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Summary

A method of prediction of genetic merit from jointly distributed quanta] and quantitative
responses is described. The probability of response in one of two mutually exclusive and exhaustive
categories is modeled as a non-linear function of classification and « risk » variables. Inferences
are made from the mode of a posterior distribution resulting from the combination of a multivariate
normal density, a priori, and a product binomial likelihood function. Parameter estimates are
obtained with the Newton-Raphson algorithm, which yields a system similar to the mixed model
equations. « Nested » Gauss-Seidel and conjugate gradient procedures are suggested to proceed
from one iterate to the next in large problems. A possible method for estimating multivariate
variance (covariance) components involving, jointly, the categorical and quantitative variates is
presented. The method was applied to prediction of calving difficulty as a binary variable with
birth weight and pelvic opening as « risk » variables in a Blonde d’Aquitaine population.

Key-words : sire evaluation, categorical data, non-linear models, prediction, Bayesian methods.

Résumé

Prédiction génétique à partir de données binaires et continues : application aux

difficultés de vêlage, poids à la naissance et ouverture pelvienne.

Cet article présente une méthode de prédiction de la valeur génétique à partir d’observations
quantitatives et qualitatives. La probabilité de réponse selon l’une des deux modalités exclusives
et exhaustives envisagées est exprimée comme une fonction non linéaire d’effets de facteurs
d’incidence et de variables de risque. L’inférence statistique repose sur le mode de la distribution
a posteriori qui combine une densité multinormale a priori et une fonction de vraisemblance produit
de binomiales. Les estimations sont calculées à partir de l’algorithme de Newton-Raphson qui conduit
à un système d’équations similaires à celles du modèle mixte. Pour les gros fichiers, on suggère des
méthodes itératives de résolution telles que celles de Gauss-Seidel et du gradient conjugué. On pro-
pose également une méthode d’estimation des composantes de variances et covariances relatives aux
variables discrètes et continues. Enfin, la méthodologie présentée est illustrée par une application
numérique qui a trait à la prédiction des difficultés de vêlage en race bovine Blonde d’Aquitaine
utilisant d’une part, l’appréciation tout-ou-rien du caractère, et d’autre part, le poids à la naissance
du veau et l’ouverture pelvienne de la mère comme des variables de risque.

Mots-clés : Évaluation des reproducteurs, données discrètes, modèle non linéaire, prédiction,
méthode bayesienne.



1. Introduction

In many animal breeding applications, the data comprise observations on one or
more quantitative variates and on categorical responses. The probability of « successful »
outcome of the discrete variate, e.g., survival, may be a non-linear function of genetic
and non-genetic variables (sire, breed, herd-year) and may also depend on quantitative
response variates. A possible course of action in the analysis of this type of data might
be to carry out a multiple-trait evaluation regarding the discrete trait as if it were
continuous, and then utilizing available linear methodology (HENDERSON, 1973). Further,
the model for the discrete trait should allow for the effects of the quantitative variates.
In addition to the problems of describing discrete variation with linear models (Cox,
1970; THOMPSON, 1979; GIANOLA, 1980), the presence of stochastic « regressors in the
model introduces a complexity which animal breeding theory has not addressed.

This paper describes a method of analysis for this type of data based on a Bayesian
approach; hence, the distinction between « fixed and « random variables is
circumvented. General aspects of the method of inference are described in detail to
facilitate comprehension of subsequent developments. An estimation algorithm is

developed, and we consider some approximations for posterior inference and fit of the
model. A method is proposed to estimate jointly the components of variance and
covariance involving the quantitative and the categorical variates. Finally, procedures
are illustrated with a data set pertaining to calving difficulty (categorical), birth weight
and pelvic opening.

II. Method of inference : general aspects

Suppose the available data pertain to three random variables: two quantitative (e.g.,
calf’s birth weight and dam’s pelvic opening) and one binary (e.g., easy vs. difficult

calving). Let the data for birth weight and dam’s pelvic opening be represented by the
vectors y, and Y2, respectively. Those for calving difficulty are represented by a set Y
of indicator variables describing the configuration of the following s x 2 contingency
table:

where the s rows indicate conditions affecting individual or grouped records. The two
categories of response are mutually exclusive and exhaustive, and the number of
observations in each row, n; !0, is assumed fixed. The random quantity nil (or,
conversely, n; - ni,) can be null, so contingency tables where n, = 1, for i = 1, ..., s, are

allowed. The data can be represented symbolically by the vector Y’=(Y,, Y2, ..., Y,),
n!,

where yi= 7- Yir with Yi, being an indicator variable equal to 1 if a response occurs
r=i I

and zero otherwise.



The data Y, y, and y2, and a parameter vector 0 are assumed to have a joint
density f(Y, y,, y2, 0) written as

where f,(9) is the marginal or a priori density of 0. From (1)

where f3(Y, y, y,) is the marginal density of the data, i.e., with 0 integrated out, and
f4(o I Y, , Y&dquo; Y2) is the a posteriori density of 0. As f3(Y, y,, Y2) does not depend on 0,
one can write (2) as

which is Bayes theorem in the context of our setting. Equation (3) states that inferences
can be made a posteriori by combining prior information with data translated to the
posterior density via the likelihood function f2(Y, YI, Y210). The dispersion of 0 reflects
the a priori relative uncertainty about 0, this based on the results of previous data or
experiments. If a new experiment is conducted, new data are combined with the prior
density to yield the posterior. In turn, this becomes the a priori density for further
experiments. In this form, continued iteration with (3) illustrates the process of

knowledge accumulation (CORNFIELD, 1969). Comprehensive discussions of the merits,
philosophy and limitations of Bayesian inference have been presented by CORNFIELD
(1969), and LirrDLEY & SMITH (1972). The latter argued in the context of linear models
that (3) leads to estimates which may be substantially improved from those arising in
the method of least-squares. Equation (3) is taken in this paper as a point of departure
for a method of estimation similar to the one used in early developments of mixed
model prediction (HENDERSON et al., 1959). Best linear unbiased predictors could also
be derived following Bayesian considerations (R6NNINGEN, 1971; DEMPFLE, 1977).

The Bayes estimator of 0 is the vector 6 minimizing the expected a posteriori risk

where 1(6, 0) is a loss function (MOOD & GRAYBILL, 1963). If the loss is quadratic

Equating (6) to zero, yields Ô=E(9IY, yi, yz). Note that differentiating (6) with
respect to 0 yields a positive number, i.e., 0 minimizes the expected posterior risk,
and 0 is identical to the best predictor of 0 in the squared-error sense of HENDERSON
(1973). Unfortunately, calculating 4 requires deriving the conditional density of 0 given
Y, y, and y,, and then computing the conditional expectation. In practice, this is difficult
or impossible to execute as discussed by HENDERSON (1973). In view of these difficulties,
LINDLEY & SMITH (1972) have suggested to approximate the posterior mean by the
mode of the posterior density; if the posterior is unimodal and approximately symmetric,



its mode will be close to the mean. HARVILLE (1977) has pointed out, that if an improper
prior is used in place of the « true prior, the posterior mode has the advantage over
the posterior mean, of being less sensitive to the tails of the posterior density.

In (3), it is convenient to write

so the log of the posterior density can be written as

In[f4(Ø/Y, Yt, yz)] =In[f6(yly,, Yz, Ø)]+ In [fs(Yt. Yzlø)]+ 1n[f¡(Ø)] + const. (8)

III. Model

A. Categorical variate

The probability of response (e.g., easy calving) for the i’! row of the contingency
table can be written as some cumulative distribution function with an argument peculiar
to this row. Possibilities (GIANOLA & FOULLEY, 1983) are the standard normal and

logistic distribution functions. In the first case, the probability of response is

where <1>(.) and (D(.) are the density and distribution functions of a standard normal
variate, respectively, and w; is a location variable. In the logistic case,

The justification of (9) and (10) is that they provide a liaison with the classical
threshold model (DEMPSTER & LERNER, 1950; GIANOLA, 1982). If an easy calving occurs
whenever the realized value of an underlying normal variable, zw-N(8;, 1), is less than
a fixed threshold value t, we can write for the ilh row

Letting p.,=t-8i, !Li+5 is the probit transformation used in dose-response
relationships (FINNEY, 1952) ; defining !L4,= ¡.t,’IT /V3, then

For -5<p.,<5, the difference between the left and right hand sides of ( l lb) does
not exceed .022, being negligible from a practical point of view.

Suppose that a normal function is chosen to describe the probability of response.
Let y;3 be the underlying variable, which under the conditions of the i’h row of the

contingency table, is modeled as

where X:3 and Z:3 are known row vectors, JJ3 and U3 are unknown vectors, and ei, is a
residual. Likewise, the models for birth weight and pelvic opening are



Define I-Li in (9) as

which holds if e;3 is correlated only with ei, and ei2’ In a multivariate normal setting

where the p;,’s and the (T!,’s are residual correlations and residual standard deviations,
respectively. Similarly

where p! ! is the fraction of the residual variance of the underlying variable explained
by a linear relationship with e;, and e;2. Since the unit of measurement in the conditional
distribution of the underlying variate given PH P21 Ull U21 P31 u3, yi, and Yi2 is the
standard deviation, then ( 14) can be written as

Hence, (13) can be written in matrix notation as

where X&dquo; X2, Z, and Z2 are known matrices arising from writing (12b) and (12c) as
vectors. Now, suppose for simplicity that X3 is a matrix such that all factors and levels
in X, and X2 are represented in X3 and let ZI =ZZ=Z3’ Write

where Q, and Q, are matrices of operators obtained by deleting columns of identity
matrices of appropriate order. Thus, (19) can be written as

2 2

Letting T = P3 - L b;Q;[3; and v = U3 - L b,u,, (20) can be expressed as
¡-I i W

Note that if b, = b2 = 0, then T = (i3, v = U3. and (21 ) is equal to the expectation of
( 12a).

Given fl, the indicator variables Y are assumed to be conditionally independent,
and the likelihood function is taken as product binomial so



where 0*’ = [PI’ P2’ fl3, Ul, u2, U3, bi, b2l. Also

Letting 0’ = [fli , [32, T, Ul, u2, v, b,, b2l, then from (23) and (24)

B. Conditional density of « risk H variables.

The conditional density of y, and y, given 6 is assumed to be multivariate normal
with location and dispersion following from ( 12b) and ( 12c)

where (27) is a non-singular known covariance matrix. Letting R&dquo;, R’2, R2’ and R22 be
respective partitions of the inverse of (27), one can write

C. Prior density.

In this paper we assume that the residual covariance matrix

is known. From ( 16) and (17), this implies that b, and b2 are also known. Therefore,

and the vector of unknowns becomes 9’=[JJh [3z, T, u,, u2, v]

multivariate normal distribution



with Cov (u!, u;)=G;;(i, j=1, ..., 3 Note that Gc depends on b, and b2; when b, =b2=0,
it follows from (30) that G!= f G;;!. Now

where Ge ’={G!’}(i, i = 1, ..., 3). Prior knowledge about J3 is assumed to be vague so
r - m and r-t --! 0. Therefore

IV. Estimation

The terms of the log-posterior density in (8) are given in equations (22), (28) and
(33). To obtain the mode of the posterior density, the derivatives of (8) with respect
to 0 are equated to zero. The resulting system of equations is not linear in 9 and an
iterative solution is required. Letting L(9) be the log of the posterior density, the

Newton-Raphson algorithm (DAHLQUIST & BJORCK, 1974) consists of iterating with

Note that the inverse of the matrix of second partial derivatives exists as 13 can
be uniquely defined, e.g., with Xi having full-column rank, i=1, ...3. It is convenient
to write (34) as

A. First derivatives.

Differentiating (8) with respect to the elements of 6 yields

The derivatives of L(0) with respect to T and v are slightly different



where x!.3 is the i‘&dquo; row of X3, and

Now, let v be a sxl vector with elements

where ij, = -<I>(ILj)/Pjl and ij2 = <I>(ILj)/( 1 - P,,), and note that vj is the opposite of the
sum of normal scores for the j‘&dquo; row. Then

B. Second derivatives

The symmetric matrix of second partial derivatives can be deduced from equations
(36) through (41). Explicitly



In (42 i) through (42 k), W is an sxs diagonal matrix with elements

indicating that calculations are somewhat simpler if «scoring» is used instead of

Newton-Raphson.

C. Equations

Using the first and second derivatives in (36-41) and (42a-42k), respectively,
equations (35) can be written after algebra as (45).

In (45), (3;’’, ft’2&dquo;, !1[&dquo;1 and !12&dquo; are solutions at the [i&dquo;’] iterate while the 0’s are
corrections at the [it’] iterate pertaining to the parameters affecting the probability of
response, e.g., A!=T!-T!’’&dquo;. Iteration proceeds by first taking a guess for T and v,
calculating W1°1 and v1°1, amending the right hand-sides and then solving for the
unknowns. The cycle is repeated until the solutions stabilize. Equations (45) can also
be written as in (46). The similarity between (46) and the « mixed model equations »
(HENDERSON, 1973) should be noted. The coefficient matrix and the « working » vector
Y3 change in every iteration; note that y!i-B]=X3T[’-I]+Z3V[i-BLt.(W[’ - lJttv[l-IJ. l.

1!. Sowing Me equations

In animal breeding practice, solving (45) or (46) poses a formidable numerical
problem. The order of the coefficient matrix can be in the tens of thousands, and this
difficulty arises in every iterate. As (3&dquo; (32, u, and u, are « nuisance » variables in this
problem, the first step is to eliminate them from the system, if this is feasible. The
order of the remaining equations is still very large in most animal breeding problems
so direct inversion is not possible. At the it’ iterate, the remaining equations can be
written as

Next, decomposeP[;-1] as the sum of three matrices L1°! ! l, Dl&dquo;! ’ ’, Ul’! ! I, which are
lower triangular, diagonal and upper triangular, respectively. Therefore

Now, for each iterate i, sub-iterate with

for j=0, 1, ...; iteration can start with yli, °1 = 0. As this is a «nested» Gauss-Seidel

iteration, with P°-&dquo; symmetric and positive definite

(VAN NORTON, 1960). Then, one needs to return to (47) and to the back solution, and
work with (48). The cycle finishes when the solutions y stabilize.





Another possibility would be to carry out nested iterations with the conjugate
gradient method (BECKMAN, 1960). In the context of (47) the method involves :

a) Set

where yl&dquo; 0] is a guess, e.g., y!’! °!=0.
b) Calculate successively

for j=0, 1, ..., until yl&dquo; stabilizes. When this occurs, PE’- &dquo; and 1’’-&dquo; in (47) are
amended, and the cycle with a new index for i is started from (a). The whole process
stops when -y[;] does not change between the [i] and [i + 1 ] « main » rounds. While the
number of operations per iterate is higher than with Gauss-Seidel (BECKUtatv, 1960), the
method is known to converge faster when P&dquo;- ’I in (47) is symmetric and positive definite
(personal communication, SAMEH, 1981).

V. Approximate posterior inference and model fit

As discussed by LINDLEY & SMITH (1972) in the context of linear models, the
procedure does not provide standard errors a posteriori. LEONARD (1972), however, has
pointed out that an approximation of the posterior density by a multivariate normal is

« fairly accurate » in most regions of the space of 0, provided that none of the nil or

n; -n;, are small. If this approximation can be justified, given any linear function of
0, say t’O, one can write, given the model

where 6 is the posterior mode and C is the inverse of the coefficient matrix in (46);
note that.C depends on the data through the matrix W. Further

thus permitting probability statements about t’O. In many instances it will be impossible
to calculate C on computational grounds.

The probability of response for each of the rows in the contingency table can be
estimated from (9) with > evaluated at !. Approximate standard errors of the estimates
of response probabilities can be obtained from large sample theory. However, caution
should be exercised as an approximation to an approximation is involved.

When cell counts are large, e.g., nil and n, &mdash;n,,>5, the statistic

can be referred to a chi-square distribution with s-rank (X3) degrees of freedom. Lack
of fit may result from inadequate model specification in which case alternative models
should be entertained.



VI. Unknown variance-covariance structure

The matrices R;!(i, j=1, ..., 3) and G. are assumed known so that they are treated
as nuisance arrays in (8) and (46). In animal breeding practice there are generally
« good estimates of these matrices so they could be used in (45) or (46) to proceed
with the method, in the same way as in linear methodology (HENDERSON, 1973). The
effect of replacing R and G. matrices by estimates on the posterior distribution of 6
is not known, and should be studied by Monte-Carlo methods.

If the analysis were to proceed in an entirely Bayesian context, prior distributions
would need to be specified for the elements of these matrices. This is not addressed
in the present paper as it does not appear clear what densities should be considered
for the distribution of covariance components. For a discussion of Bayes estimation of
variance components, see HILL (1965), TIAO & TAN (1965), TIAO & Box (1967),
LINDLEY & SMITH (1972) and HARVILLE (1977). LEONARD (1972) considered estimation
of variance components with binomial data for a one-way model.

Equations (46) suggest methods for estimating variance and covariance components
in this quantitative-categorical setting. Write

Equations (46) can then be written as (52) below.

The above equations suggest at each iterate the multivariate linear model

with [3;&dquo;’ l1!i+IJ and r&dquo;&dquo;&dquo; « fixed and ub’ + i !, u2 &dquo;’, vli+l! and the E’s random, with
covariance matrix



holding at every iterate. Note that the residual variance of q!’! is unity so this part of
the covariance structure does not need to be estimated. Provided that p,, and P32 are

known, the method can be used to estimate the additive genetic covariance matrix
between the quantitative traits and the hypothetical underlying variate with binary expres-
sion.

Expressions in (53) and (54) suggest that some of the methods for estimating variance
and covariance components in linear models could be used to estimate the covariance
structure in (54). One possibility would be to mimic the computations used in estimation
via restricted maximum likelihood (SCHAEFFER et al., 1978) for multivariate normal data.
As computational feasibility is of paramount importance, a multivariate extension of
Henderson’s « simple method (HENDERSON, 1980) could be useful here. However, this
method does not preclude negative estimates of variance components. Estimation of
genetic parameters in non-linear models is an open area of potential importance.

VII. Numerical application

Data were obtained from 47 Blonde d’Aquitaine heifers mated to the same bull
and assembled to calve in the Casteljaloux Station, France. Each calving record included
information on the following: region of origin and sire of the heifer, pelvic opening and
season of calving, sex and birth weight of the calf, and calving difficulty score (1:
normal birth, 2: slight assistance, 3: assisted, 4: mechanical aid, and 5: cesarean). For
the purpose of the analysis, twin calves were excluded and calving difficulty was
recoded as: a) «Easy» (scores 1, 2 and 3) or b) «Difficult» (scores 4 and 5). The data
are presented in Table I. As shown in Table 2, 23.4 % of the calvings were « difficult s
and there were marked differences in the incidence of difficult calvings between sexes
and maternal grandsires.

A. Models

Birth weight was modeled as

where Di is the effect of the it’ region of origin of the heifer (i=1,2), T, is the effect
of the j‘&dquo; season of calving (j=1,2), L, is the effect of the kt&dquo; sex of calf (k=1: male,
2 = female), S, is the effect of the ph sire of the heifer (1= 1, ..., 6), and e;;k,m is a
residual. The vectors IJ. and u, were defined as





The model for pelvic opening was

where Di is the effect of the i‘&dquo; department of origin of the heifer (i= 1,2), T’ is the
effect of the j‘&dquo; season of calving (j=1,2), Sk is the effect of the kt’ sire of heifer
(k= 1, ..., 6) and e;;k, is a residual. The vectors tJ2 and U2 were defined as

The data in Table 1 can be regarded as a 47 x 2 contingency table, with rows

corresponding to each record, and columns being « DIFFICULT » and « EASY » calvings.
Hence, n;. = 1 for i = 1, ..., 47, and Y’ = [y ! ..., Y4,], with Y; being a scalar variable with
realized value I if a difficult calving occurs, or 0 otherwise. The probability of difficult
calving for the i‘&dquo; row was assumed a normal integral with argument modeled as

where Dl’ is the effect of the j‘&dquo; department of origin (j=1,2), T! is the effect of the
kt’ season of calving (k=1,2), Ll’ is the effect of the ph sex (1=1: male, 2=female),
and Sm is the effect of the in&dquo; sire of the heifer; b, and b2 are partial « regression x
coefficients of the underlying variate on birth weight of the calf and pelvic opening of
the heifer, respectively. These coefficients were assumed known with b,=.1643 and
b2 = -.0184; the logic for the choice of these values is presented in the following section.
Note that as !Li(jkl-) increases, so does the probability of difficult calving; also, w;!;k,m>



increases with increased birth weight and decreases with increased pelvic opening. The
vector T and v were then

B. Conditional covariance

Given 6, the variance-covariance matrix of birth weight and pelvic opening is

where Q is the Kronecker product. The values used for the residual covariance matrix
were (MErrisstER & SAPA, personal communication): o-!=25, U2 !2 = 1089 and !,!=41.25.

The coefficients b, and b2 were calculated as in (16) and (17) from p,2=.25, p,3=.50
and P23 = -.30; the residual variance in the underlying scale, which was set equal to 1,
corresponds to (15). These values yielded b, =. 1643 and b2 = -.0184.

C. Prior distribution

The parameter vector for this problem was

Prior knowledge about [3,, 1J2 and T was assumed to be vague. The covariance
matrix of u,, u2, and v was

where Gc is a 3x3 3 matrix calculated as in (31). The unconditional prior covariance
matrix was taken as

where pc,, is the genetic correlation between traits i and j in the underlying scale. The
genetic correlations used were (MErrisslEa & S: ,ra,, personal communication) :
p!,3=.70 and p!23=-.50. The standard deviations were calculated as

with B.=(4-h?)/h?, and h; _ .15, h2 = .40 and h!=.30. Further

with p! ,2=-4427. We obtained



Computations were also carried under the hypothesis of no « risk » relationship, i. e.,
bi = b2 &dquo; 0. In this case, a different prior covariance matrix was used

obtained from G by appropriate rescaling of elements. For example, and taking into
account that t/Vl-p! ,:;=!.3395

Note that h!4x.081!/(!+.0811)=.30, P0I3=.70 and P023= -.50, as it should be.
In this instance, the w;’s are expressed in standard deviation units of the underlying
variate for calving difficulty « unadjusted for residual variation in birth weight and
pelvic opening. In order to compare estimates obtained under bl =1= 0 and b2oO 0 with
those calculated with bl = b2 = 0, the latter were multiplied by 1.3395 to express them
in the same scale.

D. Logistic approximation

In each of the two cases (bl =1= 0 and b2 0 0, and b, = b2 = 0) computations were also
conducted using the logistic approximation in ( 11 b Since the residual variance in the
logistic scale is Tr!/3, the prior covariance matrices G. and Go discussed in the previous
section were rescaled as

where L is a 3 x 3 diagonal matrix with elements 1, 1 and 7r/V3. Solutions to (45) and
(46) obtained with the logistic approximation were then divided by 7r/V3 to make them
comparable to those obtained with the normal scale.

E. Iteration

Starting values for T and v are needed to iterate with (45) or (46). Two different
sets of starting values were used. The first was the T and v roots of (45) with W[i-Il = I,
V[l-I] = t being a vector of (0,1) variables ( I : difficult calving; 0: otherwise ) and i/’’&dquo;=0.
These roots yielded T1°1 and v1°’ which were used to compute >(#kim> in (57 a ); in turn,
these values permitted calculation of W(o) in both the normal and logistic cases. The
second starting set was the solution to (45) with W[’-l/ = I, V[i-ll = t* being a vector of

empirical logits (1n [1 + .5] = 1.099 if a difficult calving occurred and - 1.099 otherwise)
and!’ ’!0. ’!&mdash;

Iteration stopped when VA’A/29 < 10-’0, where A=0’&dquo;-8&dquo;’&dquo;. In each of the four
cases resulting from the combination of normal or logistic functions with hypotheses
about residual correlation ( b, ! 0 and bz ! 0 vs, b, = b2 = 0), convergence to the same
solution occurred irrespective of the starting set used. Six rounds of iteration were
required for the starting set using vE’- = t*; seven rounds were required when V[i-l] = t
was used. From a practical point of view, however, iteration could have stopped at
the third round. Results of iteration using a normal integral, bj #0 and b2 -# 0, and
V&dquo;-&dquo;=t t as a trial vector are shown in Table 3.



F. Model fit, estimates and their posterior precision

The models were evaluated for fit by referring the statistic in (51) to a chi-square
distribution with 47-4=43 degrees of freedom. None of the chi-square values

could be considered significant so there was no evidence to reject the model. However,



given the sparsity of the contingency table analyzed in this example, the approximation
of (51 ) to a chi-square statistic may be poor.

Differences between final round estimates of 0 obtained with the normal (9N) and
the logistic (6!) functions were small so the latter will not be presented here. In fact,

Estimates of components of 0 obtained using the normal distribution, and their
estimated posterior precision (square root of estimated posterior variance) are shown
in Table 4. The contrast L’i - L’2’ was estimated at 1.022 and 1. 315 for the cases
(b,!0, bz!0) and (b, =bz=0), respectively. These indicate that if a male calf is born,
the probability of a « difficult calving would be larger than if a female calf is born,



irrespective of whether the effects of birth weight and pelvic opening are removed.
This is consistent with the findings of BELIC & MErrcsStER (1968). However, the
difference in the underlying scale between male and female calves was smaller when
birth weight was included as a « risk variable. If this result were true, it would suggest
that part of the difference between sexes in liability for calving difficult is not associated
with differences in birth weight. The effect of including «risk» variables in the model
was clear in relation to differences between seasons. Season 1 was more favourable in
the (b,=0, b2=0) model perhaps because of calves with lighter birth weight and dams
with larger pelvic opening; when these differences were taken into account

(b, ! 0, b2 ! 0), season 2 turned out to be more favourable.

G. Sire evaluation

As pointed ort before, v = U3 - b,u, - b2U2, so sire solutions presented in Table 4
for the two different models are not comparable. Sires can be ranked for calving
difficulty in the full model by using the statistic

where v, u j and u2 are the sire components of 9 associated with the underlying variate,
birth weight and pelvic opening, respectively. From a practical point of view, one may
be interested in ranking sires in terms of probability of difficult calving rather than in
a hypothetical underlying scale. For example, breeders may wish to know the probability
that a heifer sired by the mt’ bull, born in region 1, calving a male calf in season 1 a
will experience a difficult calving. An estimate of this probability can be calculated as

Using (64) for sires 1 to 6 yields

In more general situations, e.g., artificial insemination, the probability of difficult
calving associated with using the m‘&dquo; sire in a given distribution of regions, calving
seasons and sexes of calf may be of interest. This probability could be estimated as

with Il!k,m as in (64) and 8;k, being an arbitrary weight such that £;k18;ki = 1. For the
example considered in this paper, we took 8 = 1 /8 because there were 8 region x season x
sex subclasses, and ranked sires using (63) and (65). Results are shown in Table 5 for
the normal and logistic distributions. As already indicated, differences between the
normal and logistic models were negligible, and the estimated probability of difficult
calving ranged between .116 and .239. Note that evaluations based on raw frequencies
(Table 2) gave the probability rankings :

However, the ranking in Table 5 was

This indicates that evaluation based on raw frequencies can be seriously misleading.
However, the progeny group sizes were small (Table 2) and none of the evaluations
calculated with (63) could be considered different from zero (Table 5).



VII. Conclusions

This paper presents a solution to the problem of estimating the genetic merit of
candidates for selection when both quantal and continuous information is available in
a set of individuals. The proposed method was adapted to the situation where the
probability of « response » is a function of continuous « risk variables. Also,
consideration is given to the assumption that candidates for selection are sampled from
a distribution with second moments known, a priori. The method can be extended to
multiple ordered or unordered categories of response along the lines presented by
GIANOLA & FOULLEY (1983).

The method is non-linear and approximates the best predictor in a squared error
sense. Theoretical objections arising in analysis of categorical data with linear models
(e.g., GIANOLA, 1982) are eliminated. For example, when calving difficulty is measured
as an «all or none trait, sire x sex of calf interactions are usually found to be
« significant ». This may be associated with a scaling problem. Suppose we wish to
compare two sires and that the values in the underlying scales are f.llM, !LIF, K2m and
tL21; the subscripts indicate the sire and the sex of the calf. Further, suppose that there
is no interaction between sex and sire in the underlying scale, i.e.,

However, <P(fLIM)-<P(fL2M) may be different from <P(fLIF)-<P(fL2F) because <1>(x)
does not vary linearly with x.

The method of estimation is based on Bayes theorem, but is not completely Bayesian
in the sense that the variance-covariance structure is regarded as representing a set of
« nuisance parameters. In principle, prior knowledge (or lack of) about variances and
covariances could be represented via a prior distribution (LINDLEY & SMITH, 1972) and
modal estimates obtained from the posterior density. HARVILLE (1977) has indicated
that estimators of variances obtained from the joint posterior mode can be degenerate
if uninformative priors are used. This author qualified the modes of the marginal
posterior density of the variance components as « seemingly superior estimators.



Important numerical problems arise when the procedure is applied to the estimation
of vectors with thousands of elements, the usual situation in applied animal breeding.
Nevertheless, the order of the computations is comparable to that arising in
multi-dimensional BLUP multiplied by the number of « main » iterates needed to achieve
convergence. When the « risk variables are considered in the model, the method

requires that every experimental unit with a categorical response includes information
on the quantitative variates.
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