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Summary

Phenotypic characters show remarkable variability in evolutionary rates and at times

periods of seemingly random rapid acceleration. The speciation burst hypothesis offers a

supported explanation of the variability of rates as being primarily the result of the

organisms exposure and sensitivity to ultraviolet light and/or cosmic rays. Any major
disruption increasing the amount of exposure such as a geomagnetic reversal would also
increase the evolutionary rate. An association was found between a period of frequent
geomagnetic reversals and rapid speciation events observed simultaneously in 2 different

categories of organisms, with different habitats, and pronounced difference in population
sizes.

Key words : Environmental mutagenesis, phenotypic evolution, geomagnetic reversals.

Résumé

L’hypothèse d’une spéciation par bouffées : une explication
de la variabilité de la vitesse de l’évolution phénotypique

Les caractères phénotypiques montrent une remarquable variabilité dans leur vitesse
d’évolution et une accélération rapide à certains moments. L’hypothèse d’une spéciation
par bouffées interprète cette variabilité comme la conséquence d’une exposition des

organismes aux rayonnements ultra-violets et aux rayons cosmiques. Toute perturbation
majeure, comme par exemple un renversement du champ magnétique terrestre, susceptible
d’accroître l’exposition, provoquerait une accélération du taux d’évolution. Une association
entre une période de changements fréquents du champ magnétique et des phénomènes
de spéciation rapide est décrite dans 2 groupes d’organismes qui diffèrent à la fois par
leurs habitats et leurs effectifs.

Mots clés : Mutations dues à l’environnement, évolution phénotypique, renversements
du claamp géomagnétique.
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I. Introduction

Phenotypic characters show not only a remarkable variability in evolutionary
rates ranging from very slow to very fast, but in some cases periods of stasis

interspersed with shorter periods of accelerated evolution. Evolutionary hypotheses
dealing with phenotypic characters are needed to explain this variability. Such a
hypothesis is speciation burst (TSAKAS, 1984) and in this paper its explanations and
potential for prediction will be presented.

The most important population genetics parameter for differentiation-diversifi-
cation-speciation is proposed to be mutation. According to this any major disruption
increasing exposure such as geomagnetic reversals would accelerate evolution by
increasing the mutation rate. During a geomagnetic reversal which may last from 1,000-
10,000 years the biological material of the earth is exposed to more intense cosmic
radiation (HARRISON & PROSPERO, 1974) and/or ultraviolet light (REm et al.,
1976). As a consequence, mutations with none, small, or great phenotypic effect will
appear in a relatively short period of time. Mutations with great phenotypic effect

explain the absence of transitional forms (missing links). At the same time, due to the
heavy genetic load and/or environmental changes, many species become extinct.

Population size does not appear to play such an important role under these conditions
(KIMURA & OHTA, 1971). The population size parameter which has been used as a pri-
mary factor in explaining accelerated evolution has been called into question by recent
findings on marine fossils ; however these findings are consistent with the speciation
burst hypothesis. These mainly are : strong correlations suggesting that during the
Phanerozoic period a similar pattern of evolution had occurred simultaneously on a
global scale (SErxosxi et al., 1981) ; rapid evolutionary events have been observed
in large populations containing millions of members (WILLIAMSON, 1981) ; sexually
and asexually reproducing taxa show a similar pattern of speciation (WILLIAMSON,
1981).

II. Observations and explanations

Figure 1 shows the concurrence of a period of frequent geomagnetic reversals
and accelerated evolutionary events observed simultaneously in 2 different categories
of organisms, vertebrate and invertebrate, with different habitats, and pronounced
difference in population size. VRBA (1980) reports a remarkable burst of speciation
in Alcelaphini (antelopes) (see figure 2 A) during the period of 1.5 - 3.0 Myr which
coincides with WILLIAMSON’S (1981) data showing a rapid speciation event in
Cenozoic molluscs in the Turkana Basin (see figure 2 B). In addition, rapid extinction
also appears to have occurred during this period, resulting in a reduction in species
duration. The majority of the species becoming extinct were from the newly formed
ones. This 1.5 Myr interval of time representing approximately 1/3 of the 4 Myr span
compared contains the greatest number, 13 out of 19, of geomagnetic reversals and
these occurred in two clusters (Cox, 1969).

The speciation burst hypothesis maintains that any factor affecting the amount
or intensity of exposure to ultraviolet light and/or cosmic rays would affect

speciation on a continuous basis as well as during geomagnetic reversals or other





major disruptions. The strong correlation observed between the rate of chromosomal
evolution and rate of speciation in vertebrates (BusH et al., 1977) and in plants (LEVIN
& WILSON, 1976) can be viewed from the following perspective. Ultraviolet rays
produce mutations similar to the spontaneously arising ones, and ultraviolet light and
cosmic rays are known to produce chromosomal aberrations. Chromosomal aberrations
are a causal factor for speciation events (WHITE, 1980). This hypothesis then allows
some preliminary predictions which are presented and followed by a brief account
of supporting data.



A. Latitude

Speciation would be expected to be faster closer to the polar regions due to
the morphology of the geomagnetic field which affords lower protection from cosmic
rays in these regions in comparison to the equator.

HicxEY et al. (1983) found that new forms of animals and plants first appeared
in the Arctic and migrated later to temperate climes. They report that data from the
« Eureka Sound Formation in the Canadian high Arctic reveals profound difference
between the time of appearance of fossil land plants and vertebrates in the Arctic
and mid-northern latitudes. Latest Cretaceous plant fossils in the Arctic predate
mid-latitude occurrences by as much as 18 million years, while typical Eocene verte-
brate fossils appear some 2 to 4 million years early ».

In research dealing with 131 species of Benthic Foraminifera on the Atlantic
Continental Margin of North America, BUZAS et al. (1984) found a shorter species
duration and therefore faster evolutionary rate in the Northern regions spanning
from Cape Hatteras to Newfoundland in comparison to that from Florida to Cape
Hatteras. This appears to be continuous for the last 50 Myr period.

B. Depth of aquatic environment

Due to the protection afforded by water a progressively slower speciation-
evolutionary rate would be expected moving from land to shallow water to deep
water.

1ABLONSKI et al. (1983) report that biological innovations occur nearshore and
expand outward across the shelf in phanerozoic shelf communities. This can be
described as an onshore speciation - offshore migration pattern.

Another aspect of the extensive research on benthic Foraminifera (Buzns et al.,
1984) shows that evolutionary rates are greater in shallower than in deeper depths
for the last 60 Myr. The combination of the 2 factors already described here, Northern
latitude and shallow depth, showed the greatest evolutionary rates, observed as shortest
species-duration time.

In figure 2, six of the seven newly-derived gastropods evolved from the species
Bellamya unicolor, Cleopatra ferruginea, and Mellanoides tuberculata. ABELL (1982)
reports that these species have the following properties, a) they inhabit shallow water,
b) they are capable of living over a wide range of pH and concentrations of dissolved
salts, c) they are the most abundant of the Lake Turkana molluscs.

It is intriguing to note that whales as opposed to the landliving mammals studied
by Busx et al. (1977) show markedly reduced chromosomal and speciation rates

which are found to be at the level of amphibia and reptilia.

C. Diurnal vs. nocturnal living habits

Due to the reduced exposure to ultraviolet light, it would be expected that
nocturnal creatures would evolve at a slower rate than diurnal ones.



This could explain the significantly slower chromosomal and speciation rates

observed in bats as compared with that of other land-living mammals ; the rates were
close to those estimated in amphibia and reptilia (BUSH et al., 1977).

’ 

D. Sensitivity of the organism

It is predicted that the sensitivity of the organism to ultraviolet light and/or
cosmic rays combined with the level of exposure would affect evolutionary speeds.

Studies show that in general mammals have the highest sensitivity to radiation (as
measured by L.D.50) and this declines through birds, reptilia and amphibia (CASARETT,
1968). Figure 3 shows the comparative diversification of the vertebrate subphyla
mammalia, aves, reptilia and amphibia (VRBA, 1980) and this reflects their respective
levels of sensitivity.

III. Conclusion

The speciation burst hypothesis offers a supported explanation for the remarkable
variability in evolutionary rates seen in phenotypic characters as being a consequence
of the exposure to and sensitivity of the organism to ultraviolet light and/or cosmic
rays. The mitigating factors affecting exposure such as latitude, aquatic environment,
living habits, and sensitivity of the organism give not only insight into the varying
evolutionary rates but also offer preliminary guidelines for where and when forms
of life would be expected to evolve at slower or faster rates. For example, the

Crossopterygii (figure 3) whose exposure is mitigated by its more protected environ-



ment in the water and its scaled outer structure does not show any significant
fluctuation in its evolutionary rate for the past 300 Myr but remains in stasis ; and the
same explanations may hold for another living fossil, the Limulus polyphemus, the
horseshoe crab, which remains virtually unchanged for the past 230 Myr (VItsA, 1980).

The intriguing periods of acceleration in evolution can be seen as the result
of increased exposure to ultraviolet light and/or cosmic rays due to some major
disruption such as geomagnetic reversals. It has been demonstrated that pronounced
acceleration in speciation in Alcelaphini and molluscs, which are 2 different categories
of organism, with different habitats, and such a pronounced difference in population
sizes, occurred simultaneously with a period of frequent geomagnetic reversals.
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