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Summary

The animal model for performance data is rewritten in the form of a fixed model with
uncorrelated residuals. This transformation allows the use of computationally efficient methods for
solving generalized least squares problems to obtain best linear unbiased predictions of breeding
values. Application of a specific algorithm to the transformed model is described and compared
with more traditional approach of obtaining solutions to the mixed model equations through an
iterative process. The new approach may have merit for recursive prediction of breeding values
from sequentially collected data.
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Résumé

Calcul des valeurs génétiques par application des moindres carrés
généralisés à un modèle animal

Le modèle statistique d’interprétation des données de contrôle de performances est réécrit
sous la forme d’un modèle à effets fixés, avec des résidus non corrélés. Cette transformation

permet d’utiliser des méthodes de résolution des problèmes de moindres carrés généralisés,
efficaces sur le plan calculatoire, pour obtenir les meilleures’ prédictions linéaires sans biais des
valeurs génétiques. L’application d’un algorithme spécifique au modèle transformé est décrite et

comparée à l’approche plus classique d’obtention de solutions aux équations du modèle mixte par
un processus itératif. L’approche proposée peut présenter un intérêt pour une prédiction récursive
des valeurs génétiques à partir de données recueillies de façon séquentielle.

Mots clés : Modèle animal, algorithme QR, meilleure prédiction linéaire sans biais.

I. Introduction

Initial research into the use of mixed model equations to obtain best linear unbiased
predictions of breeding values or transmitting abilities concentrated on application of
separate sire and cow models to dairy cattle data, based on the pioneering work of



C.R. Henderson at Cornell University (see THOMPSON, 1979 for a review). In 1976,
HENDERSON & QUAAS described an animal model for simultaneous evaluation of males
and females based on available performance data from both evaluated and related
animals. The animal model has advantages over the separate sire and cow models :

- for non sex-limited traits the sire’s own performance record is used which is

equivalent in reliability to many half-sib progeny records for traits with high heritabi-
lity ;
- all relationships can be used, completely accounting for selection among dams ;
- nonrandom mating of bulls causes no bias in the evaluations ;
- evaluation of females is improved (compared with a within-herd cow model) by

incorporation of across herd relationships and by direct incorporation of sires’ evalua-
tion rather than an approximation.

A major disadvantage of the animal model is the commonly large number of
equations to be solved. For example, implementing the animal model for dairy cattle
evaluation in the northeastern U.S. involved over 1,500,000 animal equations and
nearly one quarter million fixed effect equations (WESTELL, 1984). Attempts have been
made to reduce the computational effort involved in using the animal model. A major
contribution was made by QUAAS & POLLAK (1980) who used a gametic model for
records of animals without progeny, thus the only equations needed were those of

parent and ancestor animals. A practical application of this « reduced animal model »
to swine evaluation by HUDSON & KErrNEnv (1985) required only 10 to 20 p. 100 of the
animal equations needed by the full animal model.

Recursive prediction allows further reduction of the number of equations to be
solved by evaluating only animals of interest. For example, dead animals need not be
directly evaluated although information from these animals is retained (HUDSON, 1984).
Recursive prediction techniques require the variance-covariance matrix of estimates and
prediction errors, and therefore preclude the use of iterative methods to obtain
solutions. This paper describes a procedure for representing the animal model as a

fixed model. Advanced computational methods for solving generalized least squares
problems can then be applied to obtain the necessary variances and covariances for
recursive prediction.

II. The animal model

The animal model is demonstrated here for a simple situation :
- each animal has a single record on one trait ;
- each animal with a record has both sire and dam identified ;
- some ancestors with recorded progeny, but without performance records of their

own, do not have identified sire or dam and are a random sample from a base

population ;
- the only fixed effect is the mean of records observed in a particular period

(years, seasons, etc.) ;
- animals may be inbred and the model allows overlapping generations.



Relaxation of these assumptions will be indicated where appropriate.

The n x 1 vector of data, yi, observed in the it’ period is described by the equation

where

ii is a vector of ni ones,

Ki is the mean of y,

ai is the vector of additive genetic effects (breeding values) of animals with records
in y,, random with mean zero and variance Ala;, and

ei is the vector of residuals, random with mean zero and variance Iu’.

The breeding value of the k’&dquo; animal in a, can be represented as

where a! and af are breeding values of the sire and dam of the k’&dquo; animal, and Vk
represents Mendelian sampling and is defined as the deviation of ak from .5 (ak + ak),
the mid-parent value. Equation (2) is the gametic model of QUAAS & POLLAK (1980). If
all the parents of animals represented in a; are in a,_, then the vector representation of
(2) is

where T; ;_, is an n, x ni-I matrix relating offspring in a; to parents in a;_,. The k’h row

of Ti, i-, has .5 in columns corresponding to the parents of the k’&dquo; animal in ai, and

zeros elsewhere. For overlapping generations, equation (3) is written as

For i > 0, var v; = Di a.’ : D; is a diagonal matrix with the k’&dquo; diagonal equal to
.5 - .25 (F, + Fd), F, and Fd are Wright’s coefficients of inbreeding for the sire and

dam of the k’&dquo; animal, and Qa is the additive genetic variance in the base population.
For i = 0, ao is the vector of breeding values of ancestors from the base population. If

these animals are a random sample, define ao = v, with var V&dquo; = JU2 . The recursive
equation (4) can be succinctly written for all animals as

where a = (a;), v = (v;) for i = 0, 1, ..., N, and T is a block matrix with subdiagonal
blocks equal to T;.j of (4), and null blocks on and above the diagonal. For example, for
3 periods of data (5) is



Rearrangement of (5) leads to

Thus (HENDERSON, 1976 ; QUAAS, 1976 ; THOMPSON, 1977)

and (HENDERSON, 1976 ; QUAAS, 1976)

In (7) and (8), D is block diagonal matrix of D;, superscript t indicates matrix

transpose, and superscript &mdash; t indicates transposition of the inverse matrix.

The model for all data from N periods is

where y = (yi), X = 2!1., ! = (w;), a. = (ai), and e = (ei) with i = 1, 2, ..., N and Y.’

indicating direct matrix summation.

The complete data equation (9) can be combined with the animal equation by
writing (5) as

then (9) and (10) together are

with 0 and 0 being null vectors and matrices of appropriate order. DUNCAN & HORN

(1972) describe (11) as a linear dynamic recursive model which forms the basis of
recursive prediction (HUDSON, 1984). Equations similar to (11) have been described for
a general (i.e., with T null) mixed model by DEMPSTER et al. (1981, 1984) and for a sire
model by FRIES (1984). Similar equations also have been presented for fixed models in
terms of ridge regression (MARQUARDT, 1970) and for variable selection in multiple
regression problems (ALLEN, 1974).

For data from three periods equations (11) have seven « rows »



Other models familiar to animal breeders can be derived from (11). Animals

represented in a, are nonparents, i.e., they have their own performance records but no
progeny data. If row 7 of the example is subtracted from row 3, the latter becomes

(thus eliminating a3) and the model becomes the reduced animal model of QuAAs and
POLLAK (1980). If y; contains only daughter records and ai contains only male breeding
values, then suitable redefinition of ei, T,, and D; generates either the sire model or the
maternal grandsire model of QUAAS et al. (1979). Fixed effects other than the period
mean can be incorporated by replacing iii with a vector P, and replacing li with

appropriately defined incidence (or regressor) matrices. Fixed effects may fall into two
categories (HUDSON, 1984) : those common to all data (e.g., sex, age, P) and those
specific to data collected in the i’&dquo; period (e.g. year-season means, Di). To avoid rank
deficiency problems in X, fixed effects should be defined so that 13 and all !3; are jointly
estimable. If no pedigree information is missing, the T¡. j completely account for
selection and no genetic groups are required in the model.

The utility of (11) is demonstrated by treating a as fixed and setting up the

generalized least squares normal equations

with a = oz/oe and &dquo; indicating solution, not parameter. Equations (12) are identical to
the mixed model equations for (9), therefore p and A are the best linear unbiased
estimator and predictor of p. and a. See DEMPSTER et al. (1981) for a Bayesian
derivation of (11) and (12) from a general mixed model. Thus equations (11) represent
a method by which an animal model for multiperiod data can be written in terms of a
fixed model with heterogeneous variances. There are numerous computing algorithms
for least squares problems applied to fixed linear models, and some may provide means
by which animal breeders can easily process periodic data through the use of (11).

III. The QR algorithm for generalized least squares

A. General principles

The QR algorithm (STEWART, 1973 ; LAWSON & HANSON, 1974 ; VAN LOAN, 1976)
for solving generalized least squares problems is described here for the fixed linear
model

with X having full column rank, q, and E = CC’. Define C as the lower triangular
decomposition of E. If E is diagonal (as is the variance-covariance matrix of the



residuals in (11)), then C is also diagonal. Define X and y as solutions to

C [X ý] = [X y] and write the model for y as

Thus a standardization of variables has transformed the model to one with
uncorrelated residuals with unit variances. Now define Q such that

1) Q is orthogonal (i.e., Qt Q = I),

4) R is an upper triangular matrix with order and rank equal to the rank of X, q.
The generalized least squares solution to (13) is the solution to

or, equivalently,

or, equivalently,

That b is the generalized least squares solution to (13) is demonstrated by
premultiplying (15) by X’Q’ which yields the familiar normal equations. Solving equa-
tions (17) is trivial because R is, by definition, upper triangular. Less easy is determi-

ning Q, which is the product of a series of q orthogonal matrices Q,, Qq!l’ ... Q, with
Q, defined so that, for ie, being the i’h column of Q;_,Q;_2 ... Q,X, Qiki is a vector with

zeros in all elements below the i’&dquo; element, thus satisfying the second and fourth

conditions above. Each Qi is a Householder reflection matrix described next.

B. Householder matrices

For any vector w the corresponding Householder matrix is H = I &mdash; 2uu’/u’u where
u = w with the first element replaced by w, + 8 (W’W)’5 ; 8 = 1 if w, ! 0 and 8 = - 1
if w, < 0. Thus Hw = [8 (w’w)5, 0, 0, ... 0]‘, i.e., the Householder matrix has « zeroed-
out » all but the first element of Hw. Straightforward multiplication shows that H is

orthogonal. To zero-out elements below the diagonal in ie&dquo; define w, as (x, , i :Ri+ 1, ... X-
!, Y and then 

’



Note that to apply the OR algorithm the matrix Q in (15) need not be explicitly
created or stored. Householder reflections are applied directly to X and y. For

example, to apply the Householder reflection H = I - 2uu’ / u’u to a vector z (either a
column of X or y) simply requires subtracting from z a scalar multiple of u (GouLT et
al. , 1974) : Hz = z &mdash; (2u’z/u’u)u. In situations that requires retaining Q for future use,
then nonzero elements of u can occupy the zeroed-out elements of w (Lnwsorr &

HANSON, 1974).

The coefficient matrix of (11) is both sparse and highly structured ; the design of
the QR algorithm can utilize both properties. For example, the Householder matrix can
be constructed to operate on only nonzero elements. Appropriate reordering of rows of
[X y] can exploit the structure of the equations.

C. Updating the QR with new data

Data are often collected sequentially over an extended period of time. New data
are combined with old data to provide updated solutions ; with the QR algorithm this
updating procedure is relatively easy. Suppose the OR algorithm has been applied to
the data and incidence matrix of the transformed model (14) so that R and y, of (17)
exist. New data, y,, are collected which fit the model

with cov (e, ez) = 0. Model (18) is transformed to

and the QR algorithm is applied to

Householder reflections are applied to (20) so that X2 is zeroed-out. Note that Q of

(15) is not required for the updating procedure.

The updating described here should not be confused with recursive prediction by
which new solutions are obtained from new data along with previous solutions and their
variances (HUDSON, 1984). This updating procedure simply combines the new data with
the old equations and applies the QR algorithm.

D. Variance-covariance matrix of solutions

The variance-covariance matrix of b is required to generate confidence intervals
and to test hypotheses about b, and is also required in recursive estimation and

prediction (HuDSOrr, 1984). Obtaining li by solving (17) does not requires R-I because

R is triangular. However var b = R-IR-’(T2. Thus the inverse may be required in certain
applications. Inverting a triangular matrix is straightforward, but, in certain cases, var b



itself is not needed. For example, to test the hypothesis K’b = m requires var

K’b = K’ var b K = K’ii-’it-’K. LAWSON & HANSON (1974) suggest computing this as

AA’ where A is solution to AR = K’. Diagonal elements of ii-lii-t are needed for

confidence intervals and are calculated by the sum of squares of elements in each row
of R ’

IV. Comparing the QR algorithm with normal equations

Criteria by which computer algorithms are often compared include central proces-
sing unit time required for various parts of the process, amount of storage needed and
accuracy of final solutions. If X is square, then the QR algorithm requires two-thirds
the storage locations of the normal equations method (LAWSON & HANSON, 1974). As
the number of rows of X increases relative to the number of columns the advantage of
the QR over normal equations decreases. For example, if there are 5 times as many
rows as columns in X, then the QR requires as much as 90 p. 100 of the storage
locations needed by the normal equations. If the ratio of number of rows to number of
columns exceeds 50, then storage requirements of each method are essentially equal.

LAWSON & HANSON (1974) discuss in detail the accuracy of the QR algorithm and
compare various methods. In general, to obtain solutions of comparable accuracy, the
normal equations must be computed with higher precision arithmetic than the QR

algorithm. This is only of concern to animal breeders if the linear model contains

covariates, and even then careful avoidance of collinearity and scaling of variables can
lessen problems due to loss of accuracy. If X is an incidence matrix with no regressors
each method produce solutions of equal accuracy. Ranking animals for the purpose of
making selection decisions certainly does not require solutions to machine accuracy.

The major criterion for comparing the QR algorithm with normal equations is

computer time. If X is square and has no special exploitable structure then the QR
method requires the same number of computer operations as setting up and solving the
normal equations. If, as is usual, the number of rows in X exceeds the number of

columns then the normal equations method is approximately twice as fast as the QR
method. If X is an incidence matrix with no regressor variables then further time

savings are available because generating the normal equations requires only summation
operations and no multiplications. Applying the QR algorithm to incidence matrices
also reduces the computational work compared with the general case. For example,
triangularizing X in (11) is rapid due to the simple structure of X. Additional time can
be saved by applying normal equations to (11) because (I &mdash; T)ID-1 (I &mdash; T) of (12) can
be generated directly by the methods of HENDERSON (1976) and QUAAS (1976), which
requires less work than zeroing-out (I &mdash; T) in (11). The actual time requirements of
applying QR to (11) have yet to be determined.

Animal breeders do not require solutions of great accuracy and often use iterative
methods such as successive overrelaxation (GouLT et al., 1974) to solve (12). This
approach has been investigated by numerous authors, but BLAIR & POLLAK (1984)
conclude : « Sufficiently accurate ranking of animals for selection purposes is achieved

long before random effect solutions converge, especially if the [reduced animal model
of QUAAS & POLLAK (1980)] is used ». Even their criterion for convergence, the mixed

model equivalent of c = (ê’X’Xê/y’X’Xy)’5 < .0001, (e is the estimated residual vector)
did not involve solutions accurate to machine precision. VAN VLECK & EDLIN (1984)
evaluated 484 Holstein bulls for calving difficulty of their calves : 4 iterations produced



solutions deemed sufficiently accurate with c < .0005 ; an extra 16 iterations yielded
c < .0001. GouLT et al. (1974) suggested that, for any system of non-symmetric non-
sparse equations : « ... an iterative method may have the advantage... provided the
number of iterations needed to give the accuracy desired is less than about [one-third
the number of equations] ». This obviously held in the case of VAN VLECK & EDLIN

(1984). The advantage of iterative methods is even greater if the equations are sparse
and symmetric, as (12) often are. BLAIR & POLLAK (1984) did note that more iterations
were required to obtain an accurate indication of genetic trend, than to rank animals
for selection.

V. Discussion

Generation and iterative solving of mixed model equations is, for a large class of
linear models common in animal breeding, rapid and straightforward. Sufficiently
accurate solutions may be obtained after only a few iterations, especially if the ranking
of animals is the only concern. If estimates of genetic trend are required, many more
iterations are needed. Under what conditions, then, may the QR algorithm be superior
(in terms of computer usage) than the more traditional methods ? The answer relies on
exploiting the triangularity of R.

First, equations (17) are easy to solve and the solution to any particular equation,
the k’&dquo; say, requires only solutions from k + 1 to N. In order to solve the k’h equation,
solutions from 1 to k &mdash; 1 are not needed. Thus fixed effect solutions are not required
to compute estimated breeding values. If equations are ordered as shown in the

example, then ancestor equations are not required to obtain solutions for younger
animals. These unneeded equations may in fact be discarded after they have been
triangularized.

Second, updating R with new data is quite straightforward. The only equations that
change are those of parents and common fixed effects ; new equations are needed for
new fixed effects and new animals. Once the update to R2 has been accomplished,
solving (21) is trivial. Although updating mixed model equations is also straightforward,
those updated equations then need to be re-iterated.

Third, inverting a triangular matrix is easy, thus obtaining variances of fixed
solutions and of errors of prediction is also easy. This may facilitate the use of
recursive prediction of breeding values which is not possible if solutions are obtained by
iterating mixed model equations.
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