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Summary - The estimation of additive genetic variance by maximum likelihood is
discussed. The extension of reduced animal models, when parents are not inbred to
allow the use of existing algorithms for maximum likelihood estimation of additive genetic
variance, is described. This involves the introduction of imaginary effects with negative
variance, and leads to computation using complex arithmetic. Methods are developed to
allow the computation to be carried out using only real arithmetic. This method has
computational advantages when only a small proportion of animals have offspring.
genetic parameter / animal model / estimation / maximum likelihood

R.ésumé - Estimation de paramètres génétiques selon un modèle animal incluant
des effets imaginaires - On discute l’estimation de la variance génétique additive par le
maximum de vraisemblance. On décrit l’extension des algorithmes disponibles d’estimation
par le maximum de vraisemblance de la variance génétique additive, à la situation d’un
modèle animal réduit au cas où les parents ne sont pas consanguins. Ceci passe par
l’introduction d’effets imaginaires, de variance négative, et conduit à des calculs en
arithmétique complexe. Des méthodes sont développées pour n’utiliser que l’arithmétique
réelle. Cette méthode présente des avantages numériques quand une faible proportion
seulement des animaux ont des descendants.

paramètre génétique / modèle animal / estimation / maximum de vraisemblance

INTRODUCTION

Additive genetic variance and heritability have most commonly been estimated in
animal breeding data information from collateral relatives, such as half-sibs or full-
sibs, or non-collateral relatives, such as parent-offspring. Covariances generated
by these relationships provide the most information for estimating additive ge-
netic variance. However, there is interest in combining these alternative estimates
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(Nicholas and Hill, 1974), and also using the additional information from other
genetic relationships.

Linear models can be formed that contain genetic and environmental effects for
each animal, commonly called individual animal models (eg, Quaas and Pollak,
1980). In theory at least, standard or restricted maximum likelihood estimation
(ML or REML) procedures can be applied to individual animal models for variance
component estimation (Harville, 1977). One problem is that this model generates
as many equations as there are animals in the pedigree and so there have been
attempts to reduce the computational effort. Thompson (1977) considered the case
of two generations and showed how to develop REML estimating equations just
for animals in the first generation. More generally, this estimation can usually be
interpreted using predicted breeding values. Quaas and Pollak (1980) showed that
a reduced animal model (RAM) has advantages in calculating predicted breeding
values. Notably, only equations for animals with offspring are needed. Henderson
(1986) and Sorensen and Kennedy (1986) showed that REML and minimum norm
quadratic (MINQUE) estimation can be expressed with advantage using a RAM.

However, these (REML) methods are iterative and, as presented, require the
inversion of a matrix with as many rows and columns as the number of parents
in each round of iteration. For some variance component problems, this computa-
tional burden can be reduced by using orthogonal transformations to give simpler
equations, either in terms of a diagonal matrix (Patterson and Thompson, 1971;
Dempster et al, 1984), or in terms of a tridiagonal matrix (Smith and Graser, 1986).
These results are not directly applicable to estimation methods based on a RAM.
This paper shows how a RAM can be modified by the introduction of extra random
effects with negative variances, so that the resulting matrices involved in estimation
can be tridiagonalized using existing algorithms based on Householder transforma-
tions. Complex numbers are needed to take account of negative variances, but a
new algorithm is given that takes account of the special structure of the matrices
involved, and reduces the need for arithmetic based on complex numbers.

THE MODEL

If additive genetic covariances are the only source of covariances between records,
then a linear model for the individual animal model (IAM) can be written as:

with E(y) = Xb, E(a) = E(e) = 0 and V(a) = Ao, 2, V(e) = Ia5 and
cov(a,e’) = 0, where y, b, a and e denote the vectors of observations, fixed
effects, animal effects and residual errors. X and Z are the corresponding incidence
matrices, and for simplicity, we assume X had r columns and rank r. With single
records per animal, Z = Int, where m denotes the number of observations. A is the
numerator relationship matrix (NRM) between animals.

As described by Quaas and Pollak (1980), with a RAM, the vector of animals is
divided into parents, ie, animals which have offspring (subscript P in the following),
and non-parents, ie, animals without progeny (denoted by subscript N). The
additive genetic value for non-parents is then partitioned into contributions from
parents and parts due to the Mendelian sampling. Including the latter, together



with the residual e in eqn(l) into a new residual error, gives the RAM as a
reparameterisation of eqn(1):

Let p denote the number of parents and q the number of non-parents, then
(p + q = m). ZN is then a matrix of order qxp, with elements z2! = 0.5, if j is
a parent of i, and zero otherwise. This representation, strictly speaking, assumes
all parents of non-parents are in the data and one record per individual. However,
eqn(2) can be easily modified, if that is not the case. The residual error for a

non-parent has variance atv = a5 + 0.5QA, if both parents are known, and varianceatv = QE+0.75QA, if only one parent is known, provided they are not inbred. In the
following, it is assumed that there is equal parental information for all non-parents
and that parents are non inbred ie, that a 2 w is constant.

Estimation equations, based on the RAM, usually have to be reconstructed after
each variance iteration because the ratio of error to additive variance changes.
Therefore, for computational reasons, it is desirable to have a model where the
vector of residuals has homogeneous variance. This can be achieved by a further
reparameterisation, adding effects to either parents or non-parents. As there are
usually fewer parents than non-parents, fewer equations will be generated if eqn(2)
is expanded to:

The variance of e, is such that var(ej) + var(eP - ej) = var(ep) = Ipas and
var(ep &mdash; el) = lo,2&dquo; so that ep &mdash; ej and eN have the same variance. Hence,
var(e1) _ -C2UAIp, with c2 = 0.75 and 0.50 for one and both parents known,
respectively. Because of the assumption that there is equal parental information for
all non-parents, c2 is the same for all e, values. Normally, variances are assumed to
be positive so there is a slight difficulty in interpreting el with a negative variance.
However, if aD are effects with variance a A 2 Ip, then defining ej = icaD, where
i = i, then the variance of ej = -C20,2 A Ip. Hence, ei can be thought of as
imaginary effects as they are a multiple of i.

Hence, eqn(3) can be written in terms of real effects as:

with e = [(ep - e’) eN]&dquo;
This gives mixed model equations (MME) as:

where A denotes the variance ratio !yt,/!A, and Ap is the numerator relationship
matrix of parents.



Eliminating b from eqn(4) gives equations of the form

where

Hence,

The component matrices Hu, H12 and H22 are all real.

Equation (7) gives predictors of the effects ap and aD. Note that ap is real and
aD is imaginary, so that iaR = aD with aR real, and the predictor for el = 

-caRis a real quantity, as would be anticipated. REML equations to estimate QA and

Qyy are (in terms of real quantities):

where r is the rank of (X’ p Xp + X%XN ) , and n is the number of elements in both
ap and aD.

These equations involve a2 A and Qyy through A = !yy/QA on both sides of eqns(8)
and (10), and have to be solved iteratively. To simplify eqns(8) and (10) and avoid
the inversion associated with Apl, Smith and Graser (1986) and Meyer (1987)
suggest writing Ap as LL’ and using aL = L-lap in a model equivalent to eqn(3).
The effects aL are uncorrelated. Using Meyer’s results and eqns(8) and (10), gives
an alternative form of the EM algorithm.



(AI is not to be confused with A or Ap, numerator relationship matrices).
This iterative scheme requires the inversion of (AI + IA) in each iteration. Smith

and Graser (1986) have shown that these computations can be reduced by writing
Al as (PA!P’) where P is an orthogonal matrix and A* is a tridiagonal matrix.
Using algebra similar to that of Smith and Graser (1986), it can be shown that

quantities arising in eqns(11) and (12) can be written in terms of (A* + >’1)-1 and

For example:

A! can be found using a sequence of Householder transformations, using complex
arithmetic. In the Appendix, it is shown how the special structure of Al with real
quadrants (L’BL and D) and imaginary quadrants (iL’C) and (iL’C)’ can be used
to give an algorithm for A* and q* and to evaluate eqns(12) to (16), using only
real arithmetic. It should be noted that this computational strategy is using an
existing iterative scheme and is manipulating the equations to reduce the number
of computations.

NUMERICAL EXAMPLE

To illustrate the formation of the model and mixed model equations, we use an
example of 5 observations of the same sex with individuals 2 and 3, the offspring of
individual 1, and individuals 4 and 5, the offspring of individual 2. There is 1 fixed
effect with 2 levels, the first 3 observations at 1 level, and the last 2 at the second
level. The model (4) is then of the form:



with the observation vector coded so that observations on parents (1 and 2)
occur first. The variance of ei is a5 + 3/4<r!, as animals have only one known
parent. The variance of (y¡) = QA - 3/4<7! + a5 + 3/4QA = a5 + !A, var(ys) _
1/4QA + QE + 3/4QA = QE + QA.

and eqn(5) becomes:

Eliminating 61 and b2 gives:

This shows the structure of eqn(6) with two real quadrants and two imaginary
quadrants in the matrix on the left hand side. For this example, estimates of
the effects can be found by partitioning the coefficient matrix into 2 x 2 real and
imaginary parts and using results on inverses of partitioned matrices.

DISCUSSION

This is a novel approach with the advantage of working with matrices of size 2p,
rather than (n+p), and the computations involved, are of the order of (2p)3, rather
than (n + p)3. This technique is, therefore, of more use in populations with a low
proportion of animals used as parents. The technique can be easily extended to
estimates 2 multivariate residual and additive variance components matrices when
measurements are taken on all animals using the procedures developed by Meyer
(1985).
Two assumptions are made. First, that all non-parents have equal parental

information. If this assumption is not satisfied, non-parents with unknown parents
can have dummy parents inserted into the model. In most animal breedings sets
where inbreeding is consciously avoided, the second assumption (parents are not
inbred) is unlikely to be important. There is more likely to be concern about
residual variance homogeneity, than about inbreeding generated genetic variance
homogeneity.

Graser et al (1987), suggested a derivative-free method of estimating variance
components, based on sequentially calculating the likelihood. Their method is an



obvious competitor, but it is difficult to say precisely when each method is to
be preferred. The time required, depends on the number of animals, structure of
population the sequence used in calculating the likelihood, the number of variates
measured and the speed of convergence of the iterative procedure. Their comments
suggest that our method could be advantageous if the number of parents is less
than 350.

The method has been presented for a model with additive genetic covariances,
but in many cases, other components, such as litter variances, need estimation. In
such cases, the procedure can be used for a given ratio of litter variance to residual
variance and repeated for different values of the ratio, in a similar manner to that
suggested by Smith and Graser (1986).
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APPENDIX

Reduction of complex matrices to tridiagonal form

A square matrix is said to be tridiagonal (in the first t rows) if the only non-zero
elements are in the r, s elements, where s = r y- 1, r, or r + 1 (r < t). A real
symmetric matrix Ai, of size n x n, can be reduced to tridiagonal form An-1 by
a sequence of (n &mdash; 2) Householder transformations (for example, Wilkinson and
Reinsch, 1971).

In this sequence of Householder transformations, at the tth stage, the transfor-
mation Pt is chosen to make the tt!’ row of At+, contain all zero elements, except
possibly those in the (t &mdash; 1), t, and (t + 1) columns. This operation will be called
pivoting on the tth row. The non-zero elements in the jth (1 < j < n) row of An-i
are in the (j - 1)t’ and (j + 1)t&dquo; columns, indicating the previous (j -1) and next
( j + 1 ) pivots.

For the algorithm presented in this paper, a complex matrix Al of the form:

where B, C, D are real matrices [of size (n, x nl), (n, x n2) and (n2 x n2)] is to
be tridiagonalized.

In order to illustrate the method, a numerical example will be given.
The matrix Al satisfying eqn(A1) with:

will be used, with n, = n2 = 4 (for convenience, when matrices are symmetrical,
only the lower triangular part is given). The sequence of Householder transfor-
mations derived for real matrices could be used but, as a square root of a sum
of squares, at, is used and as this could be negative, this would involved com-
plex arithmetic, which is computationally considerably more demanding than real
arithmetic. A modification of the tridiagonalization is now presented which avoids
complex calculations.



There are two stages involved. In the first, a sequence of Householder transfor-
mation is used that gives At+, = PtAtPt, where At+, and Pt are found to have
the same form as A in eqn(A1) with quadrants of real and imaginary numbers. This
involves changing the ordering of the pivoting. The rows of Al are split into two
sets 1 to nl and (1 + ni) to (n, + n2), corresponding to the division into quadrants
in eqn(Al). The pivoting is started on row 1 and continues in the first set until
at < 0, then we pivot on the first row of the second set and continue in this set
until again at < 0. The process is then repeated until nl + n2 - 1 = n - 1 rows
have been pivoted on. This procedure produces a matrix At+, with as many non-
zero elements as the usual procedure, but At+i is not necessarily tridiagonal. For
example, for the numerical example, the ordering of pivoting is found to be rows 1,
2, 5, 3, 6, 7, giving A7.

There are atmost, 3 non-zero elements in each row of A7. In the second stage, An-i
will be permuted to give a tridiagonal matrix.

The first stage is now illustrated using recursive arguments. Some housekeeping
notation is needed to identify pivoted rows. In the real case, the index t was related
to the number of transformations carried out (t &mdash; 1), the rows which have been
transformed (1... t - 1) and the next row (t) to be pivoted. The complex case is
more complicated; for example, formation of A4 for the numerical example involves
pivoting on row 1, 2 and 5 in turn, and the next row to be pivoted is row 3. It is
convenient to define Rt, St and Tt to indicate that previous operations have used
the first (Rt - 1) rows of the first set of rows and the first (St - 1) rows of the
second set of rows as pivots and that Tt is the next pivot. Kt is used to indicate
if the next pivot (Tt) is in the first set of rows (Kt = 1) or in the second set of
rows (Kt = 2). Within the two sets of rows, the rows are transformed in sequence
so that Tt = Rt, if Kt = 1, and Tt = n1 + St, if Kt = 2. Hence, in the numerical
example, R4 = 2 + 1; S4 = 5 - 4 + 1; T4 = 3; K4 = 1; R5 = 4. As a total of (t - 1)
rows of Al have been pivoted, this equals the sum of rows pivoted in the two sets;
i e, (Rt - 1) + (St - 1) = t - 1. Initially, t = 1, Rl = 1, Sl = 1 and the first row in
the first set can be used as the first pivot, and so, Ti = 1, Kl r 1.
Two slightly different strategies are needed for Kt = 1 and Kt = 2. The

derivation of At+1 is given first when Kt = 1. To simplify notation in this tth
stage, let r = Rt, s = St, k = Kt+1, and suppose At is of the form (Al). As
Kt = 1, then the next row to be pivoted is r, so Tt = r; the number of rows in the
two sets already used as pivots in At+, will be r, and s - 1, so that Rt+1 = r + 1
and St+1 = s.



A matrix At+i is required, so that At+, = PtAtPt. Using the same argument
as in usual Householder transformations:

with terms in (A2) to (A4) expressed as real numbers where possible. A sum of
squares ot is needed, given by:

with brm, crm and drm being elements of the real matrices B, C, D, that together
form At (using (A1)). The elements of f, and f2, added to ut, and Ut2, are given
by,

There are two possibilities in (A6): if Qt > 0, then usual Householder transfor-
mation is used, and the next pivot will be the (r + 1)t!’ row in the first set (k = 1),
and the (r, r + 1) element of At+, will be non-zero. However, if at < 0, then the
(n, + s)th row is used as a pivot (k = 2) in order that At+1 and Pt have the same
form as (Al).

Then At+1 can be calculated using:
1- - .. --

For the numerical example with T1 = 1, then from (A5) and (A7), <ri = 0.375;
fl = -0.6124; f2 = 0; k = K2 = 1.

So from (A4):

from (A7)-(A10):



Hence, using (A10), A2 has the form of (Al) with:

The first column of A2 has only 1 non-zero off diagonal element; the (2,1) element.
A2 has R2 = 2 and S2 = 1; as only the first row has been pivoted. As 172 < 0, then
K2 = 1, and the next row to be pivoted is 2 and T2 = 2. Equations (A5) and (A7)
show that a2 = -75.8750; fl = 0.0000; f2 = 8.7106; K3 = k = 2.

Formulae are now presented to show how to pivot on a row in the second set of
At i e, Kt = 2. These formulae are similar to (A2) to (A10), with some changes in
sign. In particular:



Then,

Using (All) to (A19), matrix A4 can be constructed from:

A7 is indicated above.

Hence, a matrix has been constructed with, at most, 2(n - 1) off diagonal
elements. In this example, there are 12, as the (6,4) and (4,6) elements are zero.

The second stage is to transform At-1 to tridiagonal form At_1. This can be
simply achieved by recording the rows and columns in the order that the pivoting
was carried out; ie, Tt = (t = 1, ... , n), where Tn is the row not included in the set

(Ti 7 T2, ... )Tn-1)7 and is either n1 or (n, + n2)-
In the numerical example: T1 = 1, T2 = 2, T3 = 5, T4 = 3, T5 = 6, T6 = 4,

T7 = 7, so T8 = 8 and:



Formation of equations (12) to (15)

If (A* + AI) and q* are real matrices, say G and q, then Smith and Graser (1986)
suggest writing G as U’DU (where U is a lower triangular matrix with diagonal
elements 1, and D is a diagonal matrix) and give an algorithm to find the non-zero
elements of D and U; ie, Dj and U!,!.

and the other elements of D and G are zero.

The elements of a+ = G-lq can be found by eliminating the elements of a+ in

turn, and back-substituting to find at. That is in the first place form:

Expression (13) can be found from either aj+2 / Dj or atat+.
In our case, (A* + AI), q* and a+ have real and imaginary terms. The indices

Kj indicate if the elements of (A* + AI), q* and a+ are real or imaginary. Suppose
G, q and a contain the real coefficients of (A* + AI), q* and a+ so that:



Then Smith and Graser’s algorithm can be used again, and in terms of real
arithmetic if 3 extra sets of coefficients are defined. There are 4 cases to consider:

The real coefficients associated with U and D are now given by:

The real coefhcients of a+, a, can be found from

For instance, for the numerical example:

Application of these formulae, with A7 given in the numerical example, are given
in Table 1.



The sum of squares is then 58.1417, and the trace 3.8360
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