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Summary - In livestock improvement it is common to design a progeny test of sires in
order to estimate their breeding values. The data recorded for these estimate are useful
for the detection of major genes. They are the n.m performances Yg! of m progeny j of n
sires i. These data need to be corrected for the polygenic influence of the sire on its progeny
(sire i effect Ui). Four statistical tests of the segregation of a major gene are compared.
The first (ISA for "segregation analysis") is the classical ratio of the likelihoods under
Ho (no major gene) and Hi (a major gene is segregating). The parameters describing the
population (means and standard deviations within genotype) are estimated by maximizing
the marginal likelihood of the Yij. The other statistics studied are approximations of this
ISA statistic where the sire i effect (UZ) is considered as a fixed effect (lFE statistic)
or, following Elsen et al. (1988) and H6schele (1988), where the parameters, and Ui,
are estimated maximizing the joint likelihood of Ui and Yij (lME, and IME2 statistics).
Simulation studies were done in order to describe the distribution of these statistics. It is
shown that ISA and 1ME, are the most powerful test, followed by IME2, whose relative loss
of power ranged between 20 and 40%, depending on the Hi case studied, when 400 progeny
are measured (n = m = 20). The segregation analysis, based on direct maximization of
the likelihood, required 30 times more computation time than the 1ME test using an EM
algorithm.
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Résumé - Comparaison de quatre méthodes statistiques pour la détection d’un

gène majeur dans un test sur descendance. Il est fréquent, en sélection, de tester
sur descendance, des mâles, afin d’estimer leur valeur génétique. Les données recueillies
dans ce but peuvent être utilisées afin de mettre en évidence un gène majeur. Elles sont
constituées des n.m performances Yij de m descendants j de n mâles i. Ces données
doivent être corrigées pour l’ef,!’et polygénique du père (U;) sur ses descendants. Quatre
tests statistiques de mise en évidence d’un tel gène majeur sont comparés. Le premier
(lSp pour "segregation analysis") est le rapport classique des vraisemblances sous Ho (pas
de gène majeur) et sous Hl (existence d’un gène majeur). Les paramètres caractéristiques
de la population (moyennes et écarts types intragénotype) sont estimés en maximisant la
vraisemblance marginale des Yij. Les autres statistiques de tests sont des approximations
de ISA pour lesquelles, soit l’ef,!’et père Ui est considéré comme un effet fixé (test IFE)
soit, comme proposé par Elsen et al. (1988) et Hôschele (1988), les paramètres, et Ui,
sont obtenus en maximisant la vraisemblance conjointe des Y;j et des Ui (test IME1



et IME2). Nous avons réalisé des simulations afin de décrire les distributions de ces tests.
ISA et IME1 sont les tests les plus puissants, suivi par IME2, dont la perte relative de
puissance varie entre 20 et 40% selon l’hypothèse Hl étudiées, quand 400 descendants
sont mesurés (n = m =20). L’analyse de ségrégation, réalisée par maximisation directe
de la vraisemblance, demande 30 fois plus de temps de calcul que les tests 1ME réalisés
l’aide d’un algorithme EM.
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INTRODUCTION

In recent years, several genes having major effects on commercial traits have
been identified. The dwarf gene in poultry (Merat & Ricard, 1974), the halothane
sensitivity gene in pigs (Ollivier, 1980), the Booroola gene in sheep (Piper & Bindon,
1982), or the double muscling gene in cattle (M6nissier, 1982) are notable examples.

These discoveries, as well as improvement of transgenic techniques, have stim-
ulated interest in new techniques for detection of single genes. Various tests have
been described concerning livestock (Hanset, 1982). Their general principle is that
the within family distribution of the trait depends on the parents’ genotypes, and
therefore varies from one family to another. These methods involve simple computa-
tions but are not powerful. Concurrently, segregation analysis in complex pedigrees
was developed in human genetics (Elston & Stewart, 1971) by comparing the like-
lihoods of the data under different trait transmission models. These methods are
much more powerful than the previous ones, but involve much computation. They
require numerical simplification to deal with the population structure of farm an-
imals. Additionally, the known properties of the test statistics, a likelihood ratio
test, are only asymptotic, which raises the question of their validity when applied
to samples of limited size. 

’

In livestock improvement it is common to use progeny tests where males are
mated to large numbers of females. Concentrating on this simple family structure
the present paper tries to give some elements of a solution to the problems of
simplification and validity. Four methods are compared on simulated data.

METHODS

The four methods considered rely upon the same information structure and the
same type of test statistics.

Experimental design

The data are simulated according to a hierarchical and balanced family structure:
one sample consists of n sire families (i = 1, ...n) with m mates per sire ( j = 1, ...m)
and one offspring per dam. Sires and dams are assumed to be unrelated. Only
offspring are measured, with one 1’;j datum per animal.



Models and notations

Models

The Ri j performances are considered under the two following models:

General hypothesis (Hi): &dquo;mixed inheritance &dquo;

In this model a monogenic component is added to the assumed polygenic variation.
When two alleles A and a are segregating at a major locus, three genotypes

are possible (AA, Aa, aa) which we shall respectively denote 1, 2, 3. Sires are of
genotype s(s = 1, 2, 3) with probability PS. Dams transmit to their offspring allele
A with a probability q and allele a with a probability 1 &mdash; q. Conditional on its
genotype t(t = l, 2, 3), the ijth progeny has the performance Y.’. The following
linear model can be formulated. 

ij

Where ltt is the mean value of the performances of genotype t progeny.
Ui is the sire i random effect, assumed to be independent of the genotype t
and normally distributed with a mean 0 and a variance U2 u
Eij is the residual random effect, assumed to be independent of the genotype
t and normally distribued with a mean 0 and a variance U2 e
Ui and Eij are assumed to be independent.

Concerning production traits of livestock, the proportion of variance explained
by polygenic effects has been generally estimated in many populations. Thus, we
shall assume known a priori the heritability of the trait, h2, defined as:

_.n............ -

so that sires are assumed to be unselected.
The model thus defined on seven parameters:

This hypothesis (Ho): &dquo;podygenic inheritance&dquo;.

Null subhypothesis, to be tested against the general model, is fixed by A, = U2 =
/-t3 = P0&dquo;

Where po is the general mean of the performances. Ui and Eij have the same
definition as under Hi .

Matrix notation

Let S be the vector of the genotypes of the n males S = (Sl, ..., Si, ..., Sn) and
s = (si, ... si, ... sn) one realization of S.
Yi be the vector of the m performances of the ith sire’s progeny: Yi =
(Yl, ... Ti!, ... Yim), and yi the vector of realizations of Yi.



Ti the vector of order m of the genotypes at the major locus of the ith sire’s

progeny: Ti = (Til, ... Ti!, ... Tim). Three realizations being possible for T2!, 3m
different realizations ti of Ti are possible. Prob (Ti = tilsi) is the probability of
the realization of the genotypes vector ti = (til, ... ti!, ... tim) when sire i is of

genotype s;.
(I- the vector of genotype means:

Given E.t, the vector of order m of residuals, the vector Yi can be written under

Ho :

where X and Z are two matrices of order m x 1, whose elements all equal 1,
under Hl:

where Xiti is the m x 3 incidence matrix for the fixed effects of the model, when
the realization of the genotypes of the sire i progeny is ti.

The Vi covariance matrix for the performances Y! of the sire i family is:

with D = 0&dquo;; and R the diagonal m x m matrix R= o-e 2. 1!.

General expression of the likelihood ratio test (LR test)

The test statistic is based on the ratio of the likelihoods under Ho(Mo) and under
Hl (ll!I1 ), or an estimate of this ratio. In practice the test statistic considered is:
1 = -2.log (Mo/Mi). With our notation, and given the preceding hypothesis, Mo
is:

with

...

and M¡ is:



The four proposed methods are all based on the two following equalities:

and:

Where v,2 is the mode of the distribution of Ui given Yi and the genotypes ti.
Formula (2) results from the equality of mode and expectation for symetrical
distributions.

Definition and interests of the four proposed methods

The differences between the four methods concern the sire effects.

First method: SA

In the SA method (&dquo;segregation analysis&dquo;, Elston 1980), we consider without
simplification the model and the test statistic as they were defined above. The
likelihoods under Hl and Ho are calculated using equality (1) and taking account
of:

Then:



with:

and;

with:

The well known asymptotic properties of the LR test under Ho are the main

advantage of this method. If some regularity conditions hold, the test statistic I is
asymptotically distributed according to a central x2 with d degrees of freedom, d
being the number of parameters with fixed value under Ho (Wilks, 1938). However,
in the particular context of testing a number of components in a mixture, the
regularity conditions are not satisfied since the mixing proportions pi and p2 have
the value zero under Ho, which defines the boundary of the parameter space.

Studying mixtures of m-normal distributions, Wolfe (1971) suggested that the
distribution of the LR test is proportional to a X2 distribution with 2d degrees of
freedom. The proportionality coefficient c should be c = (n-1-m-1/2g2)/n where
n represents the sample size, and 92 the number of components in the mixture under
Hl. If these results hold in our case, when the number or sires is very large, ISA
should have a x2 distribution with 4 degrees of freedom.

The problem with this method is that it requires heavy computation: a complex
function of the 1!j must be integrated n times for each estimation of ISA-

Second and third methods: ME

These methods (&dquo;modal estimation&dquo; of the sire effect UZ), use the equation (2).
Under Ho, the likelihood may be written as follows:

Under Hl, the equality (2) leads to



However, the sums over the vectors ti for each sire make this computation
practically impossible as soon as m is larger than a few units (3’ = 243, 310 =

59049).
Thus, following Elsen et al. (1988) we suggest the approximation

Where Ûi is the distribution mode of Ui conditional on Yi, whatever the genotypes
si and ti are. The statistic 1ME1 = -2log(MomEyN11ME1) is no longer an LR test
but an approximation lacking the asymptotic properties described above. However
we hope that this statistic which requires much less computation will nonetheless
retain the power of the first proposed.
An alternative to this second method is to estimate the likelihood ll!losA and
M1SA directly by:

where Ûi is defined as above.
As stated by H6schele (1988) this &dquo;approximation will be close to ISA only if the

likelihood is very peaked (m -j oo) with most of its probability mass concentrated
over a small region about the ML estimates&dquo;.

Fourth method: FE

The method (fixed effect of the sires), does not consider the a priori information
contained in the heritability of the trait. The ui sire effects are assumed to be fixed,
and become supplementary parameters which need to be estimated. The likelihood
ratio may be written:

with:

and:

This method has the advantage of its computational simplicity, while retaining
the well known asymptotic properties of the LR test. However, there may be an
important loss of power, due to the loss of information on the polygenic variation.



The comparisons

Three problems were studied:

Distributions of the statistics under Ho

We have just mentioned uncertainties concerning the asymptotic distributions (X2 2

with 4 degrees of freedom for ISA and 1FE if Wolfe’s (1971) approximation is valid, no
known property for lME). Furthermore these distributions are unknown in samples
of limited size. In order to estimate these distributions, samples were simulated
under Ho (500 samples for SA, 1000 for FE and ME) with different numbers of
sires (n = 5, 10, 20) and of progeny per sire (m = 5, 10, 20). The test statistics ISA,
!MEi, IME2 and IFE were calculated for each sample. The estimated distributions
obtained were used to test the convergences to X2 distributions. They also helped
determine boundaries for critical regions in samples of a limited size. We used
the Harrel and Davis (1982) method to estimate quantiles at 5 and 1% and their
jackknife variance as defined by Miller (1974). These simulations were based on a
heritability of 0.2.

Comparisons of the powers

By using the table of the critical regions thus obtained for each family structure,
we have been able to compare the powers of the tests. These powers depend not
only on the number and size of the families in the sample but also on the values of
the parameters (p, <7g, pl, p2, q) which characterize the major gene segregating in
the population. 

’

For each of the 9 family structures described above, three HI hypotheses were
considered, each with a simulation of 100 samples. All these populations are

assumed to follow the Hardy Weinberg law. The differences between the three Hl
hypotheses lie in the mean effects of the genotypes (expressed in standard deviation
units) and the frequency of the allele A.
Case 1: complete dominance and equal allele frequencies

Case 2: additivity, equal allele frequencies

Case 3: Complete dominance, recessive allele rare

The power of the tests was measured by the percentage of Ho rejection.

Algorithms and cost of calculations

The methods must also be compared on the basis of how much computation they
require. The calculations described above were made using the quadrature and



optimization subroutines of the NAG fortran library. In order to maximize the
likelihoods of the sample we used a Quasi-Newton algorithm in which the derivatives
are estimated by finite differences.

The same algorithm was used for the four methods, giving results of a similar
degree of precision. However, various algorithms can be used to estimate the
maximum likelihood of the parameters. In the ME and FE tests, the first derivatives
have a simple algebraic form and the maximum likelihood solutions are reached by
zeroing the first derivatives (with respect to each of the parameters) of the logarithm
of the likelihood. Under Hl the corresponding system of equations can be solved
iteratively, but not directly, by using for instance the EM algorithm defined by
Dempster et al. (1977): see appendix.

This is the algorithm we used for the ME2 test in order to obtain more extensive
information on critical region: 5, 10, 20, and 40 sires, 5, 10, 20 and 40 progenies/sire,
heritability of 0, 0.2, 0.4.

RESULTS AND DISCUSSION

Comparison of the four methods

Tables I to IV show the main characteristics of the distributions of the 4 test
statistics: mean, standard deviation, 5% and 1% empirical quantiles and percentage
of replicates beyond the 5% and 1% quantiles of a x4. Table V shows their powers.

First, we can note that for the number of progeny increases, the mean distribu-
tions as the four test statistics decrease (except ISA between m = 5 and m = 10 for

n = 5).
The fact that 1 statistics distributions converge toward a X2 with 4 degrees of

freedom cannot be confirmed since all the distributions of l, but one (segregation
analysis with 5 sires and 5 progenies/sire), are significantly different from a k2 using
a X2 test of fit. Moreover, the scaled statistics (2E(l)/var (l)). l are also significantly
different from a x2. It must be emphasized that the samples studied are far from
the conditions of validity of Wolfe’s approximation which requires that n > 10.m

(Everitt, 1981). The ISA statistics show a notable stability as the family size varies,
whereas for IFE the statistics only reaches an asymptote as m, the number of progeny
per sire increases. As regards the IME statistics, the results are totally different.

The mean and standard deviation of the IME1 statistic decreases when the
number of sires or progeny per sire increases. It appeared that the distribution
of this IMEI statistic becomes very peaked near zero. It must be noticed that this
pattern is close to the asymptotic distribution of the LR test of a mixture of 2
known distributions in unknown proportion studied by Titterington et al. (1985).
These authors found that, under Ho (only one component) the LR test &dquo;is 0 with
a probability 0.5 and, with the same probability, is distributed as a x2 with one
degree of freedom&dquo;. On the other hand, for a given number of progeny, the mean
of the lME2 distribution increases with the number of sires. The fewer the progeny,
the greater the increase.

The calculation of the power (Table V) shows some important facts: very low
power of the four statistics for low number of sires and/or progeny, clear superiority
of the segregation analysis and first of the modal estimation method whatever







these numbers, with respectively a 90% and a 80% power in the best case (though
involving only 400 animals), very poor performance of the IFE statistic, intermediate
power for lME2 .

Thus knowledge of heritability is a substantial advantage and gives a reason
to prefer the IME statistics against the 1FE, which requires similar amounts of
computation.

The comparison of powers in hypothesis Hl is also interesting: it is much more
difficult to detect an additive major gene (case 2) than a dominant one (case 1)
even with the segregation analysis which is 3 to 4 times less powerful in case 2 than
in case 1. In comparison with the isofrequent case, the third case shows a 50% loss
of power: with measurements made on a small population, very few individuals if
any, belong to the high mean distribution.

The computation requirements have been estimated, on a 3083 IBM computer,
by the CPU time needed for the evaluation of the statistics under Ho. Ten replicates
of a sample of 10 sires and 10 progenies per sire used 640 s for the lsA statistic,
142 s for the IFE statistic and 48 s for the IME statistics. Using the EM algorithm
instead of the direct maximization of INtE with the NAG subroutines decreases the



time requirements to 20 s only. Thus, the proposed simplified tests lME are 30 times
as fast as the segregation analysis.

Tables of quantiles

Although theoretical works are still needed in order to describe the asymptotic
behaviour of the ISA, IME, and 1FE tests, one can use, as a first approach, the
quantiles given in our tables for larger populations since this will produce an
overestimation of the first type error. On the contrary, some more calculations
are needed for the lME2 test.

The 5 and 1% points for this statistic are given in figures 1 to 3 depending on
the heritability (0.0, 0.2, 0.4). Each figure gives these points for varying numbers
of sires and progeny per sire.

Note that when the heritability is 0., the sire effect is not defined and, thus, that
the ui(a + 1] terms disappear from the equations given in the appendix.

The results of Table III are confirmed: the quantile estimates increase with the
number of sires n (for a given number of progeny per sire, m) and decrease when
the number of progeny per sire increases. Two other results must be noticed:
- given n and m, the lower the heritability, the greater the quantiles.

- on the variation range studied for m, the number of progeny per sire, the
increase of the quantiles is nearly linear with n (number of sires) allowing some
extrapolations for higher values of this number.





Finally, the jackknife standard deviation of the estimated quantile varies, for the
5% case, between 0.23 and 0.89, with a mean value of 0.52 and, for the 1% case,
between 0.39 and 1.65 with a mean value of 0.92. These errors could explain the
observed deviations of the plotted curves from smoothness.

CONCLUSIONS

On the four statistical tests studied, the &dquo;segregation analysis&dquo; method is, as

expected, the most powerful. Applied on a large scale, this test requires a great
deal for computation. The &dquo;modal effect&dquo; method requires much less computation
than the segregation analysis and shows practically no loss of power for the first
version and a limited loss of power (diminishing as soon as the sample size is

sufficient) for the second version. Unfortunately, the asymptotic distribution of this
last statistic is unknown. The tables of quantiles we obtained by simulation permit
the utilization of this test for typical sample sizes and for various heritability values.

REFERENCES

Dempster A.P., Laird N.M. & Rubin D.B. (1977) Maximum likelihood from
incomplete data via the EM algorithm. J. R. Statist. Soc., Series B 39, 1-38
Elsen J.M., Vu Tien Khang J. & Le Roy P. (1988) A statistical model for genotype
determination at a major locus in a progeny test design. Genet. Sel. Evol. 20,
211-226 .

Elston R.C. (1980) Segregation analysis. In: Current developments in anthropologi-
cal genetics (Mielke J.H. & Crawford M.H. eds), 1, Plenum Publishing Corporation,
New York, 327-354
Elston R.C. & Stewart J. (1971) A general model for the genetic analysis of pedigree
data. Hum. Hered. 21, 523-542
Everitt B.S. (1981) A Nlonte Carlo investigation of the likelihood ratio test for the
number of components in a mixture of normal distributions. Multivar. Behav. Res.
16, 171-180
Hanset R. (1982) Major genes in animal production, examples and perspectives:
cattle and pigs. 2nd world congress on genetics applied to livestock production,
Madrid, ,!-8 oct., 1982, 5, Editorial Garsi, Madrid, 439-453
Harrel F.E. & Davis C.E. (1982) A new distribution-free quantile estimator.
Biometrika 69, 635-640
H6schele 1. (1988) Statistical techniques for detection of major genes in animal
breeding data. Theor. Appl. Genet. 76, 311-319
M6nissier F. (1982) Present state of knowledge about the genetic determination of
muscular hypertrophy or the double-muscled trait in cattle. In: Muscle hypertrophy
of genetic origin and its use to improve beef production (King J.W.B. & M6nissier
F. eds), Martinus Nijhof, The Hague, 387-428
M6rat P. & Ricard F.H. (1974) Etude d’un gene de nanisme lie au sexe chez la
poule: importance de 1’6tat d’engraissement et gain de poids chez 1’adulte. Ann.
Genet. Sel. Anim. 6, 211-217



Miller R.G. (1974) The Jackknife. A review, Biometrika 61, 1-15
Ollivier L. (1980) Le d6terminisme g6n6tique de 1’hypertrophie musculaire chez le
porc. Ann. G6n6t. Sel. Anim. 12, 383-394

Piper L.R. & Bindon B.M. (1982) The Booroola Merino and the performance of
medium non-pe!pin crosses at Armidale. In: The Booroola Marino, (Piper L.R.,
Bindon B.M. & Nethery R.D. eds), CSIRO, Melbourne, 9-20
Titterington D.M., Smith A.F.M. & Makow U.E. (1985) Statistical analysis of finite
mixture distributions. Wiley, New York
Wilks S.S. (1938) The large sample distribution of the likelihood ratio for testing
composite hypotheses. Ann. Math. Stat. 9, 60-62
Wolfe J.H. (1971) A Monte Carlo study of the sampling distribution of the
likelihood ratio for mixture of multinormal distributions. Tech. Bull., STB 72-2,
Naval Personnel and Training Research Laboratory, San Diego

APPENDIX

Application of the EM algorithm to the estimation of the test statistic
h&OElig; under Hl

The EM algorithm is an iterative procedure. Each of its iterations consists of
two steps E (Expectation) and M (Maximization). In our calculations we have
considered that convergence is obtained when, a being the iteration number, the
following inequality is satisfied:

Step E of the ath iteration consists of estimating posterior probabilities
of the observations

These probabilities are estimated using the ath iteration values of (7e[a], q(a),
ui [a] (i = l, ..., n), pt (a) (t = 1, 2, 3) and p! (a) (s = 1, 2, 3). The following quantities
are calculated successively:



INIE1 [a + 1] is calculated as in (3) and (4), and INIEZ [a + 1] is calculated as in (5)
and (6).

Step M of the ath iteration

Given the previous posterior probabilities, the distribution parameters are obtained
by annulling the derivatives of lME[a+1] with respect to these parameters. We then
get:

the denominator being n(m + 1) for the lKiE2 test.
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