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Summary - Dominance models are parameterized under conditions of inbreeding. The
properties of an infinitesimal dominance model are reconsidered. It is shown that mixed-
model methodology is justifiable as normality assumptions can be met. Tabular methods
for calculating genotypic covariances among inbred relatives are described. These methods
employ 5 parameters required to accommodate additivity, dominance and inbreeding.
Rules for calculating inverse genotypic covariance matrices are presented. These inverse
matrices can be used directly to set up the mixed-model equations. The mixed-model
methodology allowing for dominance and inbreeding provides a powerful framework to
better explain and utilize the observed variation in quantitative traits.
dominance / inbreeding / infinitesimal models / inverse / mixed model / recursion

Résumé - Matrices de covariances génotypiques et leurs inverses dans les modèles
incluant dominance et consanguinité. Les modèles de génétique quantitative incluant la
dominance sont considérés dans des conditions de consanguinité. Après une discussion
des propriétés du modèle infinitésimal, on montre que la méthodologie des modèles mixtes
peut être appliquée à cette situation, dans la mesure où les hypothèses de normalité
peuvent être satisfaites. On décrit des méthodes tabulaires pour calculer les covariances
génotypiques parmi des apparentés consanguins, dont l’emploi nécessite l’introduction de
5 composantes de variances. On présente les règles du calcul direct de l’inverse de ces
matrices de covariances génotypiques, connaissant la généalogie, et ces 5 composantes de la
variance. Ces matrices inverse peuvent être utilisées directement pour établir les équations
du modèle mixte. La méthodologie du modèle mixte, prenant en compte les interactions
de dominance et la consanguinité, fournit un cadre pour une meilleure explication et une
meilleure utilisation de la variabilité des caractères quantitatifs.
dominance / consanguinité / modèle infinitésimal / inverse / modèle mixte /
algorithme récursif
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INTRODUCTION

The mixed linear model has enjoyed widespread acceptance in animal breeding.
Most applications have been restricted to models which depict additive gene action.
However, there is also concern with non-additive effects within and between breeds
and crosses (eg, Hill, 1969; Kinghorn, 1987; Miki-Tanila and Kennedy, 1986).
Henderson (1985) provided a statistical framework for modelling additive and
non-additive genetic effects when there is no inbreeding. With inbreeding, the
mixed model allows statistical analysis, however, considerable developmental work
remains. Inbreeding complicates covariance structures (Harris, 1964). Moreover,
inbreeding depression is a manifestation of interactions like dominance and epistasis.
Models which include only additive effects and covariates for inbreeding (eg, Hudson
and Van Vleck, 1984) are rough approximations.

The proper treatment of inbreeding and dominance involves 6 genetic parameters
(Gillois, 1964; Harris, 1964). These parameters define the first and second moments
of genotypic values in the absence of epistasis. A genetic analysis is possible by
repetitive sampling of lines derived from one population through a fixed pedigree
(eg, Chevalet and Gillois, 1977). However, we should like to perform an analysis
where the pedigrees are realized with selection and/or random mating. This could
be done if an infinitesimal model was feasible and we could apply normal theory
and the mixed model. Furthermore, it would be useful to build covariance matrices
and inverse structures easily, to enable use of Henderson’s (1973) mixed-model
equations. This paper shows how to justify and implement these activities. It is
an extension of Smith’s (1984) attempt to generalize models with dominance and
inbreeding.

DOMINANCE MODELS

Finite loci

In this section we introduce the 6 genetic parameters needed to model additivity,
dominance and inbreeding depression. These parameters are functions of gene
frequency (pi for the ith allele) in much the same way that heritability depends
on gene frequency for purely additive traits.

First, consider the genotypic effect, gij for 1 locus represented by

where p is the mean, ai and aj are the additive effects for the ith and jth allele, and
dij is the corresponding dominance deviation. Equation (1) represents a system of
r(r + 1)/2 equations in r + 1 + r(r + 1)/2 unknows (ie, !, ai, aj, dij) where r is
the number of alleles. To uniquely determine p, ai and dij requires additional r + 1
constraints given as:

These constraints are derived from effectual definitions applied to populations in
Hardy-Weinberg equilibrium.



It follows that in populations undergoing random mating, the additive variance
is:

and the dominance variance is:

To accommodate inbreeding requires 3 additional parameters: (i) the complete
inbreeding depression:

(ii) the dominance variance among homozygotes:

and (iii) the covariance between additive and dominance effects among homozy-
gotes:

It is convenient to work with the parameter 62 = 06 + 6 which is a second moment.
The symbol &dquo;&dquo;’&dquo; is a reminder that the associated parameter refers to 1 locus.
When there are n loci, then the parameters of interest, say v, are the single locus

terms v = (8fl, Qa, u6, 7.2 82 -2 - &dquo;summed&dquo; over loci. All parametersterms 

fol2, fa2 a, 2, a2 - d, Ub, 2, U67 1 62 62 or a2 bi aa6l &dquo;summed&dquo; over loci. All parameters
in v = {!a, a-d, U6, U 6 62 or a-6, aa6) are formal sums. The column vector of
inbreeding depression (u6) which is defined as a list of E6 for loci 1, 2, ... , n, is

also very useful. Among the parameters, we have the dependancies ua 
= u u6 and

or 6 2 = 62 _ U2 6*
The parameters v describe a hypothetical population of infinite size undergoing

random mating and inlinkage equilibrium. This population is sometimes referred
to as the base population, but we find this usage misleading. In the spirit of
Bulmer (1971), let us introduce segregation effects defined as deviations from
mid-parent values. In fact, both additive and dominance effects have mid-parents
values, as will be seen later. Now we can define v as parameters that determine the
stochastic properties of segregation effects for an observed sample of animals from a
known pedigree. Whether or not these segregation effects are representative of some
ancestral population (perhaps several generations old) is, of course, questionable.
Indeed, ancestral effects associated with a sample of animals can be treated as fixed
(Graser et al, 1987) and, hence, segregation effects and estimates of v can be far
removed from the ancestral base. This interpretation is robust under selection, with
the added assumption that linkage disequilibrium in one generation influences the
next generation only through the mid-parent values. Our assumption need only be
approximately correct over a few generations (perhaps far removed from the base).
It is important to point out that these views are definitional and no method of
estimating v (free of selection bias) has been proposed as yet.



The disruptive forces of genetic drift on our usage of v are probably of negligible
importance; a small population is just another repetition of a fixed pedigree sampled
from the base population.

Infinite loci

It is feasible to define an infinitesimal model with dominance (Fisher, 1918). When
there is directional dominance, we might observe IU61 going to infinity or U2 and a!d d 2
going to zero (Robertson and Hill, 1983). However, it is our belief that this problem
is characteristic of particular infinitesimal models, not all infinitesimal models. To
show this, we have constructed a counter example.

Because o, 2,a 2, a2, aa6 and U6 are formal sums, it is necessary (but not sufficient)
for the contributions from single loci to be of the order n-1 where n is the number
of loci; ie, if the limit of v is finite. Whereas, it might seem reasonable to require
location effects like U6 to approach 0 at a rate of n-1/1, this is not necessary and
it may result in infinite inbreeding depression.
Now let us imagine an infinite number of loci, each with 4 possible alleles, that

could be sampled with equal likelihood. Assuming that the dominance deviations
for each locus are as given in Table I, these deviations are consistent with constraints
(2). In this example it is possible to use any additive effects also consistent
with (2), where a2 is proportional to n-1. For a particular locus, the inbreedingdepression and dominance variances are: U6 = -1/(2n); a’ = 1/(4n2) + 3/(8n);
a2 = 1/(4n2) + 1/(2n). Summed over n loci these become: u6 = -1/2; Qd =
1/(4n) + 3/8; a6 = 1/(4n) + 1/2. Letting n drift to infinity gives the following non-
trivial parameters: u6 = -1/2; a§ = 3/8; or2 = 1/2. This provides our counter
example. There does not not seem to be an analogous example involving only
two alleles. However, the biallelic situation is uninteresting because it implies a
singularity: -2 = a2a2smgu arlty: Uab - uau8’ 6* >

The above demonstration may seem artificial because it is spoiled by global
changes in gene frequency (WG Hill, 1988, personal communication). However, we
can construct other more elaborate counter examples. For instance, let loci vary in
their contribution to the parameters. Let there be infinite loci indexed 1, 2, ... , n,
where Qd, !6 ! 0, and there is no directional dominance; ie, u6 = 0. Among
the partial sum of n loci, we can take approximately n 1/2 indexed 1, 4, ... , k2,



where k2 < n < (k + 1)2. By redefining the contributions from single loci to
E6 = -n-l/2 + us and a2 a2 < n- 1/2 (perhaps by altering gene frequency),
we notice that ub = -1, and Qd and !6 are non-zero at the limit when n goes to
infinity. We can create yet another subsequence with indices 2, 5, ... , k2 + 1, where
k2+1 <_ n < (k+ 1)2+ 1. Taking the previous alterations and assuming for the latter
sequence E6 = 1/2n- 1/2 + E6, the limit value of u6 is -1/2. It is possible to select a
finite number of subsequences and make similar alterations. Each of these sequences
becomes infinitely long as n approaches infinity. Hence, infinitesimal models, where
0 < JU61 < 00, U2 q 0 0 and Qa 5! 0, are feasible.

With an infinitesimal model, v is a function of summary statistics that involves
gene frequency. Individual gene frequencies have little or no effect on v. Moreover,
genotypic effects summed over loci follow a normal distribution. This implies
that selection and genetic drift can be accommodated by the mixed model, as
suggested by Bayesian arguments (eg, Gianola and Fernando, 1986). In particular,
the assumption about the influence of linkage disequilibrium, discussed earlier, is
valid under the infinitesimal model.

The real issue is not whether [u6 is infinite or dominance variances are zero, but
whether normality and linearity are appropriate assumptions given a finite number
of loci. If [u6 is estimated from real data, it will be found to be infinite, although it
may be very large. Furthermore, if dominance variances are found to be non-zero,
and if many loci are involved, then it would seem that a contrived infinitesimal
model (like the ones above) is appropriate. Normal approximations are adequate
under most realistic models for genetic variation; there being a small number of
major loci and a large number of minor loci (Robertson, 1967). However, with a
very small number of loci, these approximations become less adequate with each
additional generation of selection.

GENOTYPIC COVARIANCE STRUCTURES

Harris (1964) developed recursion formulae for evaluating the identity coefficients
needed to determine covariances among inbred relatives. In a later paper, Cocker-
ham (1971) elaborated on these methods. Using zygotic networks, Gillois (1964)
also devised a scheme to evaluate identity coefficients, and Nadot and Vaysseix
(1973) published an algorithm for implementing Gillois’s procedure.

In this paper, tabular methods for evaluating second moments are presented.
These techniques allow the exact evaluation of genotypic covariances without cal-
culating individual identity coefficients. The first class of methods are conceptually
easy and are modelled after the genomic table described by Smith and Allaire
(1985). The second class (those based on compression) are conceptually more diffi-
cult, but perhaps numerically more feasible.



Methods based on gametes

Each animal in a pedigree receives 1 genomic half or gamete from each of its parents.
Thus, every animal has 2 genomic halves and the total number of such halves is
r = 2s, where s is the number of animals.

Let ai be a column vector of additive effects, such that the Ith element of ai
equals the additive contribution of the lth locus in the ith gamete. If there are n
loci, then ai has length n. Under an infinitesimal model, ai is infinitely long. Define
dij as a vector of dominance deviations, typical of the union of gametes i and j.
The ith element of dij equals the dominance contribution of the E!h locus. If i and
j are genomic halves from different animals, the vector dij depicts the dominance
deviations for a phantom animal.

Like animals, gametes have a pedigree; genomic halves in one animal form a
parental pair for producing gametes. Let us assume the gametes are ordered such
that i > j, if gamete i is a descendant of gamete j. Furthermore, let us assume
i > j implies that gamete j is a base population gamete if i is. Next, imagine the
ordered sequence:

where I is an identity matrix of order n. This is a very long list comprising of
(r+1)(r+2)/2 arrays. Fortunately, we need only select a much smaller subsequence,
G = {I, gl, g2,..., gp} from this list; ie, the arrays that are actually needed for
recursive calculations. An algorithm for extracting G is presented in Appendix A.

The elements of G are used as row and column headings in a table depicting the
second moments E{G’G} which is represented by:

This table is referred to as the extended genomic table (cf Smith and Allaire,
1985), and is denoted by E.

Elements of E are computed by recursion. Starting with the first row, elements
are evaluated from left to right. When the first row is completed, the first column is
filled in using symmetry. The remaining elements in the second row are evaluated
from left to right and the second column is then filled in using symmetry. This
process is continued for each additional row and column. The recursions used to
compute E are listed below, where B is defined as the index set of all base gametes,
i > j, k, m, k > m, and parent gametes of i are x and y. The proofs of these formulae
are due to properties involving sums of expectations and conditional expectations.
For example:



where i - x or y represents the event that the tth locus of gamete i is identical by
descent to that x or y, respectively. The product gigw is intended to involve the
gametes i, j, k and m (v and w are used to identify the associated columns of G).

(i) First n rows:

(ii) Subsequent rows:

(a) Additive and additive

(b) Additive and dominance



(c) Dominance and dominance

the recursive formulae in (c) appears in Smith (1984).
When ie0, the above recursions are initialized assuming that gametes are sampled

at random from a single population. For this case, we have additional simplification
for all values of i:

Now that the recursive structure of E has been shown, it is possible to describe
the alforithm of Appendix A. Define f (v) as the youngest gamete associated withthe vt column of G, say g&dquo;. The matrix or list G is said to be closed under gametic
recursion if the terms used to expand any gv by parent gametes of f (v) are also
of G. More formally, (gv I f (v) = x) and (gv I f (v) = y) are columns of G when
f(v);(), and has parent gametes x and y. The algorithm in Appendix A is called
a depth-first search and it produces sets of vectors closed under recursion. Any
element needed to evaluate any recursion can always be found in E. The algorithm
of Appendix A can also be used to define the subsequence G introduced below.

It is possible to combine additive and dominance effects into genotypic effects,
say iij = ai + aj + dij, and use these as row and column headings of a new table.
The headings are ordered as some subsequence, say G, of

The recursions for E{G’G} are exactly as they are for Efdij} and Eld ’3dk,,,},
except that initializations (when ie9) are different:



After building a matrix of second moments, the (co)variance matrix (for genetic
effects summed over loci) is obtained by absorbing the first n rows. The resulting
array is a function of u6 only through u2 = u6 U{j. The vwth element of the absorbed

array E is:

which reflects the assumption that genotypes are additive over independently
segregating loci. This assumption can be relaxed, as linkage disequilibrium can
sometimes be accommodated via conditional (ie, Bayesian) analyses.

In practice, we never evaluate the entire array E or E{G’G}. In particular, the
first n rows and columns can be represented implicitly by one row and column:
rows of:

are simple multiple of each other. Our purpose is to show structural properties that
allow inversion rules. Nevertheless, the above recursions are helpful in evaluating
particular moments; eg, those needed to compute the inverse. This can be accom-
plished by adapting Tier’s (1990) recursive pedigree algorithm: one calculates only
needed moments and avoids redundant calculation. We may add to our recursions,
shortcuts for particular degenerate cases:

These remarkable results do not depend on i > j, k, m or k > m. They are due
to the principle of conditional independence and to the rule that probabilities are
additive for mutually exclusive events. The first rule appeared in Maki-Tanila and
Kennedy (1986). It is similar to a rule in Crow and Kimura (1970, p 134) based
on additive relationship, although rule (i) is more robust under inbreeding. We also
have the following more obvious rules:



where 77 = QabQa 2r ’Y = 82U;;2, a = o-!o-!! and p = ubQ! 2.
Because E, excluding the first n rows and columns, is at most of the order r2/2

by r2/2, where r is the number of gametes, one might incorrectly conclude that
proposed calculations are prohibitive (of the order r4/8) and of no practical value.
Recursive algorithms, like the depth-first search in Appendix A, can be surprisingly
fast. The value of r4/8 should be regarded as an upper boundary that protects the
algorithm from combinatorial explosion - the kind of explosion that might occur
when enumerating genetic pathways in a pathological pedigree.

Compressed tables

The genomic table given by Smith and Allaire (1985) can be compressed. We may
add together elements in 2 by 2 blocks corresponding to animals, and multiply
this matrix by 1/2, to give the numerator relationship matrix. Compression of E is
also feasible, and has already been demonstrated above for a case involving G. In
general, E is compressed by combining columns of G to create a new matrix C. To
be useful, C should be smaller than G and contain pertinent effects.

It is possible to devise recursive methods for evaluating E{C’C}, when C
is not closed under recursion. However, methods become more meticulous. For
example, since the vector of additive merits for animals is not closed under gametic
recursion, we need to add inbreeding coefficients to the diagonals when calculating
the numerator relationship matrix.

Whereas, when compression is defined as the addition of all G columns, it is
possible to do this stochastically, as Harris (1964) has done. For example, Harris,
by preferring a zygotic analysis over a gametic analysis, devised a scheme where
entities were created by a random sampling of genes from existing genotypes.

Compression is an important area and it needs to be developed further. Some
concepts will be illustrated later by an example.

INVERSE STRUCTURES

General rule

Conditions under which E-’ exists are clarified in the next section. For now, let us
assume that the inverse exists.



Matrix E contains second moments and not (co)variances as required by the
mixed model equations. However, deleting the first n rows and columns of E-1
gives precisely an inverse matrix of (co)variances. The extended genomic table
is characterized by blocks along the diagonal. By inspecting labels attached to
vectors in G, it is seen that they come in groups. For example, the group associated
with gamete i is a subsequence of ai, dli, d2it ... dii. Likewise, when considering
E = E{G’G} we find blocks along the diagonal associated with gametes. Recursions
above the diagonal blocks are functions of column indices and not of row indices.
Now consider a submatrix Ak where

for some L and Ak contains the first k + 1 blocks. The matrix L is a simple matrix
defined by column indices. If k = 1 note that:

for some Lo, where Ao corresponds to the base assignments, and Bo is the second
block.

Let us assume that Ao is given (perhaps without the first n rows and columns)
and note that:

- -

With (Bo &mdash; LoAoLo)-1 evaluated, we find that All is a simple function of AÕ1.
Given Ao 1, it is possible to compute A2 1, where

and B1 is the third block. In general, given A-’ we can evaluate A-11, where

and Bk is block k + 2. The general inversion formula is:

To evaluate E-1, apply this rule recursively starting with k = 0.
It is hoped that Bk - L[AkLk will be sufficiently small or sufficiently sparse so

that its inversion is feasible (eg, Tier and Smith, 1989). For evaluating E-1, the
worst scenario is that the order of Bk - LkA!L,! is r + 1. However, this occurrence
is unlikely. Note that Henderson’s (1975) rule for calculating the inverse numerator
relationship matrix is a special case of (3), where Bk - L’AkLk is always a scalar.



There are some notable simplifications when E-1 is to be evaluated. First,
evaluation of Ao is best done by absorbing the first n rows and then deleting
the first n rows and columns. The resulting matrix is some permutation of a block
diagonal matrix involving 2 by 2 matrices:

and 1 by 1 matrices a§ and ad. This is a trivial matrix to invert.
Second, Bk - LkAkLk has a peculiar structure that can be identified by

examining the recursive definition in Section IIIA. If block Bk corresponds to
gamete i which has parent gametes x and y, then Lk is a matrix that &dquo;picks&dquo;
appropriate terms from Ak that involve x and y. Moreover, Bk is also defined by
terms that involve x and y. Assume that the column headings for Bk are:

It might be that i = jm. Now define the column headings

where Hx = (Fi I i = x) = {a!, dxjl’ dXj2’ .... d!,,.} }
and Hy = (Fi I - y) _ {ay, dyÙ’ dYj2 7 ... dyj&dquo;, I
In the definition of Hx and H!, it is understood that dXj&dquo;, = d!! and d!j&dquo;, = dyy,
if i = j&dquo;,. Select elements from Ak and build the matrix,

where M!! = E{HxH!}, Mxy = M!! = E{HxHy}, and Myy = EIH’Hy}.
A direct application of the recursions gives:

Futhermore, as Lk is a matrix that &dquo;picks&dquo; terms under headings H! and H!:

and thus:

Equation (5) can also be derived if B,!-L!A,!Lk is recognized as the (co)variance
matrix for the segregation effects due to recombination of gametes x and y in the
formation of gamete i. The mid-parent values of Fi are the column vectors of

1/2H! + 1/2Hy. As the segregation effects, S = F! - 1/2H! - 1/2H!, have a mean
of zero, the (co)variance matrix is:

where S = 1/2H! - 1/2Hy. Evaluating E{S’S} gives eqn(5).



Finally, in rule (3) Lk(Bk - L!A,!Lk)-1L!, -Lk(Bk - L’AkLk)-l and

(B! - Lj!A!L!) ! are contributions added under H by H headings, H by Fi head-
ings, and Fi by Fi headings, respectively.

Existence of inverses

When there is no inbreeding, E-1 can be shown to exist. First, we present the
following Lemma:

Lemma 1: In the absence of inbreeding, there exists a matrix Mk, which is a
submatrix of Ak, and there exists a matrix Xk of full column rank such that:

where B!,,L,! and Ak are associated with E.

Proof. Because equ(5) is given, we only prove that such M! and Xk can be found

where XkMkXk = 1/4(M!! - M!! - M!! + Myy). The matrix Mk, defined by
eqn(4), will be ’a submatrix of Ak if there are no indices jm = i, jv = x and jw = y
used in the definition of Fi. The algorithm presented in Appendix A will not create
indices j&dquo;,, = i, jv = x and jw = y when there is no inbreeding. For this case, we
can take Mk = Mk, and ’ = 1/2{I, -I}, where the identity matrix I has order
m + 1. Matrix Xk has full column rank ((a.E.D).

Theorem 1: If E is constructed by applying the recursion rules to some finite and
non-inbred pedigree, then E-1 exists, provided:

Proof. The matrix Ao is non-singular when the condition of the theorem
holds. Now assume that A-’ exists, then by the inversion rule (3) A!+1 exists
if (Bk - L’AkLk)-’ exists. By the above Lemma, Bk - LkAkLk = 3CkMkXk-
Because Mk is a submatrix of Ak, it is non-singular. Therefore, (X!M!X!)-1
exists because Xk has full column rank. We conclude that the existence of Ak 1
implies the existence of A!+1. As AÕ1 exists, the theorem follows by mathematical
induction (Q.E.D).

The reader might think that the concurrence of identical twins would contradict
Theorem 1. However, this is not the case, as the theory assumes that gametes are
distinct and can be ordered using indices. Thus, for identical twins, the recursive
formulae presented earlier are incomplete. This is not a practical problem, as
identical gametes can be represented only once in G.

Henderson (1985) considered a non-inbred population and studied a dominance
relationship matrix D. He used D-1 in many formulae without proof of its existence.
However, as D is a submatrix of E, the theorem implies that D-1 exists.
When there is inbreeding, the algorithm in Appendix A will produce labels like

dii, di. and diy, where i!9 and has parent gametes x and y. In general, E is singular
because of the dependence:



Even with inbreeding, 4 labels like those in eqn(6) need not occur together as
headings of E. However, it is possible to merge the identity (6) with the recursion
and remove dii for I(0 from the sequence G to get G - see Appendix A. The vector
G is closed under recursion if eqn(6) is used to redefine dii for i18. The matrix of
second moments E = Eli7x4U} has no row and column heading dii for I(0 and it
is non-singular. To prove this, we introduce Lemma 2 for E. First, let us imagine
that Bk - LkAkL! corresponds to a particular absorbed block of E.

Lemma 2: There exists a matrix Mk, which is a submatrix of Ak, and there exists
a matrix X! of full-column rank, such that Bk - L’AkLk = --4 where Bk,
Lk and Ak are associated with E.

Proof.- Because the pedigree is inbred, we expect indices j, = x and jw = y
(x, y parents of i) in the definition of Fi - otherwise, follow the proof of Lemma 1.
By construction, there is no index jm = i. This implies that there will be vectors
dxy, dxx = dxx, +dxx,,-dx!x&dquo; and dyy = d!yx+d!yy-dyzyv in H, where xx, xy and
yx, yy are parent gametes of x and y, respectively. With no loss in generality, switch
the vectors ai with dix, and diy with di!&dquo;, in Fi. So as to maintain consistency with
the definition H = {Hx = (Fi I i = x), Hy = (Fi i = y)}, columns of H may be
altered by switching:

These permutations preserve the identity

where Xk = 1/2{I, -I} and Mk = E{H’H} if we further stipulate that selected
columns of G have also been rearranged. Note that columns and rows m + 1 and
m+2 2 in Mk are redundant, as they are both represented by dxy = dyx. Therefore,
we may delete row and column m + 2 to create Mk (delete column m + 2 in H)
and note that

where

and I has order m &mdash; 2. Clearly, ik is of full-column rank and is a candidate for Xk.
When x and y are base gametes (ie, xx, x!, Yx and yy are unknown), we are finished
as we can take M! = Rk, which is a submatrix of Ak. Unfortunately, when at
least one of the zygotes (xx,xy) and (Yx,yy) are known, Mk is not a submatrix of
Ak because of the composite vectors d!x and/or dy.. We assume that both (xx, yy)
and (yx, yx) are known in the remainder of the proof (when only 1 zygote is known,
the argument can be modified slightly).



It might be that dxx&dquo; and d!!&dquo; exist already between columns 2 and m in the
redefined H. Likewise, d.y. and d!!&dquo; may exist beyond position m. If any of the
labels xx!, xxy7 yyx and yyy do not exist, we introduce them as dominance vectors
in H. Further, we may redefine the first and last columns to represent labels zzzy
and yxyy, respectively. This gives us a modified matrix

Because G is c_losed under recursion, all columns of H are in G. Moreover,
all columns of H are unique; XxXy =1= yxy!, because animals cannot mate with
themselves. We conclude that the matrix

is a submatrix of Ak. Now define the matrix
/.. . I ....... r. B.

where m and f are null vectors, except for ones at positions corresponding to
zzz, Xxyl yyx and yyy; M and F are like identity matrices, except that rows
corresponding to zzz, xxy, YYx and yyy would be deleted if the corresponding
columns were introduced into H. Now Xk has full-column rank. Since

the Lemma is proved (Q.E.D).
Theorem 2: If E is constructed by applying recursion modified by equ(6) to some

finite pedigree, then E exists, provided

Proof. With the first n rows absorbed, Ao is non-singular when the condition of
the theorem holds. Therefore, Ao is non-singular when the first n rows are intact.
The remainder of the proof is identical to that of Theorem 1, except that reference
is made to Lemma 2, rather than Lemma 1 (Q.E.D).
We should expect singularities when inbreeding coefficients approach unity, as

occurs with the numerator relationship matrix. Indeed, the matrix S = 1/2Hx -
1/2Hy becomes a null matrix when gametes x and y are identically equal. As
E{S’S} equals eqn(5), the absorbed block for gamete i is a matrix of zeros and E
is singular. Our construction of E assumes that the base population is a random
set of unrelated gametes which have been sampled from some infinite population;
that is even though the base population is finite, inbreeding in the base does not
exist. Under diploidy, inbreeding coefficients cannot be unity with finite pedigrees.

Feasibility

It is beyond the scope of the present paper to demonstrate the calculation of E-1
for a real population. However, we have applied the algorithm in Appendix A to a



pedigree borrowed from a beef cattle selection experiment conducted at the Agri-
cultural Research Centre, Trangie, NSW (PF Parnell (1988), personal communica-
tion). The pedigree involved 1 122 animals with records and 625 ancestors without
records. The average number of generations on the female side was 9 and the maxi-
mum was 16. On the male side, the average was 8 generations, with a maximum of
13. There were only 55 base gametes, and the average inbreeding of the population
was 0.1 (the maximum was 0.26).

The order of E and E was about 190 000. Matrix Ao was of the order 1595.

However, excluding Ao, the maximum block sizes were 321 and 323, respectively.
The distribution of block sizes is presented in Table II. Most of the blocks were of
the order 2 and 3. Given the absorbed blocks, and ignoring possible singularities,
matrices E-1 and E can be evaluated. The computations are not trivial, but are
feasible.

There are other approaches to modelling dominance that do not involve E-1
or E-1. For example, we might extract from E only those elements that involve
animals or animals with records. If the extracted matrix is put into a matrix D,
then we could attempt to evaluate D-1 using sparse matrix absorption (Tier and
Smith, 1989). Then U-1 could be used in the mixed-model equations. Alternatively,
D could be used directly in the same way that Henderson (1985) used D. Because
E is an enlarged matrix with unrealized combinations of gametes (the so-called
phantom animals), alternatives to E-1 are attractive. However, breeding schemes
that utilize dominance variation are bound to require the prediction of dominance
effects that correspond to untried gamete pairs (say, among gametes of parents that
contribute genes to the next generation). Further research is needed to evaluate all
competing methods.



ILLUSTRATION

In this section we demonstrate our methods, using the simple pedigree displayed
in Fig. 1. This pedigree involves 4 animals or 8 genomic halves. For simplicity, we
assume or2 = or = 1; U2 = a2 = 0. Given that gametes pairs 12, 35, 64 and 78
represent dominance vectors for animals and are to be included in G, the algorithm
of Appendix A creates 14 additional pairs - ignoring first array I and additive vec-
tors. The matrix G is given as row and column labels of Table III. Second moments
of Table III are derived by applying the recursion of formulae. For example, the
element Eld’2ld5il was calculated as 1/2EId’ldll} + 1/2EId’ld2ll = 0 + 1/2
= 1/2.

To evaluate E-1 requires the determination of (A2 - LiBiL!)-1 for i = 0,1, 2, 3.
The absorbed blocks can be evaluated recursively, but for now, the reader may
obtain these by applying Gaussian elimination directly to Table III. The inverse
blocks are:

The matrices L! for i = 0,1,2,3, are displayed below the diagonal in Table IV. In
accordance with formulae (3), the elements of E-1 are given above the diagonal.
We can now compress E by defining db = du + d22 (with labels, this is notated

as b: 11 + 22), d, = d31 + d32, dd = d41 + d42, d f = dsi + d52, di = d74 + d76.
These definitions, as well as other symbolic definitions, are given as row labels for
the compressed matrix of Table V. As an exercise, the compressed table can be
evaluated by inspecting Table III and adding together appropriate elements. For
example, E{djd¡} can be computed by adding together 4 elements of Table III:







The real challenge is to find simplifying recursions that allow evaluation of com-
pressed tables. In order to apply inversion formulae (3), recursions to the right of
blocks along the diagonal should be maintained exclusively as a function of column
index, as in the present example. These recursions are given implicitly below the
diagonal in Table VI as matrices Li for i = 0,1, 2, 3. For example, the element
E(d )di )can also be obtained by adding

The blocks (Ai - LiBiLil-1 for i = 0,1, 2, are:

Inverse elements of the compressed matrix are given above the diagonal in
Table VI.

DISCUSSION

Although we have not emphasized the evaluation of various identity coefficients,
gametic recursion of such coefficients is feasible. Moreover, gametic recursions, like
those used to define E, are very easy to understand and may provide an approach
useful in teaching, whilst there may be more complicated (but perhaps numerically
more efficient) alternatives. But gametic recursion need not be numerically ineffi-
cient and is certainly not subject to combinatorial explosion. Depth-first searches,
like the algorithm of Appendix A, can be used to implement gametic recursion in an
efficient way. For example, to evaluate inbreeding coefficients via gametic recursion,
one would first conceive of a symmetric table with r2/2 elements. However, r2/2
operations are not required to evaluate inbreeding coeflicients via gametic recur-
sion. All that is needed is to identify labels i j of the dominance vectors dij in G.

By moving down a list of such labels, it is possible to evaluate the coefficients using
one work vector. We need only modify this scenario for general identity coefficients.

The simplest explanation of the two commonly found and complementary phe-
nomena (heterosis and inbreeding depression) is that there is dominance of alleles
at many loci. Therefore, dominance should be regarded as an essential feature of
genetic models for loci affecting quantitative traits. Characteristics closely con-
nected with fitness, such as reproduction, would mostly have only non-additive
variation left, as the additive has been exhausted (Robertson, 1955). There are also
suggestions that dominance of alleles that maintain normal enzyme activity, is a
universal biochemical property (Kacser and Burns, 1981).

It is clear that additivity, dominance and inbreeding can be modelled by
applying mixed-model methodology. The ramifications of such a development are
far reaching. We list possible applications:







(i) Determination of optimum and dynamic mating structures which capitalize
on additive and dominance variance while providing for inbreeding. Some of these
breeding strategies can be studied by the use of moment-generating matrices for
regular mating systems. Cockerham ( 1971) has given an example of such a transition
matrix for full-sib mating. Possible application areas are:

(a) mate selection (Jansen and Wilton, 1985; Smith and Allaire, 1985);
(b) group selection (Jansen, 1985; Smith and Hammond, 1987) when the

selection of a random mating gene pool is created by a finite number of parents.
The objective of group selection is to improve both additive merit and the average
specific combining ability of genes in the pool;

(c) crossbreeding plans to utilize between breed additive and heterotic effects
(Kinghorn, 1987);

(d) selection of clones and animals created by futuristic techniques.
(ii) To allow dominance variance to be partitioned, and thus, remove some of

the confounding that would otherwise corrupt statistical analyses.
(iii) To improve our understanding of traits which are likely to show considerable

amounts of non-additive genetic variation. This understanding can be advanced by
simulation studies, eg, concerning selection bias and finite loci. Other studies may
involve simulation of infinitesimal models with dominance via sampling from normal
distributions.

The theory we present here is still very underdeveloped. New methods are
needed for the estimation of genetic parameters, as past approaches have met
with very limited success (eg, Gallais, 1977). It is our belief that an extension of
the derivative-free algorithm of Graser et al. (1987) is possible, and consequently,
genetic parameters could be estimated by restricted maximum likelihood. Research
is needed in the area of computing strategies (eg, compression, inversion). Further,
models which allow different parameters for different populations would be useful in
crossbreeding studies. A multivariate extension of our work would also be desirable.

The forgotten papers of Harris (1964) and Gillois (1964) have been resurrected.
While the methods are arguably complicated, they are, however, feasible. Whereas,
classical quantitative genetics is unable to fully utilize information on dominance
and inbreeding in predictions, the appropriate mixed model under a wide range of
assumptions, including selection and environmental noise, does that.
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APPENDIX A

Depth-first search for extracting gamete pairs

The following account deals with the extraction of labels ij of the dominance
vectors dij of G. To identify the additive vectors, simply require both ai and

aj to be included in the list if dij is. All gamete indices are assumed to have
been transformed, such that base gametes come first and ancestors preceed their
descendants.

1. Definitions
(a) FLAG(I,J) is an indicator variable. Upon completion of the search,

FLAG(I,J) is true when pair IJ has been selected, and false otherwise. That is,
FLAG(I,J) provides the gametic pair associated with the dominance vector dij,
using the convention that I = i and J = j. FLAG can be a very large array because
each of the IJ entries need only occupy one bit of computer memory.

(b) PEDIGR(1,I), PEDIGR(2,I) are parent gametes of gamete I.
(c) WORK(1,I), WORK(2,I) is a work space indexed by I.



2. Initializations

(a) the pedigree file is read and PEDIGR is built;
(b) all values of FLAG are set to false;
(c) WORK is initialized by reading a list of LEN animals (say, those animals

that are associated with phenotypic measurement) and adding gamete pairs to
WORK. The index for the maternal gamete of animal I is placed in WORK(1,I). The
index for the paternal gamete is placed in WORK(2,I). There are LEN initializations
of WORK(1,I), WORK(2,I), I = 1, 2, ..., LEN.

3. Depth-first search

(a) If LEN = 0, then stop as the search is completed;
(b) Set I=MAX(WORK(1,LEN), WORK(2,LEN))

and J = MIN(WORK(1,LEN), WORK(2,LEN)). The gamete pair repre-
sented by I and J (formally stored in position LEN of WORK) is now set for
evaluation;

(c) Set LEN = LEN &mdash; 1. As the gamete pair IJ is set for evaluation, the list of
gamete pairs left for consideration is shortened by one.

(d) If FLAG(I,J) = true, go to (a). In this case, the gamete pair IJ has already
been selected and no further action is necessary;

(e) Set FLAG(I,J) = true. This action causes future evaluations of the gamete
pair IJ to stop at 3(d). At this point, indices I and J can be written to an exterior
file, thus avoiding a full scan of FLAG after the depth-first search;

(f) If I < the largest base index, go to (a). In this case, the pair IJ belongs
to the base population and the search for ancestors of I and J (J < I) can stop.
The algorithm returns to 3(a) to process the next pair in WORK. If I is not a
base gamete, the algorithm proceeds with steps 3(c) and 3(b). These steps add
ancestorial gamete pairs to WORK for future evaluation;

(g) If I=J, then set

(h) If I > J, then set

(i) go to (a)



4. Modifications
To enumerate vectors dij of G, it is necessary to prevent the writing of I and J

to an exterior file at step 3(e), if I = J and I > the largest base index, and replace
3(g) with

If I = J, then set
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