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Summary — The sampling behaviour of Restricted Maximum Likelihood estimates of
(co)variance components due to additive genetic and environmental maternal effects is
examined for balanced data with different family structures. It is shown that sampling
correlations between estimates are high and that sizeable data sets are required to allow
reasonably accurate estimates to be obtained, even for designs specifically formulated for
the estimation of maternal effects. Bias and resulting mean square error when fitting the
wrong model of analysis are investigated, showing that an environmental dam-offspring
covariance, which is often ignored in the analysis of growth data for beef cattle, has to
be quite large before its effect is statistically significant. The efficacy of embryo transfer
in reducing sampling correlations direct and maternal genetic (co)variance components is
illustrated.

maternal effect / variance component / sampling covariance

Résumé — Biais et covariances d’échantillonnage des estimées de composantes de
variance dues a des effets maternels. Les propriétés d’échantillonnage des estimées du
mazimum de vraisemblance restreint des variances-covariances dues a des effets maternels
génétiques additifs et de milieu sont examinées sur des données d’un dispositif équilibré et
avec différentes structures familiales. On montre que les corrélations d’échantillonnage en-
tre les estimées sont élevées et qu’un volume de données important est requis pour obtenir
des estimées raisonnablement précises, méme avec des dispositifs établis spécifiguement
pour estimer des effets maternels. L’étude du biais et de l’erreur quadratique moyenne
résultant de Uajustement d’un modéle incorrect montre qu’une covariance meére-fille due au
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milieu, souvent ignorée dans l’analyse des données de croissance des bovins & viande, doit
étre tres grande pour que son effet soit statistiguement significatif. L'efficacité du transfert
d’embryon pour réduire les corrélations d’échantillonnage entre les variances-covariances
génétiques directes et maternelles est illustrée.

effet maternel / composante de variance / covariance d’échantillonnage

INTRODUCTION

The importance of maternal effects, both genetic and environmental, for the early
growth and development of mammals has long been recognised. For post-natal
growth, these represent mainly the dam’s milk production and mothering ability,
though effects of the uterine environment and extra-chromosomal inheritance may
contribute. Detailed biometrical models have been suggested. Willham (1963)
distinguished between the animal’s and its mother’s, ie direct and maternal, additive
genetic, dominance and environmental effects affecting the individual’s phenotype.
Allowing for direct-maternal covariances between each of the 3 effects, this gave a
total of 9 causal (co)variance components contributing to the resemblance between
relatives. Willham (1972) described an extension to include grand-maternal effects
and recombination loss.

Estimation of maternal effects and the pertaining genetic parameters is inher-
ently problematic. Unless embryo transfer or crossfostering has taken place, direct
and maternal effects are generally confounded. Moreover, the expression of mater-
nal effects is sex-limited, occurs late in life of the female and lags by one generation
(Willham, 1980). Methods to estimate (co)variances due to maternal effects have
been reviewed by Foulley and Lefort (1978). Early work relied on estimating co-
variances between relatives separately, equating these to their expectations and
solving the resulting system of linear equations. However, this ignored the fact
that the same animal might have contributed to different types of covariances and
that different observational components might have different sampling variances,
ie combined information in a non-optimal way. In addition, sampling variances of
estimates could not be derived (Foulley and Lefort, 1978).

Thompson (1976) presented a maximum likelihood (ML) procedure which over-
comes these problems and showed how it could be applied to designs found in the
literature. He considered the ML method most useful when data were balanced due
to computational requirements in the unbalanced case. Over the last decade, ML es-
timation, in particular Restricted Maximum Likelihood (REML) as first described
by Patterson and Thompson (1971), has found increasing use in the estimation
of (co)variance components and genetic parameters. Especially for animal breed-
ing applications this almost invariably involves unbalanced data. Recently, analyses
under the so-called animal model, fitting a random effect for the additive genetic
value of each animal, have become a standard procedure. To a large extent, this
was facilitated by the availability of a derivative-free REML algorithm (Graser et
al, 1987) which made analysis involving thousands of animals feasible.
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Maternal effects, both genetic and environmental, can be accommodated in
animal model analyses by fitting appropriate random effects for each animal or
each dam with progeny in the data. Conceptually, this simplifies the estimation of
genetic parameters for maternal effects. Rather than having to determine the types
of covariances between relatives arising from the data and their expectations, to
estimate each of them and to equate them to their expectations, we can estimate
maternal (co)variance components in the same way as additive genetic (co)variances
with the animal model, namely as variances due to random effects in the model
of analysis (or covariances between them). The derivative-free REML algorithm
extends readily to this type of analyses (Meyer, 1989).

As emphasised by Foulley and Lefort (1978), estimates of genetic parameters are
likely to be imprecise. Thompson (1976) suggested that in the presence of maternal
effects, sampling variances of estimates of the direct heritability would be increased
3-5-fold over those which would be obtained if only direct additive genetic effects
existed. Special experimental designs to estimate (co)variances due to maternal
effects have been described, for instance, by Eisen (1967) and Bondari et al (1978).
Thompson (1976) applied his ML procedure to these designs and showed that for
Bondari et al's (1978) data, estimates of maternal components had not only large
standard errors but also high sampling correlations.

In the estimation of maternal effects for data from livestock improvement
schemes, non-additive genetic effects and a direct-maternal environmental covari-
ance have largely been ignored. In part, this has been due to the fact that often the
types of covariances between relatives available in the data do not have sufficiently
different expectations to allow all components of Willham’s (1963) model to be
estimated. Even for Bondari et al’'s (1978) experiment, providing 11 types of rela-
tionships between animals, Thompson (1976) emphasised that only 7 parameters, 6
(co)variances and a linear function of the direct and maternal dominance variance
and the maternal environmental variance, could be estimated. In field data, the
contrasts between relatives available are likely to be fewer, thus limiting the scope
to separate the various maternal components.

In the analysis of pre-weaning growth traits in beef cattle, components estimated
have generally been restricted to the direct additive genetic variance (¢%), the
maternal additive genetic variance (0%;), the direct-maternal additive genetic
covariance (o4 ), the maternal environmental variance (¢%) and the residual error
variance (%) or a subset thereof; see Meyer (1992) for a recent summary. Using
data from an experimental herd which supplied various “unusual” relationships,
Cantet et al (1988) attempted to estimate all components. There has been concern
about a negative direct-maternal environmental covariance (0gc¢) in this case
(Koch, 1972) which, if ignored, is likely to bias estimates of the other components
and corresponding genetic parameters, in particular the direct-maternal genetic
correlation (r4pr). Summarising literature results in- and excluding information
from the dam-offspring covariance, the only observational component affected by
cgc, Baker (1980) reported mean values of r4s of —0.42 and 0.0 for birth weight,
—0.45 and —0.05 for daily gain from birth to weaning and —0.72 and —0.07 for
weaning weight, respectively.

While the modern methods of analysis together with the availability of high
speed computers and the appropriate software make it easier to estimate genetic
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parameters due to maternal effects, they might make it all too easy to ignore
the inherent problems of this kind of analyses and to ensure that all parameters
fitted can be estimated accurately. Unexpected or inconsistent estimates have
been attributed to high sampling correlations between parameters or bias due
to some component not taken into account without any quantification of their
magnitude (eg Meyer, 1992). The objective of this paper was to examine REML
estimates of genetic parameters due to maternal effects, investigating both sampling
(co)variances and potential bias due to fitting the wrong model of analysis.

MATERIAL AND METHODS

Theory

Consider a mixed liner model,
y=Xb+Zu+e (1]

where y, b, u and e denote the vector of observations, fixed effects, random effects
and residual errors, respectively, and X and Z are the incidence matrices pertaining
to b and u. Let V denote the variance matrix of y. The REML log likelihood (L)
is then

log £ = constant — 1/2[log|V| + log|]X* V™'1X*| + y'Py] [2]
with X* a full-rank submatrix of X and
P=Vv ! -vIXXv1ix)y-xv- (3]

For the majority of REML algorithms employed in the analysis of animal
breeding data, [2]} and its derivatives have been re-expressed in terms arising in the
mixed model equations pertaining to [1]. An alternative, based on the principle of
constructing independent sums of squares (SS) and crossproducts (CP) of the data
as for analyses of (co)variances, has been described by Thompson (1976, 1977). As
a simple example, he considered data with a balanced hierarchical full-sib structure
and records available on both parents and offspring, showing that the SS within
dams, between dams within sires and between sires, as utilised in an analysis of
variance (for data on offspring only), could be extended to include information on
parents. This was accomplished by augmenting the later 2 by rows and columns
for dams and sires, yielding a 2 x 2 and a 3 x 3 matrix, respectively, with the
additional elements representing offspring parent CP, and SS/CP among parents;
see Thompson (1977) for a detailed description.

More generally, let the data be represented by p independent matrices of SS/CP
Sk, each with associated degrees of freedom di(k = 1,...,p). The corresponding
matrices of mean squares and products are then My, = Sy /d;, with expected values
Vi, and [2] can be rewritten as (Thompson, 1976):

4
log £ = constant — 1/2 Z di[log| V| + tr (M V1)) 4]
k=1
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In the estimation of (co)variance components, V and the matrices V, are usually
linear functions of the parameters to be estimated, ® = {6;} with i =1,...,¢, ie

t
Vi=) Fpib;
i=1
REML estimates of @ can then be determined as iterative solutions to
B0 = q 5]
(Thompson, 1976) with B = {b;;} and q = {g¢;} for¢,j =1,...,¢, and

/4
bi; = detr (Vi'Fri V7 'Fy;) (6]
k=1
P
¢ = Z drtr (V' Fri Vi M) 7
k=1

This is an algorithm utilising second derivatives of log £. At convergence,
an estimate of the large sample covariance matrix of 8 is given by —2B~1. As
emphasised by Thompson (1976), B is singular if a linear combination of the
matrices Fy; is zero for all k£, which implies that not all parameters can be estimated.

This methodology can be employed readily to examine the properties for REML
estimates for various models. Consider data consisting of records for f independent
families. Hence Vi, M;, and the Fy; can be evaluated for one family at a time. If
the data are “balanced”, ‘e all families are of size n and have the same structure,
these calculations, involving matrices of size n x n, are required only once, ie p = 1.
Fitting an overall mean as the only fixed effect, the associated degrees of freedom
of S; are then f ~ 1. ‘

Let a record y; for animal j with dam j' be determined by the animal’s (direct)
additive genetic value a;, its dam’s maternal genetic effect m;r, its dam’s maternal
environmental effect c;; and a residual error e;, ie:

Yy =p+a;+my +cp+e; (8]

with p denoting the overall mean. Assume

Cov(aj,m;) =oam

Cov(ej,cj/) = ogc
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with all remaining covariances equal to zero. Letting, in turn, maternal effects m
and c¢; be present or absent and covariances g4 and ogc be zero or not, yields a
total of 9 models of analysis as summarised in table I.

Table I. Random effects fitted and (co)variance components estimated in the 9 models
of analysis.

Model Fit* Estimate®

No a m c ‘7;2& G§A OAM 0’% OEC (7%
1 X X X
2 X X X X X
3 X X X X X
4 X X 'S X X X
5 X b'< X X X X b4
6 X X X b'q X X X X
7 x b'd X X X X
8 X X X X b'S b'q X X
9 X X X X X X X X

%a: Direct additive genetic effect; m: maternal additive genetic effect; c: maternal
environmental effect ; ®o%: direct additive genetic variance; a?u: maternal additive genetic
variance; o 4s: direct maternal additive genetic covariance; a%: maternal environmental
variance; o gc: maternal environmental dam-daughter covariance; 0125: error variance.

Clearly, My, in [4] above represents the contribution of the data to log L, ie
relates to the “true” model describing the data. Conversely, V is determined by
the “assumed” model of analysis, ie the effect of fitting an inappropriate model can
be examined deriving Vj, under the wrong model. Furthermore, the information
contributed by individual records can be assessed by “omitting” these records from
the analysis which operationally is simply achieved by setting the corresponding
rows and columns in V; and My, to zero.

Analyses

In total, 6 family structures were considered. The first, denoted by FS1, was a
simple hierarchical full-sib design with records for both parents and offspring for
f sires mated to d dams each with m offspring per dam, ie f families of size
n = 14 d(1 + m). As shown in table II, this yielded only 5 types of covariances
between relatives, ie not all 9 models of analysis could be fitted. Linking pairs of
such families by assuming the sire of family 1 to be a full sib (FS;F) or paternal
half sib (FS,H) to one of the dams mated to sire 2 then added up to 3 further
relationships (see table II). With s = 2 sires per family, this gave a family size of
n = 2(1+d(1 +m)).

The fourth design examined was design I of Bondari et al (1978) . As depicted
in figure 1, this was created by mating 2 unrelated grand-dams to the same grand-
sire and recording 1 male and one female offspring for each dam. Paternal half-
sibs of opposite sex were then chosen among these 4 animals and each of these
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Table II. Covariances between relatives arising in the 6 designs considered and their
composition®.

Causal (co) variance® Design
0% 0¥ oam 0% opc oi FS1 FS2H FS2F Bl B1P El

Individual 1 1 11 0 1 x x X X X X
Full sibs /2 1 11 0 0 «x X X X X X
Paternal half sibs 1/4 0 00 0 0 x X X X X X
Sire-offspring 1/2 0 1/4 0 0 0 «x X X X X X
Dam-~offspring 1/2 1/2 5/4 0 1 0 x x X X X X
Paternal uncle® /4 0 1/4 0 0 O X X X X
Paternal half uncle® 1/8 0 00 0 O x x X
Maternal uncle® /8 0 1/4 0 0 0 x X x X
Maternal half uncle® 1/8 0 1/4 0 0 0 X X X
Single first cousins?  1/8 0 00 0 O X
/8 0 1/4 0 0 0 b'e X
Double first cousins 1/4 1/2 1/2 0 0 0 X
Half first cousins® 1/16 0 1/8 0 0 0 X X X
PHS + SFCf 3/81/2 1/2 0 0 0 X
Three-quarter sibs 5/16 1/4 1/4 0 0 0 X
SFC + HFC?® 3/16 1/4 1/4 0 0 0 X
Pat grandsire-Off 1/4 0 00 0 O X
Mat grandsire-Off 14 0 1/8 0 0 O X
Pat granddam-Off 1/4 0 00 0 O X
Mat granddam-Off 1/4 1/4 5/8 0 0 0 X

& Modified from Thompson (1976); btable I for notation; ©or aunt with nephew or niece;
d1st line: sires full sibs; 2nd line: parents of opposite sex full-sibs; © parents of opposite

sex half sibs ; { paternal half sibs and single first cousins; & single first cousins and half first
cousins. Off: offspring.

2 mated to a random, unrelated animal. From each of these matings, 2 offspring
were recorded. For Bondari’s design I (B1), records on grand-parents and random
mates were assumed unknown, yielding a family size of n = 8 and 10 types of
relationships between animals. Assuming, for this study, the former to be known
then increased the family size for design B1P to n = 13 and added grand-parent
offspring covariances to the observational components available.

The last design chosen was Eisen’s design 1 (E1). For this, each family consisted
of s sires which were full-sibs and each sire was mated to d; dams from an unrelated
full-sib family and to d2 dams from an unrelated half-sib family. Each dam had m
offspring which yielded a family size of n = s(1 + d; + d2)(1 + n)). As shown in
table II, this produced a total of 13 different types of relationships between animals.
Figure 2 illustrates the mating structure for this design.

For each design and set of genetic parameters considered, the matrix of mean
squares and products, M) was constructed assuming the population (co)variance
components to be known and “estimates” under various ‘models of analysis were
obtained using the Method of Scoring (MSC) algorithm outlined above (see [5]).
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Matings in Generation 0 Matings in Generation 1
D, O,
—GD; $i——Ds
S, O:
GS —
D, O3
‘—GDy Sa—— D,
S; 0,4

Fig 1. Mating plan for Bondari’s design I (B1) which includes the 8 records for dams D;
and Do, sires S1 and S» and offspring O (k = 1,...,4); for the augmented design (B1P),
records on grand-sire (GS), grand-dams (GD;) and the random mates (S3 and D3) are
added.

Results obtained in this way are equivalent to those obtained as means over
many replicates. Large sample values of sampling errors and sampling correlations
between parameter estimates were then obtained from the inverse of the information
matrix, F = —2B~!. This is commonly referred to as the formation matrix
(Edwards, 1966).

Simulation was carried out by sampling matrices M} from an appropriate
Wishart distribution with covariance matrix M, and f — 1 degrees of freedom and
obtaining estimates of (co)variance components and their sampling variances and
correlations using the MSC algorithm. However, this did not guarantee estimates to
be within parameter space. Hence, if estimates out of bounds occurred, estimation
was repeated using a derivative-free (DF) algorithm, calculating log £ as given
in [4] and locating its maximum using the Simplex procedure due to Nelder and
Mead (1965). This allowed estimates to be restrained to the parameter space simply
by assigning a very large, negative value to log £ for non-permissible vectors of
parameters (Meyer, 1989).

Large sample 95% confidence intervals were calculated as estimate £1.96x the
lower bound sampling error obtained from the information matrix. Corresponding
likelihood based confidence limits (Cox and Hinkley, 1974) were determined, as
described by Meyer and Hill (1992), as the points on the profile likelihood curve
for each parameter for which the log profile likelihood differed from the maximum
by —1.92, ie the points for which the likelihood ratio test criterion would be equal
to the x? value pertaining to one degree of freedom and an error probability of 5%

(X;Z,s% = 3.84).
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Fig 2. Mating plan for Eisen’s design 1 (E1) with s = 2 sires (S;) per family, each mated
to dy = 2 full-sib (Dy;) and dz = 3 half-sib (D2;) dams with m = 2 offspring (O;;%) per
mating (no records on grand-sires (GSy) and grand-dams (GDmn)).

RESULTS AND DISCUSSION
Sampling covariances

Sampling errors (SE) of (co)variance component estimates based on 2 000 records
from analyses under Model 6, ie when both genetic and environmental maternal
effects are present and there is a direct-maternal genetic covariance, are summarised
in table III for data sets of 3 designs, and 2 sets of population (co)variances. For
comparison, values which would be obtained for equal heritability and phenotypic
variance in the absence of maternal effects (Model 1) are given.

The most striking feature of table III is the magnitude of sampling errors
even for a quite large data set and for designs like B1 and E1 which have been
especially formulated for the estimation of maternal effects components. In all
cases, SE(c%) under Model 6 is about twice that under Model 1. FS2F and E1
yield considerably more accurate estimates than B1 under Model 1, with virtually
no difference between the former 2 for parameter set I. Estimates from design El
with the most contrasts between relatives available have an average variance about
a quarter of those from FS2F and a third of those from Bl for parameter set I,
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ie a high direct heritability and low negative direct-maternal correlation, and are
comparatively even less variable for parameter set II, ie a low direct and medium
maternal heritability and a moderate to high positive genetic correlation.

Table III. Sampling errors for estimates of (co)variance components® based on 2 000
records for 3 designs and 2 sets of genetic para»metersb (I:h2 = 0.40, m? = 0.20, CAM =
—0.05 and ¢ = 0.15; II: k? = 0.10, m? = 0.30, capr = 0.10 and ¢ = 0.05) for a model
without maternal effects (Model 1) and fitting both genetic and environmental maternal
effects (Model 6).

Model 1 Model 6
Design© o3 o2 ai oM OAM 0;23 5%
Set 14 40.00 60.00 40.00 20.00 -5.00 15.00 30.00
FS2F 4.79 3.85 9.56 22.90 11.23 14.43 5.49
B1 5.49 4.73 11.40 18.87 10.60 12.22 6.04
E1l 4.84 3.78 8.82 8.88 6.18 5.80 4.98
Set 11 10.00 90.00 10.00 30.00 10.00 5.00 45.00
FS2F 3.56 4.29 6.90 23.78 10.78 14.91 4.37
B1 4.33 4.96 10.82 18.47 9.95 11.74 5.84
E1l 3.36 4.10 6.69 9.43 5.01 5.95 4.10

3See table I; bp2: direct heritability ; m?: maternal heritability; c4ps: direct-maternal

genetic covariance as proportion of phenotypic variance; ¢?: maternal environmental
variance as proportion of phenotypic variance; °FS2F: hierarchical full-sib design with
$=2,d=>5and m =2, ien =32, with sire 1 and dam 21 full-sibs; B1: Bondari’s design
1 (n = 8); and E1: Eisen’s design 1 with s = 2,d; =2, d> = 3 and m = 2, e n = 32;

dpopulation value of (co)variance component.

Table IV gives means and empirical deviations of estimates of (co)variance
components and their sampling errors under Model 6 for 1 000 replicates for a data
set of size 2000 for parameter set I. While MSC estimates agree closely with the
population values, corresponding mean DF estimates are, by definition, biased due
to the restriction on the parameter space imposed. This is particularly noticeable
for designs FS2F and B1 with 355 and 258 replicates for which estimates needed
to be constrained. Overall, however, corresponding estimates of the asymptotic
lower bound errors appear little affected: means over all replicate and considering
replicates within the parameter space only (MSC*) show only small differences,
except for FS2F, and agree with the population values given in table III. Moreover,
standard deviations over replicates for these (not shown) are small and virtually
the same for MSC and MSC*, ranging from 0.22 (SE(7%) for B1) to 1.19 (SE(53,)
for FS2F). In turn, empirical standard deviations of MSC estimates agree well with
their expected values, being on average slightly higher. Those of the DF estimates,
however, are in parts substantially lower, demonstrating clearly that constraining
estimates alters their distribution, ie that large sample theory does not hold at the
bounds of the parameter space.

Table V presents both large sample (LS) and profile likelihood (PL) derived
confidence intervals corresponding to parameter estimates in table IV, determined
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Table IV. Mean estimates of (co)variance components® and large sample sampling errors,
E(SD), together with empirical sampling errors (SD) over 1 000 replicates for data sets of

3 designs® of size 2 000.

ol o oAM ot of
FS2F
Mean MSC* 39.78 19.95 —~4.87 15.09 30.17
Msc*d 40.44 22.52 —6.17 13.75 29.72
DF® 40.45 21.15 —5.72 14.44 29.79
E(SD) MSC 9.46 22.59 11.08 14.25 5.44
MSC* 9.54 22.94 11.23 14.44 5.48
SD MSC 9.67 23.49 11.39 14.80 5.60
MSC* 9.05 12.19 7.22 7.69 5.38
DF 8.92 15.90 7.99 10.13 5.26
B1
Mean MSC 40.21 20.25 —5.20 14.82 29.94
MSC* 40.69 21.97 —6.48 14.17 29.63 °
DF 40.81 21.01 —5.94 14.52 29.61
E(SD) -MSC 11.37 18.79 10.56 12.17 6.03
MSC* 11.39 18.81 10.59 12.18 6.03
SD MSC 11.50 18.69 10.75 12.28 6.08
MSC* 10.84 11.64 8.05 8.06 5.76
DF 10.82 14.36 8.65 9.73 5.73
E1
Mean MSC 40.50 20.55 —5.27 14.75 29.75
MSC* 40.60 20.78 —5.45 14.68 29.67
DF 40.50 20.58 —5.32 14.74 29.72
E(SD) MSC 8.82 8.84 6.16 5.78 4.98
MSC* 8.84 8.86 6.18 5.78 4.99
SD MSC 9.35 9.27 6.53 5.94 5.14
MSC* 9.30 8.69 6.34 5.60 5.09
DF 9.30 9.07 6.44 5.83 5.10

2see table I for notation; population values are 40, 20, —5, 15 and 30, respectively; Psee

table III; “method of scoring estimates, all replicates; 9method of scoring estimates,
ignoring estimates out of bounds; values given pertam to 645, 742 and 976 replicates
within bounds for FS2F, Bl and El respectively ; ¢ derivative-free estimates, constrained
to parameter space, all rephcates

for the population (co)variances. As noted for other examples by Meyer and Hill
(1992), unless bounds of the parameter space are exceeded, predicted lengths of the
interval from the 2 methods agree consistently better than values for the position
of the confidence bounds. Lower PL limits for 5%, and % for designs FS2F and
B1 could not be determined (as the log profile likelihood curve to the left of the
estimates was so flat that it did not deviate from the maximum by —1.92), and
were thus set to zero, the bound of the parameter space. While differences between
PL and LS intervals are small for all designs for larger data sets (not shown),
considerable deviations occur for the 2 000 record case, particularly for 45 and
the upper limits for 3%, and 62 for FS2F and B1.
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Table V. Large sample and likelihood derived 95% confidence intervals of (co)variance
components?® (calculated for population values) for data sets of 3 designs® (2 000 records);
together with number of replicates (out of 1 000) for which estimates fall into the respective
interval.

o o oAM o of
FS2F
Low® Lsd 22.98 —24.89 —27.00 ~13.27 19.25
PL 21.27 0.00 —25.25 0.00 18.66
upP® LS 58.73 64.89 17.00 43.27 40.75
PL 60.51 52.96 10.18 33.38 40.25
Lenf LS 37.46 89.78 44.43 56.55 21.51
PL 37.53 52.96 35.43 33.38 21.59
Sym® PL 0.830 0.607 1.334 0.816 1.107
No repl® 962 990 988 990 965
963 1000 993 1000 960
948 944 938 947 948
B1
Low LS 17.66 —16.99 —25.78 —8.96 18.16
PL 18.09 0.00 —26.12 0.00 18.06
Upp LS 62.34 56.00 15.78 38.96 41.84
PL 62.90 52.38 11.98 34.30 41.80
Len LS 44.69 73.97 41.56 47.92 23.69
PL 44.81 52.38 38.10 34.30 23.74
Sym PL 0.957 0.618 1.244 0.777 1.012
No repl 962 993 981 990 961
958 1000 984 1000 962
950 958 947 947 950
E1l ,
Low LS 22.71 2.59 —17.12 3.63 20.23
PL 24.31 3.79 —18.16 3.65 19.53
Up LS 57.29 37.41 7.12 26.37 39.77
PL 59.20 38.62 6.20 26.49 39.27
Len LS 34.59 34.81 24.24 22.74 19.53
PL 34.89 34.83 24.36 22.84 19.74
Sym PL 0.817 0.871 1.176 0.988 1.129
No repl 934 939 937 943 943
949 942 941 942 945
938 938 936 939 943

3see table I for notation; population values are 40, 20, —5, 15 and 30, respectively ; bsee
table III; ®lower confidence limit; ars: large sample value, PL: profile likelihood derived
value; ®upper confidence limit; flength of confidence interval; 8symmetry of confidence
interval = length of lower tail as proportion of length the upper tail; hNo of replicates
with estimates within predicted confidence limit; 15 line: estimates constrained within
parameter space; PL interval, 2™ Jine: estimates constrained within parameter space, LS
interval ; 3™ line: unconstrained estimates, LS interval.
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Corresponding empirical and expected sampling correlations between DF esti-
mates of (co)variance components are contrasted in table VI. Mean expected values
over replicates were in all cases equal (to the second or third decimal place) to those
derived from the information matrix of the population parameters. While empiri-
cal values for larger data sets (not shown) again agree well with their theoretical
counterparts, those based on 2000 records deviate, again reflecting the effect of
constraining estimates to the parameter space on their sampling distribution. De-
viations are in places considerable for parameter set II, for which estimates from
773, 726 and 553 replicates for FS2F, Bl and El, respectively, needed to be cons-
trained to the parameter space.

Overall, however, some of the sampling correlations (expected values) show
remarkably httle varlatlon between designs or differences between parameter sets
considered. 4 and 7% are consistently highly negatively correlated with values of

~ —0.8 to —0.9; while 74 and the maternal effects components, 5%, and & 0(-, show
comparatlvely little (though more variable) association, correlations rangmg from
0 to =~ 0.4 and 0 to = —0.3, respectwely Sxmllarly, correlatlons between 7%, and
0% are low and negative and between o2 and % are low and positive or negative
and close to zero.

Differences between designs and the amount of information available to separate
not only direct and maternal but also maternal genetic and environmental com-
ponen‘cs as apparent in table IT1, however, are clearly exhibited in the correlations
among 03, 04, and o5. While the correlation between 73, and G4 is as high
as —0.9 for FS2F, it is reduced in magnitude to —0.8 for Bl and 0 7 to —0.6 for
El. Correspondmgly, a high positive correlation between 45, and 73 for FS2F (=
0.9) and B1 (= 0.7) is reduced substantially for E1 (to = 0.4).

FAMILY STRUCTURE

The relationship between family structure and sampling (co)variances for a given
number of records is further investigated in table VII for analyses under Models
1 and 4. The total genetic variance 1s defined as 0% = 0% + 1/20%; + 3/204m
(Willham, 1963), ie is the same as 0% for Model 1. As in table III, differences
between designs are small for Model 1, but increase with the number of parameters
estimated. In particular, including the direct-maternal genetic covariance has a
pronounced effect.

For FS1 with only one offspring per dam (column 6), there are no full-sibs in the
data. Though the remaining 4 observational covariances between relatives still allow
all 4 components under Model 4 to be estimated, this causes an almost complete
sampling correlation between 03, and both 6% and % ,,, and correspondingly high
sampling variances. Conversely, with the same number of offspring but only one dam
per sire (column 3) there are no paternal half-sibs. However, as the expectation of
the pertaining covariance involves only o2, estimates of the maternal components
are thus much less affected, though SE(6%) and the sampling correlation between
7% and 7% are largest amongst those for the FS1 designs.

As noted above for Model 1, Bondari’s design 1 gives less accurate estimates
than most full-sib family structures (unless d = 1 or m = 1) for the simpler models
of analysis, even at equal family size. While all other cases considered in table VII
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involve data on only 2 generations, B1P includes records on grand-parents, ie 3
generations in total. Though the coefficients of 0,24 and o4 in the expectation of
the grand-parent offspring covariances are comparatively small (see table II), this
clearly reduces the sampling errors of all components estimated and the magnitude
of sampling correlations between 5% and both o3, and 7%. As for FS1, sampling
errors for E1 are markedly increased when one or several of the covariances between
relatives are missing (s =1 or dj = 1 or d; = 1), the more the more parameters
are estimated. Sampling correlations follow a similar pattern as for F'S1. Based on
8 000 records, design 12 provides the most accurate estimates among the 12 data
structures examined. Some discussion on the optimal choice of s,d; and dy for
Eisen’s (1967) designs is given by Thompson (1976).

BIAS AND MEAN SQUARE ERROR

So far, only analyses under the “true” model describing the data have been
considered. In some instances, analyses are carried out, however, fitting the wrong
model. A particular example as discussed above is the analysis of growth traits in
beef cattle where an environmental correlation between a dam and her daughter,
though assumed to exist, is generally ignored. Figure 3 shows the effect of such
environmental covariance (bgc = opc/oc%) on the estimates of (co)variance
components and the direct-maternal genetic correlation (r45r) under Model 6 when
the true model describing the data is Model 9, for parameter set I and 3 designs.

While 2 and 6% are generally little affected, even for large (absolute) values of
bgc, all the maternal components are substantially biased. The pattern of biases
differs between designs, reflecting clearly the differences in covariances between
relatives available and the information contributed by each of them. For design
FS1 (not shown), estimates of 64,04 and 0% were unbiased while 2, and %
were biased by —20gc and +20gc, respectively (unless estimates exceeded the
bounds of the parameter space and were constrained).

Figure 4 shows the corresponding differences in log £ from analyses under models
6 and 9. For the parameter set examined, the magnitude of bgc needs to exceed
0.3 for design E1 before a likelihood ratio test would be expected to identify a
significantly better fit of Mode} 9 than of Model 6 (at an error probability of 5% ; the
dashed line in figure 2 marks the significance level). While estimates from EFS2H
and EFS2F (not shown) differ little, the higher coefficients in the observational
covariances due to the across family relationships for FS2F clearly increase the
scope to identifiy a non-zero ogc.

The effect of an over- or underparameterized model of analysis on estimates of
(co)variances, their lower bound sampling errors and the resulting mean square
error (MSE), defined as bias squared plus prediction error variance, is further
illustrated in table VIII. Clearly, estimating a (co)variance when it is not present
increases the sampling errors of all components unnecessarily. Similarly, when the
bias introduced by ignoring a component is small, MSEs under the wrong model
may be considerably smaller than under the correct model. As the deviations in log
L from the value under Model 9 show, none of the analyses would be expected to
identify a og¢ different from zero.
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EMBRYO TRANSFER

With a dam affecting the phenotype of her offspring both through half her
direct additive genetic value and her maternal genotype as well as her maternal
environmental effect, high sampling correlations among the genetic and maternal
(co)variance components are invariable, even with the best experimental design.
Fortunately, modern reproductive technology allows some of these correlations to
be reduced. As a simple illustration, consider the hierarchical full-sib design (FS1)
with one sire per family. Assume now that the sire has been mated to only one
out of the d dams with md full-sib offspring resulting from this mating. Further,
assume that each dam raises m of these offspring (design FS1ET). This gives rise
to 3 different dam-offspring covariances, namely:

— the “usual” covariance between a dam and her offspring raised by her, with
expectation 0% /2 + 504y /4 + 03, /2 + 0EC;

— the covariance between a dam and her offspring raised by another, recipient
dam, with expectation af, /2+04a1/4, ie the same as the sire-offspring covariance;
and

— the covariance between a recipient dam and the offspring (of another dam)
which she raised, with expectation o4 + 0%,/2 4+ 0Ec.

Similarly, we now need to distinguish between 4 types of covariances between
full-sibs:

— the “usual” covariance between full-sibs raised by their genetic dam, with
expectation 0% /2 + oAy + 03 + 0%

— the covariance between full-sibs ralsed by the same recipient dam (not their
genetic dam), with expectation 0% /2 + 0%, + 0% ;

— the covariance between full-sibs raised by different dams, with one of them
being their genetic dam, with expectation 02 /2 + 042 /2; and

— the covariance between full-sibs raised by different recipient dams, none of
which is their genetic dam, with expectation o2 /2.

Table IX compares the expected sampling errors for FS1 and FS1ET for 3 family
structures and Table X contains the corresponding sampling correlations. Results
from analyses under Models 3, 4, 5 (not shown) and 6 were contrasted. For Model 3,
with low correlations between 3, and the other components, FS1ET yields slightly
less accurate estimates than FS1. However, as soon as a direct-maternal genetic
covariance is fitted, FS1ET gives considerably smaller sa.mphng errors than FS1 as
1t reduces the high sampling correlatlons between 7% 4 and 73 M (Model 4, 5 and 6),

and EE (Model 4 and 5), 7% and % (Model 5), & (74 and o TAM (Model 4 and 6),
o3 and 0aps (Model 4 and shghtly for Model 6), or 0% and 7% (Model 5 and 6).
Clearly, however, FS1ET does not allow genetic and environmental maternal eﬂ'ects
to be separated any better than FS1, and sampling correlations between 3, and
5% (Model 5 and 6) are still large and negative.

Other designs involving genetically more diverse “litter mates” and related
parents or recipients will provide more types of covariances between relatives
and thus allow even better separation of genetic and environmental, and direct
and maternal effects. While the expectation of all observational components in
table II which involve o2, also include 0% and oan, the covariance between 2
unrelated animals, for instance, raised by different recipient dams (unrelated to
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Fig 3. Estimates of (co)variance components (0'/24: direct additive genetic variance, a%,,:
maternal additive genetic variance, o 4r: direct-maternal additive genetic covariance, a%;:
error variance) and the direct-maternal genetic correlation (r4s) based on 8 000 records
and from analyses under Model 6, ignoring a direct-maternal environmental covariance
(bpc = UEC/U%). (“o”: Hierarchical full-sib design with f = 250, s = 2, d = 5 and
m = 2, sire 1 and dam 1 mated to sire 2 are paternal half sibs; “x”: Eisen’s design 1 with
f=250,s=2,d; =2,dy =3 and m = 2; “+”: Bondari’s design 1).
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Fig 4. Difference in log likelihood from analyses under Model 6 and Model 9 for different
values of a direct-maternal environmental covariance (bgo—. (“o”: Hierarchical full-sib
design with f = 250, s = 2, d = 5 and m = 2, sire 1 and dam 1 mated to sire 2 are
paternal half sibs; “{)”: Hierarchical full-sib design with f = 250, s =2,d =5 and m = 2,
sire 1 and dam 1 mated to sire 2 are full sibs; “x”: Eisen’s design 1 with f = 250, s = 2,

d1 =2, ds =3 and m = 2; “4”: Bondari’s design 1).

them) which are full-sibs or maternal half-sibs, is solely due to maternal genetic
effects (expectation o3, /4).

CONCLUSIONS

It has been shown that estimates of (co)variance components are subject to
large sampling variances and high sampling correlations, even for a “reduced”
model ignoring dominance effects and family structures providing numerous types
of covariances between relatives which have been specifically designed for the
estimation of maternal effects. For small data sets and models of analysis fitting
both genetic and maternal environmental effects or a direct-maternal covariance,
this frequently induces the need to constrain estimates to the parameter space.
Consequently, large sample theory predictions of sampling errors and correlations
estimates do not agree with empirical results. Further research is required to
evaluate the implications of such large sampling (co)variances on the accuracy of
selection indexes including both direct and maternal effects, ie the expected loss
in selection response because inaccurately estimated parameters have been used
deriving index weights.
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Table VIII. Estimates of (co)variance components®, lower bound sampling errors and
resulting mean square error from analyses under Models 6, 7, 8 and 9 when the true model
describing the data is Model 9 or 6; Eisen’s design 1: 250 families with s = 2, d; = 2,
d2 = 3 and m = 2 (8 000 records).

bgc =0° bpc = —0.30 bec =0.50
Est® SEY MSE® Est SE  MSE Est SE MSE
o? 6 40.00 4.40 19.39 40.79 4.50 2084 39.85 4.26 18.18
7  40.71 321 1084 4096 3.23 11.34  40.36 3.17 10.20
8 36.71 347 2285 37.73 349 2289  36.67 342 22.74
9  40.00 4.41 1947  40.00 4.47 1999  40.00 4.29 18.44
o, 6 20.00 4.43 19.64 2322 4.53 3086 17.35 4.27 25.32
8 1611 3.43 26.88  16.07 3.40 27.04 1620 3.45 26.37
9 2000 4.66 21.68 2000 4.73 22.34 2000 4.51 20.31
CAM 6 =500 3.09 952 —9.92 323 3458 1.57 2.85 51.28
9 500 396 1571 —500 4.09 1676 —5.00 3.71 13.80
ol 6 1500 289 838 1594 293 944 1240 2.82 14.72
7 9816 1.71 176.38 2821 1.72 17748  28.06 1.67 173.44
8 1550 294 889 1550 2.94 8.88 1549 2.91 8.71
9 1500 296 879 15.00 2.96 878 15.00 293  8.60
TEC 7 0.38 190 3.74 —4.43 1.92 3.70 828 1.82  3.92
8 —2.00 1.92 7.68 —6.53 1.92 777 5.56 1.88 7.31
9 0.00 247 610 —4.50 2.52 6.33 7.50 2.35 5.55
% 6 3000 249  6.18 29.72 253 649  29.63 2.41 5.94
7 3018 2.01 4.08  29.96 2.01 4.06  30.53 2.00  4.29
8 31.60 2.10 6.98 31.61 2.11 7.03 3159 2.08  6.87
9 3000 249 618  30.00 252 6.33  30.00 2.43 5.90
AlogL' 6 0 —1.57 —5.17
7 —14.44 —14.50 —14.63
8 —0.86 —0.80 —-0.98

2See table I for notation; bbEC =0g o Cestimate; dsamplin error; “mean square
cloc g
error; fdifference in log likelihood to analysis under Model 9.

The efficiency of search procedures used in derivative-free REML algorithms is
highly dependent on the correlation structure of the parameters to be estimated,
being most effective if these are uncorrelated. The fact that expected sampling
correlations between some components for a given model of analysis varied little
between designs (see table VI) suggested that a reparameterisation to linear
functions of the (co)variance components might improve the convergence rate
of such algorithms. Inspection of eigenvalues and eigenvectors of the formation
matrices, however, failed to identify any general guidelines.

Examination of bias, sampling variances and resulting mean square errors when
fitting the wrong model of analysis showed that, in some instances, ignoring
some component(s) can lead to considerably smaller MSE without biasing the
(co)variances estimated substantially or reducing the likelihood significantly over
that under the true model. In particular, investigating the effect of ignoring an
environmental, direct-maternal covariance for a parameter set which might be
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Table IX. Approximate lower bound sampling errors for estimates of (co)variance
components® from data with a hierarchical full-sib design with (FS1ET) and without
(FS1) embryo transfer, for 3 models of analyses.

Design FS1 Design FSIET
f° 500 920 258 500 920 258
d¢ 5 4 10 5 4 10
a4 2 5 2 2 5 2
n® 16 25 31 16 25 31
Model 3
% 2.89 3.29 3.02 2.94 3.56 3.36
o3 2.05 1.70 2.04 1.59 1.37 1.53
0% 1.84 1.87 1.84 2.20 2.15 2.41
o2 2.44 2.61 2.49 2.53 2.75 2.70
Model 4
a4 4.39 5.08 4.75 2.97 3.58 3.37
o3 2.93 2.39 2.92 1.66 1.37 1.60
TAM 2.86 3.08 2.92 1.47 1.45 1.46
% 2.95 2.88 3.09 2.24 2.23 2.51
0% 4.14 4.38 4.24 3.31 3.52 3.50
Model 6
% 5.52 6.74 5.29 3.25 3.89 3.60
o3 20.88 25.32 19.66 6.09 5.40 6.88
TAM 9.75 11.80 8.86 2.73 2.01 3.18
ol 12.93 15.62 12.08 6.25 5.40 7.09
0% 3.15 3.55 3.06 2.59 2.37 3.21
o 7.70 8.56 7.40 4.19 4.02 4.58

Gee table I; o%: total genetic variance; ®No of families; “No of dams per family; dNo of
G g
offspring (raised) per dam; *Family size.

appropriate for a growth trait in beef cattle, suggested that for a data set of size
8 000, the covariance should amount to at least 30% of the permanent environmental
variance due to the dam before a likelihood ratio test would be expected to
distinguish it from zero (at 5% error probability).

Results presented here reinforce earlier warnings about the inaccuracy of es-
timates of maternal effects and the pertaining variance components (Thompson,
1976 ; Foulley and Lefort, 1978). Clearly, use of an estimation procedure with “built-
in” optimality characteristics like REML will not alleviate the need for large data
sets supplying numerous types of covariances between relatives when attempting to
estimate these components. Use of modern reproductive techniques such as embryo
transfer may provide data where direct and maternal effects are less confounded.
Most cases examined here considered data from 2 generations only, and includ-
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. Table X. Expected sampling correlations between estimates of (co)variance compenents®
from data with a hierarchical full-sib design with (FSIET) and without (FSI) embryo
transfer.

Design FS1 Design FSIET

£t 500 320 258 500 320 258
d° 5 4 10 ) 4 10
a4 2 5 2 2 5 2
n® 16 25 81 16 25 31

Model 8
TAM —0.43 —0.30 —0.44 —-0.12 -0.13 —0.10
TAE —0.58 -0.80 —0.61 —0.72 -0.85 —0.78
TM,E —0.20 -0.06 -0.16 -0.31 —-0.03 —-0.27

Model 4
rAM 0.28 0.36 0.30 —0.06 -0.11 —0.08
TAAM —0.75 -0.77 -0.77 -0.21 -0.21 —0.09
TAE —0.81 —0.90 —0.83 —0.65 -0.73 -0.72
TMLAM —0.70 -0.70 -0.70 -0.35 ~0.18 ~0.37
rM.E ~0.61 ~0.46 —0.60 —0.21 —0.04 ~0.14
TAM.E 0.76 0.75 0.78 —0.17 -0.28 -0.27

Model 6
TAM 0.58 0.57 0.40 0.29 0.11 0.26
TAAM -0.72 ~0.71 —0.59 —0.38 -0.25 -0.30
TAC —0.55 —0.54 -0.37 —0.34 -0.18 —0.30
TAE —0.90 —0.96 —0.90 -0.32 —0.66 -0.32
TM,AM -0.97 -0.97 -0.96 -0.85 —0.68 —0.89
™™,C —-0.99 —-0.99 —0.99 —0.96 —-0.95 -0.97
TM,E —0.53 ~0.55 -0.37 0.56 —0.36 0.66
TAM,C 0.95 0.95 0.94 0.84 0.68 0.88
TAM,E 0.65 0.69 0.53 -0.63 —0.46 -0.73
TC.E 0.47 0.52 0.30 —-0.59 -0.34 —0.67

3Gee table VI; PNo of families ; °No of dams per family ; 4No of offspring (raised) per dam;
®family size.

ing several generations would provide further contrast which might help to reduce
the biologically induced high sampling correlations. Implications for the scope of
fitting more detailed models, accounting, for instance, for dominance effects, recom-
bination loss or variance due to new mutation, and of estimating the appropriate
(co)variance components are somewhat discouraging.
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