Skip to main content
Fig. 2 | Genetics Selection Evolution

Fig. 2

From: Why breed disease-resilient livestock, and how?

Fig. 2

Published estimates of the relationship between resistance and tolerance in plants and animals. a Genetic correlation estimates between resistance and tolerance in various plant and animal species (quantified in ways that do not necessarily correspond to our "Theoretical framework" section of above). The error bars represent the 95% confidence interval (± 1.96 standard errors around the estimate, some of these were derived from the published P values). Black symbols: infectious diseases, white symbols: other stressors. Data from [128] (Arabidopsis versus insects), [129] (Ipomoea versus insects), [130] (Brassica versus frost), [131] (Mimulus versus mosaic virus), [55] (tiger shrimp versus Taura virus), [132] (chicken versus ascites), [133] (Solanum versus insects), [134] (Arabidopsis versus frost and heat), [135] (sheep versus nematode), [84] (turbot versus skin parasite). b Estimated means with 68% confidence ellipsoids (± 1 standard error around the bivariate mean) for tolerance and resistance of inbred mouse strains to three different types of pathogens. Black data points: tolerance of five inbred mouse strains to the malaria parasite Plasmodium chabaudi (regression of body weight [solid ellipsoids] or erythrocyte density [dashed] on pathogen load) in relation to the reverse of pathogen load (data from Fig. 3 in [22]; ~ 30 animals per subclass). White data points: tolerance of three inbred mouse strains to the nematode Heligmosomoides bakeri (correlation of carcass weight with two counts of pathogen load: solid and dashed ellipsoids) in relation to the reverse of pathogen load (data from Table 3 and Fig. 1 in [136]; 10 animals per subclass). Blue data points: tolerance of four inbred mouse strains to the bacterium Listeria monocytogenes (regression of scaled body weight on pathogen load) in relation to the reverse of pathogen load (data from Fig. 2 in [114]; 10 animals per strain, with two strains further subdivided into survivors and non-survivors)

Back to article page