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Summary .

The problem of selecting individuals according to their additive genetic values and of

estimating those values, is considered. It is assumed that the selection is based on a vector

of observations made on a group of individuals which were themselves selected according to

1 certain vector of observations.

An optimal selection rule applicable irrespective of the distribution of the random variable
nvolved in the setting is derived. In particular, it is shown that the restrictions regarding the
ise of the BLUP (Best Linear Unbiased Predictor) pointed out by HENDERSON, can be relaxed.

Key-words : Selection, mixed models, BLUP.

Résumé

Sélection sur données issues de sélection

On considère le problème de la sélection d’individus pour leurs valeurs génétiques additives
et de l’estimation de ces valeurs. La sélection est basée sur un vecteur d’observations faites
sur un ensemble d’individus eux-mêmes issus d’une sélection sur un certain vecteur d’obser-
vations.

On obtient une règle optimale de sélection applicable quelle que soit la distribution des variables
aléatoires de l’expérience. En particulier, on montre que les contraintes d’utilisation du BLUP

(meilleur prédicteur linéaire sans biais) proposées par Henderson, peuvent être atténuées.

Mots-clés : Sélection, modèle mixte, BLUP.

I. Introduction

Animal and plant breeders are often faced with the problem of choosing items,
e.g. sires or varieties, among a set of available candidates. Generally, selection is

based on a vector of observations made on these or other items which were themselves
selected according to another vector of observations. Therefore, it is important to develop
a selection rule that is optimal in some sense. HENDERSON (1973, 1975), in a multi-



variate normal setting, showed that if certain conditions related to fixed parameters
in a linear model describing the observations are met, then the best linear unbiased

predictor (BLUP) eliminates the bias resulting from the previous selection, and retains
its properties.

The objective of this article is to derive an optimal selection rule applicable
irrespective of the distribution of the random variables involved in the setting. In parti-
cular, it is shown that the restrictions regarding the use of BLUP pointed out by
HeN!easorv can be relaxed. As the problem of best estimating the merit of the candidates
for selection, e.g. sires, is closely related to the development of an optimal selection
rule, this is also adressed here.

II. Setting an optimality criteria

To illustrate, consider two sires with one progeny each. A variable Y is measured
in these two progeny and we assume the model :

where si is the genetic value of sire i (i = I , 2) and e;! represents variability about it.

Thus we have:

On the basis of the first progeny, one of the sires, say sire i, seems more promising,
so Y is measured on a second progeny and we have :

The problem is to estimate s, and S2 and to select one of the two males to be

kept as a breeder.

Let s’ = [si s,_] be the vector of genetic values. Optimality is achieved by finding
indicator variables F, and F, such that :

is maximum ; the variables F and FZ depend on the data. As, in general, a fixed
number of sires is to be selected - one in the case of the example - we can take :

COCHRAN (1951), studied : 1

so this less restrictive constraint will not be considered here. Further, we define as
best estimator of si, the function of the data s; which minimizes average squared
risk :

We also consider another random variable :



which is a function of the values of the first progeny of the two sires. This variable
takes the value I or 2, depending on which of the two sires was considered more

promising and so measured on a second progeny.

Let us consider now the case where the variable Y is measured on a second

progeny of the sire I whatever the values taken by Y&dquo; and Y 21 .

The measured variable is now ! and the restriction of ! to N = 1, is Y,z 12

(we define also ! 22 with the same manner).
It is difficult to specify the probability law of Y j!, but the two joint laws :

can be considered know.

The estimator &Scaron;j of si which minimizes S2; must also minimize :

So, we get gi which minimizes OJ in the case where we observe n :

As the value of N = h (Yi!, Y 21) is known once Y!! and Y 21 are realized, we get :
I - - - - _°- - - -

Note that when si, Yll, Y2[, Y&dquo;z are tetravariate normal, (12) yields the best

linear predictor of si from Y&dquo;, Y2, and ’!,,2’
From (5) and (6), the optimal selection policy is similarly obtained by maximizing :

subject to Fi + FZ = 1, to observe (6). If sire I is selected, F! = 1 and Fz = 0,
and (13) becomes :

and likewise 9, if sire 2 is selected. Therefore, to maximise (13), we order the sires
on the basis of the values of 81 and !2 (equation 12) and choose the individual with
the largest s;.

III. General case with known arbitrary density

In general, there is a first stage in which qo candidates, e.g. sires, have data
represented by a vector Yo, containing information on one or several variables. For
example, Yo may represent progeny records on body weight and conformation score
at weaning in beef cattle. The vector of genetic values is s and it may include the
« merit » for one or more traits, or functions thereof.

In the second stage, N experiment plans are possible. To the experiment plan n,
corresponds the random vector Yn. The vector Y&dquo; that will be measured in the second
stage depends on the realization of the random variable :



where E represents independent externalities such as random deaths of sires. The
variate N can take values from I to N, and associated with each value of N there
is a different configuration of the second stage setting. Further, Y!, will comprise
data from q. sires. While in general q! < qo, this is not necessarily so as all sires may
be kept for the second stage but allowed to reproduce at different rates.

As in II, we define Yj, Y,, ..., YN. Y! corresponds to the random vector
measured on the experiment plan n if this plan n was used whatever the value of N
(e.g. if there was not preselection).

The restriction of 1’&dquo; to N = n is Y!.

The N joint probability laws :

are assumed known.

Similarly to (11) and (12), the best estimator of s is :

Since (Yo, ! n’ s) and E are independent, and since N is a function of Yo and E,

( 17) can be written as :
- ! - - -.- - - -

As in (13), the optimal selection policy results from ranking the sires on the
basis of the values of ( 18) and then choosing those with the largest values.

The results generalize to a k-stage selection setting. If Yl’l (n!= I, ..., Nk)&dquo;k
indicates the vector that will be measured in the k!&dquo; stage (k = I, .. , K) following
preselection, then :

if we define ![kl as before, gives the best estimator of merit, and ranking with (19)
_ _ 

&dquo;k

optimizes the selection program. Note that in the multivariate normal case (18) and (19)
give the best linear predictor, or classical selection index in certain settings (SMITH,
1936 ; HAZEL, 1943). (This is correct despite the fact that the random variable Y!k],
restricted to the case where they are in fact observed, don’t have a normal distri-

bution.)

IV. Case with unknown first moments

Often the expectations of the random variables Y., ! ..., YN are unknown, but
one assumes a linear model :

where A!, Ai, .. , An are the known matrices of the indicators and (30, (3i, .. , (3H
are the unknown vectors of the fixed effects. The vectors (30, (3&dquo; ..., (3N might



have values in common, for example in the case where Y. and ! represent the
same trait measured for different individuals. In general one can write :

The N joint probability laws :

will be assumed known. The class of estimators (or criteria of selection) &dquo;s will be
restricted to the class of functions which are invariant under translation, i.e. functions
that satisfy :

Under this restriction, the estimators (or criteria of selection) s take the same values as
vector j3 moves.

Let :

and let P on be a projector onto the orthogonal to the space spanned by the columns
of Aon. Let :

I .

We may chose :

Note that P on eliminates fixed effects and retains the most information.

The set E, of functions f (y 0’ n, y!) which satisfies (20) is the same as the
set E2 of functions of the form :

where g is any function.

Proof :

o E2 CEI

. E, CE2

left f be invariant and

The different projections of ’(Y 0’ Y n) have expectations which are equal to zero,
and therefore known.



The N joint probability laws :

are then also known. Now, the best estimator (and best selection criteria) s is,
analogously to the previous case,

. I ....

However, if no restrictions are placed on the class of functions h, it is not possible
to obtain a simple result which is independent of h. One possible constraint that
can be imposed is that the function h be invariant under translation, i.e. that :

Let P. be a projector on the orthogonal of the space spanned by Ao.

Using the same arguments as for f, the invariant functions h must be of the form
! [Po (Yo), E]. The significance of the proposed constraint can be seen as follows :
consider those linear combinations of observations that eliminate the fixed effects, and
then any function, linear or non linear, of these linear combinations. The result is
a selection criterion, based on the first variable, which is invariant under translation.
This then is a generalization of the form proposed by HENDERSON (1973), which is
limited to linear functions of the linear combinations.

The estimator s which minimizes S2; within the class of estimators invariant under
translation of the fixed parameters (or which maximizes Q within the same class)
is then : ... , r I t

As a function of (Y,,, !(n), P! (Y.) is invariant, and therefore a function of the

maximum invariant Pn YO Thus one obtains :
/n

In the case of multinormality, every unbiased linear estimator of s is a linear
function of :

I-- I

Inside these estimators, the conditional expectation minimizes the average square
risk. So, s is the BLUP.

V. Conclusions

Results presented in this paper may have interesting applications.

Let us, for instance, consider the case of individuals selected on a quantitative
trait (such as growth characteristics of males recorded in performance-test stations)
and, thereafter evaluated for a categorical trait (progeny test for prolificacy on daughter



groups). Proofs are given in this paper that evaluation and selection according to the
second trait will not be biased if :

i) all information related to the 2 sets of records is used ;

ii) the first selection is made according to an invariant criterion (with respect to
all environmental effects affecting performance test data) as the BLUP.

For all results supplied here, the joint probability law of the random variables
defined in the experiment must be known. In the opposite case, when the variance-
covariance matrix is replaced by an estimate, the properties of the corresponding
estimators S remain unknown.

When expectations of the predictor random variables are unknown, consideration
is restricted to estimators which are translation invariant for fixed effects. As a matter
of fact, it corresponds to a generalization of Henderson’s results. This restriction is
not necessary, but in the general case, the derivation of optimal estimators is too

complicated.

In addition, it was assumed throughout this study that a fixed number of sires
was selected. If an optimal selection policy with fixed expectation of the number
of selected sires was applied, it would be necessary to know the distribution law
of the random variable N = h (Yo, E) and therefore to exactly know how the selection
at the first stage was carried out.
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