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Summary - A reduced animal model (RAM) version of the animal model (AM) incorpo-
rating independent marked quantitative trait loci (M(aTL’s) of Fernando and Grossman
(1989) is presented. Both AM and RAM permit obtaining Best Linear Unbiased Pre-
dictions of MQTL effects plus the remaining portion of the breeding value that is not
accounted for by independent M(aTL’s. RAM reduces computational requirements by
a reduction in the size of the system of equations. Non-parental MQTL effects are ex-
pressed as a linear function of parental MQTL effects using marker information and the
recombination rate (r) between the marker locus and the MQTL. The resulting fraction
of the MQTL variance that is explained by the regression on parental MQTL effects is
2[(1- r)2 + r2] /2 when the individual is not inbred and both parents are known. Formulae
are obtained to simplify the computations when backsolving for non-parental MQTL and
breeding values in case all non-parents have one record. A small numerical example is also
presented.
maker assisted selection / best linear unbiased prediction / reduced animal model /
genetic marker

Résumé - Un modèle animal réduit pour la sélection assistée par marqueurs avec

BLUP. Une version du ncodèle animal réduit (RAM) basée sur le modèle animal (AM) de
Fernando et Crossman (1989) avec loci indépendants de caractères quantitatifs marqués
(MQTL) est présentée. Dans les 2 cas, RAM et AM, on obtient les meilleurs prédictions
linéaires sans biais (BLUP) des effets des MQTL en plus de la portion restante de la valeur
génétique inexpliquée par les MG!TL indépendants. L’emploi de RAM diminue les exigences
de calcul par une réduction de la taille du système d’équations. Les effets des MQTL
reon-parentaux sont exprimés sous la forme d’une fonction linéaire des effets des MQTL
parentaux à l’aide de l’information provenant du marqueur et du taux de recombinaison (r)
entre le locus marqueur et le MQTL. La proportion résultante de la variance du MG!TL
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expliquée par la régression des effets des MQTL parentaux est donnée par l’expression
2!(1 - r)2 + r2] /2 dans le cas d’un individu non consanguin avec parents connus. Des
formules sont dérivées pour simplifier les calculs lorsque l’on résout pour les effets des
MQTL et des valeurs génétiques non parentaux dans le cas où tous les individus non

parents possèdent une seule observation. Un exemple numérique est également donné.

sélection assistée par marqueurs / BLUP / modèle animal réduit / marqueur
génétique

INTRODUCTION

In a recent paper, Fernando and Grossman (1989) obtained best linear unbiased
predictors (Henderson, 1984) of the additive effects for alleles at a marked quantita-
tive trait locus (MQTL) and of the remaining portion of the breeding value. They
used an animal model (AM; Henderson, 1984) under a purely additive mode of
inheritance. Letting p be the number of fixed effects in the model, n the number of
animals in the pedigree file and m the number of M(!TL’s, the number of equations
in the system for this AM is p + n(2m + 1). For large m, n or both, solving such a
system may not always be feasible. The reduced animal model (RAM; Quaas and
Pollak, 1980) is an equivalent model, in the sense of Henderson (1985), to the AM
and provides the same results, but with a smaller number of equations to be solved.
In this paper, the RAM version of the model of Fernando and Grossman (1989) is
obtained. The resulting system of equation is of order p + s(2m + 1), s being the
number of parents. In general s is much smaller than n. Therefore, the advantage
due to the reduction in the number of equations by using RAM is considerable. A
numerical example is included to illustrate the application.

THEORY

For simplicity, derivations are presented for a model with one MQTL. The extension
to the case of 2 or more independent M(!TL’s is covered in the section entitled More
than one MQTL.

In the notation of Fernando and Grossman (1989), MP and Mm are alleles at
the marker locus that individual i inherited from its paternal (p) and its maternal
(m) parents, and vf and vi are the additive effects of the paternal and maternal
MQTL’s, respectively. The recombination frequency between the marker allele and
the MQTL is denoted as r. We will use the expression &dquo;breeding value&dquo; to refer to
the additive effects of all genes that affect the trait excluding the MQTL(s).

Matrix expressions for the animal model with genetic marker informa-
tion

A matrix version of equation (3) in Fernando and Grossman (1989) is :

where y is an n x 1 vector of records, X, Z and W are n x p, n x n and n x 2n
incidence matrices which relate data to the unknown vector of fixed effects !, the



random vector of additive breeding values u and the random vector v of additive
effects of the individual MQTL effects, respectively. The 2n x 1 vector v is ordered
within animal such that vf always precedes f!. The matrices Z and W will have
zero rows for animals that do not have records on themselves but that are related
to animals with records. Non-zero rows of Z and W have 1 and 2 elements equal to
1, respectively, with the remaining elements being zero. First and second moments
of y are given by :

where Acr! and G2,w are the variance-covariance matrices of u and v, respectively.
The scalars a A 2 w and o,2 are the variance components of the additive effects of
breeding values, the MQTL additive effects and of the environmental effects.
RAM requires partitioning the data vector y into records of individuals with pro-

geny (yp ; parents) and records of individuals without progeny (y,!r ; non-parents)
so that y’ = [y%, y’ 1. A conformable partition can be used in X, Z, W, u, v and
e. Using this idea (1) can be written as :

To obtain RANI, uN and vN should be expressed as linear functions of up
and vp, respectively. Since an individual’s breeding value can be described as
the average of the breeding value of its parents plus an independently distributed
Mendelian sampling residual (!) (Quaas and Pollak, 1980), for uN we can write :

where P is an (n - s) x s matrix relating non-parental to parental breeding values.
Each row of P contains at most two 0.5 values in the columns pertaining to the
BV’s of the sire and of the dam. Now, E(!) = 0 and Var(cp) = DAaA, where DA
is a diagonal matrix with diagonal elements equal to :

1 - 0.25(a!! + add), if both sire and dam of the non-parent are known
1 - 0.25ass, if only the sire is known
1 - 0.25ad!, if only the dam is known
1, if both parents are unknown

with ass and add being the diagonal elements of A corresponding to the sire and
the dam, respectively.
A scalar version of the relationship between vN and vp can be obtained from

equations (8a) and (8b) in Fernando and Grossman (1989) and these are :



The subscripts o, s and d denote the individual, its sire and its dam, respectively.
The coefficients bis are either 1-r or r according to any of these 4 possible patterns
of inheritance of the marker alleles :

Paternal marker Maternal marker

The above developments lead us to the following relationship between v!Br and
! :

The 2(n &mdash; s) x 2s matrix F relates the additive effects of the MQTL of non-
parents to the additive effects of the MQTL of parents and s is the vector with
element i equal to residual eo and element i + 1 equal to the residual &0’. Each
row of F, contains at most, 2 non-zero elements : the bis. Let i and k be the row
indices for the MQTL marked by MÓ and A/o&dquo; respectively. Let j and j + 1 be the
column indices corresponding to the additive effects of the MQTL for the sire that
transmits i : j refers to the paternal grandsire and j + 1 to the paternal granddam.
Also, let 1 and 1 + 1 be the column indices corresponding to the dam that transmits
i + 1 : corresponds to the maternal grandsire and l + 1 to the maternal granddam.
Then Fij = bl, Fi,!+1 = bz, F!,! = b3 and Fk,i+1 = b4. All remaining elements of F
are 0. When marker information is unavailable, r is taken to be 0.5 (Fernando and
Grossman, 1989) and all bis are 0.5. To exemplify, consider individuals 1 (male),
2 (female) and 3 (progeny of 1 and 2). Animals 1 and 2 are unrelated and 3
has paternal and maternal marker alleles originating from the dams of 1 and 2,
namely alleles Md and M.! respectively. Then, v = [v’, ví&dquo;, vp V!l, vp v’n!’ with5’ 1 2> > 1 1 2 2 ) 31 3

V!! = !7J!, vilt 1 , vp 2, V2n]’ and yM = w3, ’U!i!’. The matrix W 1S :

For r = 0.2, the matrix F is 2 x 4 and equal to :

The residuals e have E(s) = 0 and Var(e) = Gcufl. Fernando and Grossman
(1989) showed that G«ufl is diagonal with non-zero elements equal to Var(e’) =
2r(1 - r)(1 - fg)u’§ and Var(Eü) = 2r(1 - r)(1 - fd,)o, 2, where fs, and fd are the

inbreeding coefficients at the MQTL of the sire and of the dam, respectively. They
express the probability that the paternal and maternal alleles of an individual for



a given MQTL are the same. These f’s are the off-diagnonal elements in the 2 x 2
diagonal blocks of the matrix Gv (Fernando and Grossman, 1989).

Using (3) and (4) in (2) gives :

or

On letting e* = eN + ZN# + W,ve, we have that :

where Q = I(n-s) + Z,!DAZ;!aA + WNGEW!,av,aA = !A!!e and av U2/U2where !!!!!!!!!°&dquo;’fi$ilie / !! !! !i&dquo;v , MA = UA e and m, = v e-Mixed model equations for (6) are :

The matrices AP and GvP are the corresponding submatrices of A and Gv that

belong to parents. Equations (7) give the solutions for RAM with genetic markers.
Of practical importance is the case where all non-parents have only one record so
that ZN = I. Then, WNGEWN and Q-1 are diagonal (see Appendix A). The
diagonal elements of W NGe W! are derived in Appendix A and they are equal to :

2r(1-r)(2- fs - fd), when both the sire and the dam of the non-parent are known
2r(1 - r)(1 - fs) + 1, when only the sire is known
2r(1 - r)(1 - fd) + 1, when only the dam is known
2, if both the sire and the dam of the non-parent are unknown.

If there is zero probability that the paternal and maternal alleles at the MQTL
of parent p are the same (ie fp = 0), the contribution to the diagonal element of
W NGe: W! is 2r (I - r) (if marker information is available) or 1/2 (if marker infor-
mation is unavailable). This occurs because, in the absence of marker information,
there is equal probability of receiving the MQTL from the grandsire and from the
granddam, and r = 0.5 (Fernando and Grossman, 1989).



A further simplification to (7) occurs when parents do not have records so that
Zp and Wy are zero and the model becomes a sire-darn model. A program for
RAM, such as the one presented by Schaeffer and Wilton (1987) and modified to
include marker information can be employed to solve equations (7).

More than one MQTL

Multiple MQTL (k, say) can be dealt with assuming independence by the following
modification of model (1) :

where j! is a k x 1 vector with all elements equal to 1. We will assume that

Var(vi) = G,,iu 2 ,,i and Cov(v2, vi!, ) = 0. For k = 2 and letting Q* = I<___s> +
ZA’D.4Z!.(x,t + Wn!(GEIa&dquo;1 + GE2cx.(2)W!, RAM equations for (8) are :

Backsolving for non-parents

After solving for fixed effects, parental breeding values and parental effects of the
MQTL, the breeding values and additive MQTL effects of non-parents can be
calculated. This is accomplished by writing the equations for § and i from the
mixed model equations of (5). This gives :

and after a little algebra :

Appendix B shows how to obtain solutions of equations (10), when all non-

parents have one record, by solving (n - s) independent systems of order 2. Using
the predictors obtained from (7) and (10) in (3) and (4), solutions for non-parents
are :





EXAMPLE

We use the same data that Fernando and Grossman (1989) employed. There are
4 individuals, 3 of them are parents and 1 is a non-parent. The file is :

Notice that individual 4 is inbred. A fixed effect was included and the matrix

resulting from adjoining the incidence matrix X and the vector of observations y,
ie [Xly] is :

Variance components used were (J! = 100, a§ = 10 and Q! = 500 and r = 0.1. The
matrices Gu and GU are presented in Fernando and Grossman (1989).

First, solutions for AM were obtained. The coefficient matrix for AM is :

and the right-hand site vector is [445, 505, 235, 210, 250, 255, 235, 235, 210, 210,
250, 250, 255, 255]’. The vector of solutions is [222.5, 251.764, 2.08109, -2.08109,
- 0.083214, 1.16537, 0.213435, 0.216098, -0.202783, -0.226749, 0.213102, -0.229745,
0.231409, 0.174809].

There are 11 equations in the system for RAM (as compared to 14 in AM)
since there is only 1 non-parent (individual 4) and Q is a scalar : 1.1136 =

l+(0.5/oc,))+2[0.5(0.5) + (0.9) (0.1)]/<x,. The vector of right-hand sides for equations



(7) is [445, 478.987, 349.494, 210, 364.494, 349.494, 349.494, 210, 210, 456.088,
272.899]’ and the coefficient matrix is :

Solutions for RAM are 222.5, 251.764, 2.08109, -2.08109, -0.083214, 0.213435,
0.216098, -0.202783, -0.226749, 0.213102 and -0.229745. The next step is to
backsolve for individual 4 (non-parent) using equation (B.2). Since both parents
of 4 are known, dA44 = 0.5 and doH = 5/(5 + 0.5) = 10/11 = 0.90909... The
diagonal elements of the 2 x 2 system in (B.2) are functions of r. However, as
the information from the sire marker is unavailable, r = 0.5 for the first diagonal
element. Also, F, = F3 = 0 and do44 y,! = 0.90909[255 - 251.764 - 0.5(2.081090 +
0.083214+0.213435+0.21G098)-0.9(0.213102)-0.1(-0.229745)! = 1.6848545. For
animal 4, we then have :

which has solutions ei = 0.0166428 and e3! = 0.00599141. Putting these into
(B.3) gives !4 = 0.166428. Therefore, BLUP(U4) = 0.5 BLUP(ul) + 0.5 BLUP
(u3)+ BLUP«4) = 0.5[2.08109 + (-0.083214)] + 0.166428 = 1.16537. Also,
BLUP(v’) = 0.5 BLUP(vi ) + 0.5 BLUP(vi’2)+ BLUP(E!) = 0.5[0.213435 +
0.216098] + 0.0166428 = 0.231409 and BLUP(v4 ) - 0.9 BLUP(v’) + 0.1
BLUP(vl&dquo;)+ BLUP(E4&dquo;) = 0.9(0.213102)+0.1(-0.229745)+0.0059141 = 0.174809.
As expected, solutions obtained by both AM and RAM are the same.

DISCUSSION

The advantage of RAM over AM increases as both the ratio between the number
of non-parents and the number of parents and the number of independent MQTL
increase. Goddard (1991) suggested the use of RAM to decrease the size of the
resulting system of equations when working with information on flanking markers.

As shown in Appendix A and for a non-inbred individual, the fraction of the
variance of the MQTL that is due to Mendelian segregation is 4r(1 - r)/2. Now,
1 = (r+l-r )2 = r2 +2r(l-r) + (l-r?, so that 2(1-2r(1-r)J = 2[r2 + (l-r)2].
Therefore, the fraction of the variance of the MQTL that is explained by parental
segregation is 2[r! + (1 - r)!]/2. These proportions can also be worked out from
equations (8a) and (8b) in Fernando and Grossman (1989) and they agree with



formulae derived by Dekkers and Dentine (1991). A slight difference between their
result and the one obtained here stems from the fact that they define the variance
of the MQTL as one half the variance as defined by Fernando and Grossman (1989)
(0.5a’).

Both AM and RAM rest on knowing the variance components as well as the
recombination rate between the marker gene and the QTL. As the latter parameter
enters into the variance-covariance matrix of QTL effects in a rather complex
manner, its estimation by the classical methods employed in animal breeding seems
to be difficult, as discussed by Fernando (1990).
When more than one MQTL is being considered, covariances between pairs of

MQTL effects are likely to be non-zero due to linkage disequilibrium caused by
selection (Bulmer, 1985). Model (8) assumes that these covariances are zero. The
extent of the error in predicting v (or functions of v) due to incorrectly assuming
null covariances between MQTL effects will depend on the magnitude and sign of
the covariance. If the covariances are mostly negative, which is likely to happen on
a trait undergoing selection (Bulmer, 1985), 1VIQTL effects may be overpredicted.
Research is in progress to overcome this restriction of model (8).

APPENDIX A

Derivation of the diagonal elements of WNGEW’N
when all non-parents have one record

First we show that W NGe W’tv is diagonal. Because G, is diagonal (Fernando and
Grossman, 1989), we can write :

where wj is the column j of WN and gj is diagonal element j of Ge. Now, wj has
all its elements equal to zero except for a 1 in position j. Therefore, the matrix
Wjwjgj has all elements equal to zero except for element j, j which is equal to g! .
The paternal and maternal MQTL additive effects of an animal are in consecutive
columns of the matrix W (and WN), wj and wj+l say, and these are equal. We
then have :

and WNGEWN is diagonal with non-zero elements equal to g! + gj+1.
Now, (g! +g!+1)!! = Var(eo)+Var(eo ) = 2r(I - r)(I - f,) + 2r(I - r)(I - fd),

where f, and fd are the inbreeding coefficients of sire and dam for the MQTL,
respectively. The last equality follows from expressions (12a) and (12b) in Fernando
and Grossman (1989). After some rearranging, the diagonal element of W NGe W!
is :



when both parents of the individual are known. If the sire is unknown, EP = vP 0
and the diagonal element is 2r(1 - r)(1 - fd) + 1. If the dam is unknown, eo v’
and the diagonal element is 2r(1 - r)(1 - f! ) + 1. If both parents are unknown the
diagonal element of W NGE W’¡y is 2.

APPENDIX B

Solutions of equations (10) when non-parents have one record

When non-parents have one record (ZN = I), equations (10) reduce to :

On absorbing the equations for !, the solution for e is :

The matrix Do = I - (I + D::ï1OCA)-1 is diagonal with element doii being equal
to :

and daii is diagonal element i of DA. Since W (and WN) has rows with 2 consecu-
tive elements equal to 1 and the rest equal to 0, W!Do W N is block diagonal, each
block being of order 2 x 2 with all elements equal to doii. Adding G. ’OL, gives the
coefficient matrix on the left-hand side of (B.1) and solutions for i can be obtained
by solving (n - s) systems of order 2. The system for animal i is equal to :

and y* is element i of the vector yN - X’!- Pup - W N Fv p.
After solving for e, the first equation in (B.1) can be solved as follows :



Since the coefficient matrix of this system is diagonal, BLUP (0i) is :

If there is more than one MQTL the matrix of system (10) becomes poorly
conditioned. The reason is that all off-diagonal elements are equal to 1 and the

diagonals are relatively large (may be in the order of hundreds, depending on the
a’s). An exact solution can be obtained by writing the matrix of system (10) for
each animal as jj’ + S, where j is a 1 + 2m vector with all elements equal to one and
S is a diagonal matrix. Using the inverse of the sum of matrices formula (Henderson
and Searle, 1981), we have that :

Notice that the expression in parenthesis on the right-hand side of (B.4) is a
scalar. Using (B.4) the inverse of the matrix of system (10) when there are m
MQTL’s for a non-parent is :

and g = 1 + S1 + Sz + ... + S2m. The S’s are such that Sl = DAiixAl, S2 =

Gg90Lvl = 2ri(1 - Tl)(1 - hs)cx.!/, S3 = Gedaull - 2r,(l - ri)(1 - f, )m-1, and
so on for MC!TL’s 2 to rra. Expression (B.5) is easy to program, does not require
iteration and, more importantly, it is not subject to the numerical problems that
occur when solving such a system of equations.
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