969 (14,361) 0.999 (15) – 0.997 (96)

CGRR 0.993 (14,711) 0.996 (105) – –

OHL counting 0.992 (14,699) 0.996 (117) – –

LH 0.995 (14,735) 0.993 (213) – 1.000 (0)

CGRT 0.918 (13,607) 0.991 (252) – 0.968 (960)

CGRR 0.983 (14,570) 0.992 (246) – –

OHL counting 0.978 (14,489) 0.989 (327) – –

LH 0.988 (14,639) 0.954 (1373) – 0.999 (40)



Page 5 of 7Boerner ﻿Genet Sel Evol  (2017) 49:50 

parents, followed by CGRR  (105), OHL counting  (117) 
and LH (213). When the set of putative parents did not 
contain the true sire, LH performed best rejecting all ran-
dom animals as parents, whereas CGRT assigned incor-
rect parentage in 96 cases, resulting in a Pe of 0.997.

A further decrease in marker density to 50 SNPs ran-
domly selected from those which had a minor allele 
frequency higher than 0.3 yielded the same algorithm 
ranking as the 100 SNP data set, but with slightly dete-
riorated Pa and Pe values for all algorithms (see Table 2, 
lower part). When the set of putative parents con-
tained the true sire the decrease in Pa was strongest 
for CGRT  (0.918), followed by OHL counting  (0.978), 
CGRR  (0.983) and LH  (0.988). Pe ranked the algorithms 
inversely with LH (0.954) showing the strongest deterio-
ration, followed by OHL counting (0.989), CGRT  (0.991) 
and CGRR  (0.992). LH assigned five times more often 
false parentage than CGRR. However, when the set of 
putative parents contained only random animals, LH 
assigned false parentage in 40 cases, whereas CGRT 
assigned 960 parents falsely.

Computational demand
Besides reading the data, CGR solving time for Eq. 2 for 
all 14,816 animals was 18 real time seconds irrespective 
of the number of SNPs used, which is 0.001 real time sec-
onds per animal. Note that using all 40k SNPs increased 
the solving time only marginally to 21 real time seconds. 
The LH method implemented in Cervus needed 180, 51 
and 35 real time seconds for the 500, 100 and 50 SNP 
data sets, respectively. OHL counting was not evaluated 
in terms of speed but can be assumed to provide results 
most quickly.

Discussion
Results show that parentage can be successfully assigned 
with as few as 500 SNPs using CGRR, CGRT, OHL count-
ing or a likelihood-based method, and for which all four 
approaches perform equally well. However, OHL count-
ing, and therefore CGRR as well, are less suitable for prac-
tical applications because they are incapable of rejecting 
all putative parents [11].

The above result also holds for the 100 SNP data set 
with which CGRR, OHL counting and LH maintained Pa 
and Pe values higher than 0.99, and CGRT achieved 0.97 
and 0.99, respectively. With a further decrease in the 
number of SNPs, all four algorithms had some difficul-
ties, but Pa and Pe remained generally higher than 0.98. 
However, Pa for CGRT and Pe for LH decreased to 0.92 
and 0.95, respectively.

The performance of OHL counting should be regarded 
cautiously because the range of OHL counts between the 
true sire and its offspring was between 0 and 10 when 

using the 50 SNP genotypes, with 1013 cases for which 
the contrast between the true sire and the random ani-
mal ranked next differed by a single count. This contrast 
might be by chance only and be missed in a future geno-
type sample, rendering the assignment statistics of OHL 
counting the worst of all four algorithms. Moreover, con-
structing an OHL matrix between all 19,051  individuals 
with 50 SNP genotypes as given in [10] and evaluating 
the respective matrix rows of the 14,816 test animals 
revealed that 14,782 animals had at least one zero entry 
in addition to the diagonal and sire entry. The most fre-
quent zero count was 11 which occurred for 294 test ani-
mals. Thus, there is a certain probability that a sample 
of putative parents may contain an animal for which the 
genotype will yield a lower OHL count than the genotype 
of the true parent. Besides these rather sobering insights 
into the superficially very good performance of OHL 
counting, it is also undesirable to use a method based 
on genotyping errors, which should be minimised and 
ultimately eradicated. The basic implementation of the 
method will always assign one or two parents depending 
on prior information about the data and cannot reject all 
candidate parents. OHL counting could be made more 
versatile by generating an empirical distribution of OHL 
counts by simulation which is then used as a test statis-
tic. However, such a distribution will be genotype sample 
dependent and its generation requires knowledge about 
the genotyping error probability, which in turn can only 
be estimated if trios of offspring and both true parents 
are known.

When the true parent was in the sample, the LH-based 
method implemented in the software “Cervus” per-
formed as well as OHL counting and CGRR across all 
three SNP data sets. By contrast, it gave the worst results 
in terms of rejecting non-parents for the 100 SNP and 50 
SNP data sets. This poor performance may result from 
the LH software being set to the analysis type “parent 
pair with unknown sex” with the combined likelihood 
of one true and one false parent being still high enough 
to assign parentage to both. Changing the analysis type 
may increase the performance, but would require prior 
knowledge about the data set which is not guaranteed to 
be available in practical applications. In addition, the LH 
method has two major drawbacks compared to the three 
other algorithms: scaleability and, as a direct result, pro-
cessing time. For the 500 SNP data set, the latter was 10 
times slower than that of the CGR algorithms. Although 
this difference might be negligible given the absolute 
processing time, it may become prohibitive if parentage 
must be verified for hundreds of thousands of animals. 
In addition, situations may arise where results from small 
SNP genotypes may be disputed and need to be verified 
using more markers, e.g. up to full 40k genotypes. In 
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such cases, processing time may render the LH approach 
impractical.

By contrast, processing time for CGR increased only 
marginally when the full 40k genotypes were used. More-
over, unlike LH, the two implementations of CGR tested 
do not require any pre-analysis simulation. While CGRR 
suffers the same drawback as OHL counting, CGRT is 
able to reject all putative parents. The ability of CGRT to 
contrast between true and false parents may be further 
enhanced by testing coefficients in b against their empiri-
cal distribution. This may help to enhance performance 
when using only very few SNPs (e.g. the 50 SNP data set), 
but would require pre-analysis simulations. However, 
since practical parentage verification aims at using at 
least 500 SNPs  [7], the results suggest that the imposed 
threshold on values in b is sufficient to identify parents 
correctly. CGR may also account for genotyping errors by 
substituting the observed genotype at a given locus by its 
expected value after accounting for the genotyping error 
probability.

It is perhaps unexpected that the rather general 
approach of CGR performs as well as the elaborate LH 
methodology. For the sake of simplicity, one may consider 
a situation where all allele frequencies are equal to 0.5. 
Subtracting the vector of expected gene content  (allele 
frequencies) from the columns in X and from y will set all 
heterozygous loci to zero as well as the column in X con-
taining the expected gene content. This reveals that the 
optimum solution for b depends only on the homozygo-
sity status of the putative parents. In addition, when allele 
frequencies deviate from 0.5, parent-offspring homozy-
gosity for rare alleles will have a larger contribution than 
for very common alleles. Interestingly, the LH method 
exploits little more information. The biggest contribu-
tion to the likelihood comes from the sire-dam-offspring 
genotype combinations 2-2-2, 0-0-0, 2-0-1 and 0-2-1, 
which all contribute to the likelihood with a coefficient of 
1. Excluding genotyping errors, all other possible combi-
nations yield a coefficient of 0.5, and therefore provide no 
contrast between putative parents. The only two excep-
tions are the combinations 1-1-0 and 1-1-2 with a coef-
ficient of 0.25, which reduces the likelihood and increases 
the contrast between putative parents. The LH method 
exploits the information content of rare alleles by scaling 
the sire-dam-offspring probability by the offspring geno-
type probability calculated from the population allele fre-
quencies. As already pointed out above, CGR makes use 
of this information as well.

The test data sets used in this analysis were limited to 
five putative parents per progeny. In practical applica-
tions, it might be necessary to search the whole geno-
typed population for possible parents which could be 
achieved by expanding the number of columns of matrix 

X to all genotyped animals. However, if the number of 
SNPs is small, the system in Eq. 1 will be over-parameter-
ised. In addition, processing time is likely to be incompat-
ible. In a single test run using all 40k SNPs and X having 
more than 19,000 columns, the correct parent was iden-
tified by CGRT and CGRR but the processing time was 
23  min. The formulas in Eqs.  1 and 2 imply that CGR 
uses sub-matrices and vectors from an uncentered and 
unscaled genomic relationship matrix  (GRM). Thus, as 
an alternative to expanding X to all genotyped animals, 
one may decrease the number of putative parents in a 
pre-analysis step to those which have the largest off-diag-
onal values in the GRM row related to the animal in y. 
These animals are then used to construct the columns in 
X.

Conclusions
CGR is a fast, efficient, accurate and easy to implement 
algorithm to assign parentage on the basis of SNP geno-
types in samples which contain at least one true parent, 
or to reject parentage if the samples do not contain a true 
parent at all. CGR scales automatically to any size of gen-
otypes and has proven to give accurate results with geno-
types based on 50 SNPs only.
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