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Summary

The impact on selection response of the positive assortative mating of selected parents was
determined for a 2 generation cycle. Relative efficiency refers to the incremental response in the
second generation and is defined as the per cent increase in selection response due to mating
individuals assortatively instead of randomly. As determined by relative efficiency, assortative
mating is most useful when heritability is large, parental selection intensity is low and offspring
selection intensity is high. Compared with selection on progeny phenotype, the efficiency of
assortative mating is greatly enhanced when progeny are selected on an index incorporating
information on parents, the influence being greatest at low heritabilities. Given 10 p. 100 of

parents and offspring selected and a heritability of .05, relative efficiency under index selection is
5 p. 100 compared to only .4 p. 100 under mass selection. Over the range of offspring selection
intensities considered, relative efficiency under index selection varied between (5-3 p. 100) when
heritability equals .05 with 10 p. 100 of parents selected, to (21-15 p. 100) when heritability equals
.8 with 90 p. 100 of parents selected.

Key words : Index selection, positive assortative mating, selection.

Résumé

Homogamie et sélection artificielle : une nouvelle évaluation

On a déterminé, pendant un cycle de 2 générations, l’effet, sur la réponse à la sélection, de
l’homogamie positive de parents sélectionnés. L’efficacité relative se rapporte à l’accroissement de
réponse obtenu chez les descendants issus de la 2’ génération : elle est définie comme le

pourcentage d’augmentation de la réponse à la sélection due à l’homogamie, comparée à des
accouplements au hasard. En terme d’efficacité relative, l’homogamie est surtout utile lorsque
l’héritabilité est importante et que l’intensité de sélection est faible chez les reproducteurs de 1"
génération, mais élevée chez les reproducteurs de la 2’ génération. L’efficacité de l’homogamie est
considérablement accrue lorsque les reproducteurs de la 2* génération sont sélectionnés, non pas
sur leur phénotype, mais sur un index incorporant l’information relative à leurs parents, surtout si
l’héritabilité est faible. Pour un taux de sélection de 10 p. 100 dans les 2 générations et pour une
valeur de 0,05 de l’héritabilité, l’efficacité relative est de 5 p. 100 avec une sélection sur index,
contre seulement 0,4 p. 100 avec une sélection individuelle. Dans l’intervalle considéré pour les
intensités de sélection en 2’ génération, l’efficacité relative (avec une sélection sur index) varie de
5-3 p. 100 quand l’héritabilité vaut 0,05 et que le taux de sélection en 1" génération est de 10 p.
100, à 21-15 p. 100 quand l’héritabilité vaut 0,8 et que le taux de sélection en 1" génération est de
90 p. 100.

Mots elés : Sélection sur index, homogamie, séleetion.



I. Introduction

McBRIDE and ROBERTSON (1963) showed how selection with positive assortative

mating can lead to larger selection response than selection with random mating. In a
simulation study, DE LANGE (1974) concluded that assortative mating is most useful
when the trait is polygenic, selection intensity is low and heritability (hl) high. BAKER
(1973) studied the effectiveness of assortative mating of selected parents followed by
selection of offspring and claimed that in most cases assortative mating will increase
selection response in the progeny but by no more than 10 p. 100. When the fraction of

parents selected is 20 p. 100 or less, BAKER found that assortative mating will increase
selection response by no more than 4 or 5 p. 100. SMITH & HAMMOND (1987)
questioned these results because :

(1) Assuming selection response proportional to the genotypic standard deviation
can result in an underestimate of the relative efficiency of assortative mating by as

much as two percentage units.

(2) Departure from normality in the offspring generation should not be assumed
negligible when h2 is high and parents are mated assortatively.

(3) The merit of assortative mating should not be based exclusively on responses
possible under mass selection. The efficiency of assortative mating might be substan-
tially different when index selection, incorporating information on relatives, is used.

Implicit assumptions questioned by the first two points are sometimes reasonable.
However, care is required when the error resulting from an approximation approaches
the same order of magnitude as the quantity (e.g., relative efficiency) being estimated.
The third point has the potential of being a serious objection as the fundamental reason
for assortative mating may be to arrange future pedigree information. The purpose of
this paper to rework Baker’s analysis accounting for the above points.

II. Materials and methods

We concern ourselves with analytical evaluation of responses to selection after 1
and 2 generations. In the first generation unrelated individuals (parents) were selected
by mass culling on a single phenotypic expression. To produce the second generation
parents were either mated randomly or assortatively. Comparing selection responses in
the second generation allowed determination of the efficiency of assortative mating over
random mating. This was done for two types of selection in the second generation ;
mass selection on a single phenotype, and index selection using parental phenotypes as
well as the progeny phenotype.

Our analysis depends on a series of assumptions that are described next.

A. Assumptions

Phenotypes and genotypes are multivariate normal random variables. Further,
genotypes are inherited additively and genotype by environment interactions do not



exist. The usual companion clause to these assumptions is that genotypes are expressed
as the sum of small effects over a large number of additive and unlinked loci. This
allows the depiction of genotypes as normal random variables. BAKER (1973) used
normal approximations and presented results as a function of loci number. Our analysis
differs from that of BAKER in that results are not presented as a function of loci
number. We have simply assumed that there are enough loci for normality to hold.

Populations were assumed to be of infinite size so as to allow easy calculation of
selection responses. Similar calculations for finite populations are complicated and
would require consideration of order statistics. The results of BAKER (1973) were not a
function of population size.

The population was in linkage equilibrium prior to the selection of first generation
animals. That is, there were no asymmetries caused by prior selection. BAKER (1973)
implicity made this assumption and allowed a reduction in variance due to selection in
generation 1. We accommodated both the reduction in variance and departure from
normality. Though it is difficult theoretically, it would be desirable to extend our

analysis beyond 2 generations.

B. Calculating selection response

To calculate selection response, (co)variances were needed for all measures used as
culling criterion and the metric for which selection response applies. For two genera-
tions of mass selection, these measures are parental phenotypes (Pl and P2 where the

subscripts define the sex), offspring phenotype (Po) and offspring additive merit (Ao).
Given mass selection in generation one and index selection in generation two, a further
measure, I, which is the index that predicts Ao from PI, P2 and Po, was required. The
specified (co)variances correspond to populations where no selection occurs and when
parents are mated assortatively or randomly. Once population parameters were defined,
truncated multivariate normal theory (BIRNBAUM & MEYER, 1953 ; TnLLts, 1961)
allowed the calculation of exact selection response. Hence, we have modelled the

phenomenon that additive genetic variance decreases with selection and increases with
positive assortative mating. As we dealt with a multivariate system we were also able to
assess the importance of prearranging P, and P2 when selecting progeny from an

Index, I.

1. Random mating

Under random mating the (co)variance structure for PI, P2, Po, I and Ao is :

where the phenotypic variance has been standardized to 1 and w, and W2 are weights in
the selection index, I = w, (Pl + P2) + W2Po, for which w, is given as h2 (1 - h!)/(2 - h4)



and W2 is given as hz (2 - h!)/(2 - h!). The weights of the selection index are unaffected
by selection in generation one.

The first moments of P,, P2, Po, I and Ao are taken, with no loss in generality, to
be null. Selection in the first generation was cast as truncating Pi and P2 above some
threshold (tl). The same selection intensity in both sexes was used so as to be
consistent with BAKER (1973). Selection in the second generation is cast as truncating Po
(or I) above a threshold (t2). To evaluate selection response, the expectation of A.
given truncation on P,, P2 and Po (or I) was computed. This expectation is denoted by
E [AOIPI > tl, P2 > tl, Po (or 1) > t2l-

Explicit representation of selection response requires the following definitions :

(1) Standard normal density,

(2) Standard univariate normal area,

where Pr [Al is the probability of event A and X is standard normal ;

(3) Standard bivariate normal volume,

where X, and X2 are standard bivariate normal with correlation r ;

(4) Standardized yet specific trivariate normal space,
- , . - r_. - - - - ,

where Xl, X2 and X3 are trivariate normal with moments

A routine MDBNOR, from IMSL (International Mathematical and Statistical
Librairies, Inc.) was used to evaluate B (cl, c2, r). A routine was written for evaluating
T (cp, c., r), based on a tetrachoric series described by KENDALL (1941). The common
view is that this series converges slowly for large Irl. However, in our analysis Irl is
never larger than .493 which is considerably less than the theoretical maximum, .707.
Tests showed that our routine performed well when r = .493. Other useful methods of
evaluating T (cp, co, r) can be derived by applying suggestions of FOULLEY & GIANOLA
(1984) and RUSSELL et al. (1985).

The theory of BIRNBAUM & MEYER (1953) and TALUS (1961) indicates that, under
mass selection of progeny,



Note that (1) is a generalization of the well known formula, ihlup (i = selection
intensity, up standardized to 1 herein), which estimates selection response after 1

generation of mass selection.

Likewise, under index selection of progeny,

where I,, = I/h (WI + w2)&dquo;! and t, = t2/h (w, + W2)112, and consequently (2) equals

We needed (t&dquo; t2) or alternatively (t&dquo; t!) to evaluate (1) or (3). Truncation points
were determinated given the proportion of parents selected (SP) and the proportion of
progeny selected (So). Infinite population size implies

for t, in (1) or (3) and

Truncation point t, was computed from (4) via Newtons method, that is the
iterative scheme

where t; is some starting value and for sufficiently large i, t, = til. After t, was

determined, t was found in (5) by Newtons method again, that is



where t° is some starting value and for sufficiently large i, t = t’. A good starting value
proved to be :

where t* is defined implicitly but U (t’) = So and

2. Assortative mating

There are no conceptual difficulties in allowing assortative mating prior to selection
in generation one. We can describe selection of parents as selection of mating pairs, so
that if one parent is selected the preassigned mate is selected as well. Selection
followed by mating is mathematically equivalent to mating followed by selection. This
property allowed us to compute selection response under assortative mating via the
theory of truncated multivariate normal. This is not possible if selection intensities are
different for each sex, nor is it possible for negative assortative mating.

Define A, and Az as the additive genetic component of P, and P2, respectively. The
(co)variance structure of P&dquo; P,, A&dquo; AZ, Po and Ao under assortative mating with no
selection was determined as

using the following reasoning : positive assortative mating in an infinite population
implies that the phenotypic correlation among mates is one. Thus, the above matrix is

singular. Principals of conditional covariance allowed determination of other elements in

(7). For example,

Consider the selection index used to predict A. given P&dquo; P, and Po. This index can
be derived from (7), yet we know that the weights are unaffected by mating in

generation one. Thus, the weights given previously for random mating apply (i.e.,
I = w, (P, + Pz) + w2Po). Using (7), the (co)variance structure of P&dquo; P2, Po, I and A. is :



Computation of selection response from (8), is simplified by noting that P, > t, is
redundant information given that P, > t,. Hence,

where P# = PJ(1 + 1/2 h4)lIZ and t, = t2/(’ + 1/2 h4)llz. To evaluate (9) we applied the
methods of BIRNBAUM & MEYER (1953) & TALLIS (1961) to give :

The selection response from index selection is given by :

Expectation (11) was calculated as :

In evaluating (10) or (12) we needed t, and t.. Truncation point t, was obtained
from the analysis described for random mating. t! was obtained by solving

given t,. Equation (13) was solved by Newtons method, that is the iterative scheme



where tj is some starting value and for sufficiently large i, t! = ti.. The starting value
used was :

C. Relative efficiency

BAKER (1973) reported the relative increase in genotypic variance in generation
two, following selection and assortative mating in generation one. For comparison we
examined the deviation of selection response between the second and the initial

generations. The initial selection response was calculated as

where t, was defined by (4) and calculated by scheme (6).

Under mass and index selection, relative efficiency (p. 100) was calculated as

where DRA is the deviated response due to selection with assortative mating and DRR
is the deviated response due to selection with random mating. Relative efficiency was
calculated for a range of h2, SP and S..

D. Departure from normality

We have argued that departure from normality should not be ignored when
calculating relative efficiency. Even if normality is a tenable assumption there is no

harm done in allowing for the possibility that normality does not hold. Alternatively,
BULMER (1980, p. 154) argues that departure from normality induced by selection can
be safely ignored.

The effect of departure from normality was investigated only for mass selection.
The effect was not considered with index selection as few would deny the lack of

normality displayed by I after truncating on P, and P,.

Relative efficiency, DRA and DRR was recomputed assuming normality in the

offspring. We use the subscripts 1 and 2 to indicate how the above quantities were
computed ; RE&dquo; DRA, and DRR, evaluated correctly and RE,, DRAz and DRRZ
evaluated under conditions of normality. Precisely, DRA! and DRR2 were evaluated as

The quantity, RE,, was calculated from (14) using DRA2 and DRR,. Inspection of

(14) and (15) shows that RE, is independent of i or So.



Error terms (p. 100) for DRA, and DRR2 were calculated as :

E! = 100 (DRA,/DRA, - 1)
E2 = 100 (DRR¡!DRR2 - 1)
These percentages will be reported rather than DRA&dquo; DRA2’ DRR, and DRR,.

III. Results and discussion

A. Mass selection

1. Relative efficiency
Relative efficiencies under mass selection are presented in table 1. These quantities

varied between 0.41 p. 100 (h2 = .05, Sp = .1, So = .9) and 20.98 p. 100 (hl = .8, Sp = .9,
So = .1). Our results support DE LANGE (1974) in that assortative mating was found to
be most effective when hz was high and when the parental selection intensity was low.
Differences in RE as a function of So, holding h2 and Sp constant, were attributed to
departure from normality, which is discussed in the next section.

Relative efficiencies calculated assuming normality are displayed in table 2 and are,
on the whole, slightly larger than what BAKER (1973) predicted. The primary reason for
the discrepancy seems to be due to Baker’s assumption that selection response was

proportional to the genotypic standard deviation. To overcome this we use a set of
ratios defined by BAKER as :

Genotypic variance in progeny of assortatively mated parents
Genotypic variance in progeny of randomly mated parents

Any particular ratio (R) was a function of h2, parental selection intensity, loci
number and initial gene frequency. This ratio was translated into a RE using :

If we consider Sp = .2, h2 = .2, 100 loci and gene frequency = .5, Baker’s corrected
RE becomes 2.1. The analogous figure listed in table 2 is 2.15. If we consider Sp = .2,
h2 = .8, 100 loci and gene frequency = .5, BAKER’S corrected RE is 7.6. The correspond-
ing value in table 2 is 7.81.

2. Departure from normality
Under conditions of normality in the offspring generation, relative efficiencies for

the 2 generation cycle are independent of So and are listed in table 2. However, the
effect of departure from normality, on RE appears uniform in table 1 ; RE is enhanced
for low So, holding h2 and Sp constant. The influence of departure from normality on
RE can be characterized by comparing tables 1 and 2. For example, when Sp = .1 and
h2 = .05 the RE calculated under conditions of normality is .42 (table 2). This value
agrees well with the 7 analogous figures in table 1 because departure from normality is
slight. Alternatively, if we take Sp = .2 and h2 = .8 the RE in table 2 is 7.81. This
number is intermediate among the 7 analogous numbers in table 1 as there is

appreciable non-normality in the offspring. Departure from normality appears most





influential when h’ is large. In fact, for h’ of .6 or .8, errors induced by assuming
normality in the offspring are the same order of magnitude as RE itself.

A better understanding of the effect of departure from normality on RE is possible
by considering the component error terms, E, and E,, displayed in table 3. Values in
tables 3 and 2 are related to values in table 1 by the mathematical relationship :

From (16) we see that E, and E, work in opposite directions and in particular
when E, = E, we have RE, = RE,. The terms E, and E, generally have the same sign in
table 3. Thus, E, and Ez cancel partially in (16). Nevertheless, for all pairs (E&dquo; Ez)
found in table 3 the absolute value of E, is greater than the absolute value of E,.
Consequently, the effect of departure from normality on RE is notable when either E,
or E, are different from zero.

In table 3 E, and E, are small when So is in the .4 to .6 range. Both E, and E,
become notably positive as S. approaches .1. The error terms become notably negative
as So approaches .9. These observations are consistent with the fact that values of RE
in table 2 are similar to those in table 1 when So is intermediate (eg, So = .5).
Descrepancies occur in tables 1 and 2 when So approaches .1 or .9.

There are some patterns in table 3 worth listing ; error terms grow as h’ increases,
error terms are larger when parents are mated assortatively (ie, !E,! > JE21), and error
terms are largest when Sp is .5, .6 or .8 (ie, when the parental selection intensity is low
or intermediate).

The last observation is easily explained. Let x and y be correlated normal variables
with respective means equalling zero. We can represent x by

where b is the regression of x on y and e is a residual that is uncorrelated with y. If y
is truncated departure from normality exists with respect to y. However, the variance of
y decreases and from (17) we see that e can dominate x if the variance of y becomes

very small. With heavy truncation on y the variance of y approaches zero and x
becomes normal because e is normal. Alternatively, with no truncation, x is normal by
definition.







B. Index Selection

Relative efficiencies of assortative mating with index selection are displayed in

table 4. These quantities varied between 2.82 p. 100 (hz = .05, Sp = .1, So = .9) and 21.15
p. 100 (h2 = .8, SP = .9, So = .1). Like mass selection, assortative mating was found to be
most effective when h2 was high and when Sp was high. However, RE computed under
index selection was appreciably larger than the analogous value for mass selection. Fifty
nine per cent of the results listed in table 4 are larger than 8 p. 100. This compares
with 28 p. 100 in table 1. The differences in RE between mass and index selection was

largest when h2 was small, and was slight when h2 was large. This result was entirely
expected because selection response after 2 generations equals the expectation of I

conditional on selection and when h2 becomes small the relative contributions of P, and
P2 to I increase. Alternatively, when hz becomes large I approaches P. and index
selection becomes equivalent to mass selection.

Larger departure from normality in the distribution of I than in the distribution of
Po was also expected due to the part-whole relationship between I and (P&dquo; P2)’ Indeed,
differences in relative efficiencies are larger in table 4 than in table 1, holding h2 and Sp
constant. As with mass selection, RE was enhanced for low S.. This effect appears to
increase with increasing h’.

IV. Conclusion

Despite a slight underevaluation of assortative mating, BAKER (1973) was generally
correct with the assessment that under mass selection assortative mating will increase
selection response in progeny but by no more than 10 p. 100 in most situations (BAKER
considered cases only were SP <_ .5). However, when h2 is large and Sp is greater than

.5, RE can be larger than 10 p. 100.

Assortative mating under index selection can increase selection response in prog-
eny. Relative efficiency is notably larger than under mass selection. This enhancement
is due to the direct use of preassorted information in I.

With regard to RE of assortative mating, we expect different selection indexes to
have different properties. Using an index that incorporates prearranged information can
enhance RE even if the prior act of arranging mates was unsuccessful in increasing
genetic variance. To show this consider the hypothetical case where unselected parents
are allowed to mate randomly or assortatively. There are now closed form expressions
for RE ; with mass selection of progeny

and when progeny are selected on I

When h2 equals 1, (18) and (19) are both equal to 22.47 p. 100. However, as h’
tends to 0 (18) tends to 0 p. 100 and (19) becomes 15.47 p. 100. Indeed, (19) is never

smaller than 15.47 p. 100 which is close to the upper bound. When hz is close to 0

assortative mating will show no advantage with mass selection because assortative



mating will do little to increase genetic variance. Yet from (19) we see that assortative
mating can enhance relative selection response even though the magnitude of this

response is small. Note that this effect is specifically related to using prearranged
pedigree information. It is not an effect expected from using an index constructed from
information on collateral relatives, i.e. when prearranged information is not used.

There is a further effect that various types of index selection may have on the
value of assortative mating. If animals are mated assortatively by an index, the increase
in accuracy will allow more successful pairing, i.e. the pairing will be more similar to
pairing based on true additive genetic values. We did not consider this point as parents
in our analysis were not mated assortatively by an index. There is a need to study all
effects of index selection in realistic and dynamic scenarios.

Outstanding problems can be studied by simulation. An interesting model is the

sequential mate selection rule described by SMITH & HAMMOND (1987). This selection
rule can be used in a multiple generation context and it takes full advantage of mixed
model methodology. Consequently, we are able to use information on preassorted
relatives and we can do this free of mating bias (FERNANDO & GIANOLA, 1984 ;
GOFFINET, 1983). Such simulation studies should also consider inbreeding, and other
aspects of finite population size, overlapping generations, variable selection intensities
between sexes and selection beyond 2 generations.

Assortative mating and more generally mate selection, will be found to be very
useful in the quest for additive merit. For example, nucleus breeding schemes have
proven useful (JAMES, 1977) and these are a subset of mate selection.

Received December 9, 1985.

Accepted October 15, 1986.

Acknowledgements

The authors wish to thank Dr K. ATKINS, Dr Sue MORTIMER (both with the NSW Department
of Agriculture, Australia) and the reviewers for their useful remarks.

References

BAKER R.J., 1973. Assortative mating and artificial selection. Heredity, 31, 231-238.
BIRNBAUM Z.W., MEYER P.L., 1953. On the effect of truncation in some or all co-ordinates of a

multi-normal population. J. Indian Soc. Agric. Statist. , 5, 17-28.

BULMER M.G., 1980. The mathematical theory of quantitative genetics. 255 pp., Oxford University
Press, Oxford.

DE LANGE A.O., 1974. A simulation study of the effects of assortative mating on the response to
selection. Ist World Congr. Genet. Appl. Livestock Prod., Madrid, 7-11 October 1974, 3, 421-
425, Editorial Garsi, Madrid.
FOULLEY J.L., GIANOLA D., 1984. Estimation of genetic merit from bivariate « all or none »

responses. Genet. S!l. Evol., 16, 285-306.
GOFFINET B., 1983. Selection on selected records. Genet. Sél. Evol., 15, 91-97.



JAMES J.W., 1977. Open nucleus breeding systems. Anim. Prod., 24, 287-305.
KENDALL M.G., 1941. Proof of relations connected with the tetrachoric series and its generaliza-

tion. Biometrika, 32, 196-198.

McBRIDE G., ROBERTSON A., 1963. Selection using assortative mating in D. melanogaster. Genet.
Res. , 4, 356-369.

RUSSELL N.S., FARRIER D.R., HoweLt J., 1985. Evaluation of multinormal probabilities using
Fourier series expansions. Appl. Statist., 34, 49-53.

SMITH S.P., HAMMOND K., 1987. Portfolio theory, utility theory and mate selection. Genet. Sél.
Evol. (in press).
TALLIS G.M., 1961. The moment generating function of the truncated multi-normal distribution.

J.R. Statist. Soc. B, 24, 223-229.


	Summary
	Résumé
	I. Introduction
	II. Materials and methods
	A. Assumptions
	B. Calculating selection response
	C. Relative efficiency
	D. Departure from normality

	III. Results and discussion
	A. Mass selection
	B. Index Selection

	IV. Conclusion

	AcknowledgementsThe
	References

