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Summary - A crossbreeding experiment using Large White (LW) and Meishan (MS)
pig strains was conducted. Dominance, additive x additive and dominance x dominance
epistatic components of direct and maternal heterosis effects were investigated for various
litter productivity and sow traits: total number born (TNB), number born alive (NBA),
number weaned (NW), litter weight at birth (LWB) and at 21 d (LW21), either adjusted
or not for litter size, sow weight loss (SWL), sow total (SFC) and maximum (SFCM) feed
consumption, sow feed efficiency - computed as SFC per piglet weaned (SFC/NW) or
per unit of litter weight gain (SFC/LWG) - during lactation. Data from 1148 litters
farrowed by 250 sows were analysed. Models involving all possible combinations of
dominance and epistatic parameters were compared for goodness of fit on the basis of
their mean squared error (MSE). The model with the lowest MSE was then used to
estimate crossbreeding parameters. Models involving dominance effects only for maternal
heterosis had the lowest MSE for all litter productivity traits. Dominance also appeared
as the main component of direct heterosis effects on litter productivity traits. Favourable
dominance and unfavourable epistatic effects contributed to direct heterosis effects for all
sow traits except SFCM. Epistatic effects were additive x additive effects for SFC/NW
and dominance x dominance effects for SWL, SFC and SFC/LWG. Estimates of direct,
maternal and grand-maternal breed effects are presented. A possible contribution of
cytoplasmic effects to between-breed variation is also hypothesized.
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Résumé - Estimation des paramètres du croisement entre les races porcines Large
White et Meishan. 3. Composantes de dominance et d’épistasie des effets d’hétérosis
pour les caractères de reproduction. Une expérience de croisement entre des lignées
porcines Large White (LW) et Meishan (MS) a été réalisée. Les composantes de dominance



et d’épistasie additive x additive et de dominance x dominance des effets d’hétérosis
direct et maternel ont été estimées pour divers caractères de productivité de la portée
et de la truie: nombre de porcelets nés totaux (NT), nés vivants (NV), sevrés (NS),
poids de la portée à la naissance (PPN) et à 21 j (PP21), ajustés ou non pour la taille
de la portée, perte de poids (PPT), consommation totale (CAT) et maximale (CAM),
efficacité alimentaire - calculée comme CAT par porcelet sevré (CAT/NS) et CAT par
unité de gain de poids de la portée (CAT/GPP) - de la truie en lactation. Les analyses
ont porté sur 1148 portées issues de 250 truies. La validité de l’ajustement des modèles
incluant l’ensemble des combinaisons possibles des paramètres de dominance et d’épistasie
est comparée sur la base du carré moyen de l’erreur (CME). Le modèle ayant le plus faible
CME a ensuite été utilisé pour estimer les paramètres du croisement. Les modèles incluant
uniquement des effets de dominance pour l’hétérosis maternel avaient le CME le plus faible
pour l’ensemble des caractères de productivité de la portée. Les effets de dominance sont
également apparus comme la principale composante de l’hétérosis direct pour les caractères
de productivité de la portée. Des effets de dominance favorables et d’épistasie défavorables
contribuent aux effets d’hétérosis direct pour l’ensemble des caractères de productivité des
truies, sauf CAM. Les effets d’épistasie sont de type additif x additif pour CAT/NS et de
dominance x dominance pour PPT, CAT et CAT/GPP. Des estimations des différences
directes, maternelles et grand-maternelles entre races sont présentées. L’hypothèse d’une
contribution possible d’effets cytoplasmiques à la variation entre races est émise.
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INTRODUCTION

A limited number of native pig breeds from China, such as the Meishan breed,
exhibit exceptional reproductive ability with respect to currently used maternal
genotypes and could be of great interest for improving sow productivity in maternal
lines (Legault and Caritez, 1983). Their economic value can easily be assessed
using an analytical approach such as those developed by Dickerson (1969, 1973)
or more recently Kinghorn (1980), Hill (1982) and Koch et al (1985), based on
partitioning between-breed variation into its additive and nonadditive components.
The corresponding parameters, usually referred to as crossbreeding parameters, are
then very useful for predicting the average performance of crossbred genotypes.

Bidanel et al (1989, 1990) estimated breed additive and heterosis effects relative
to the cross between the Meishan and the most widely used French breed, the
Large White, for reproductive and growth traits. This set of parameters allows an
accurate prediction of the average performance of the first generations of crossing.
It can also be used for later generations if heterosis is solely due to dominance gene
effects. In that case, the amount of heterosis retained in later generations is linearly
related to heterozygosity (McGloughlin, 1980). For instance, half of the heterosis
expressed in Fi crosses is retained in backcrosses and F2, F3, ... , Fn crosses. On the
other hand, when nonallelic interactions are important, favourable within-breed
epistatic combinations will partly be lost in advanced crosses because of random
recombination of nonallelic genes. Predictions based on a simple dominance model
of heterosis may then be strongly biased upwards. It is therefore of great importance
to check for the existence of any epistatic effects before making such predictions.



The objective of this study was to estimate dominance and epistatic components
of heterosis effects relative to the cross between Meishan and Large White breeds
for-reproductive traits. Other parameters, including breed additive effects, were also
estimated.

MATERIAL AND METHODS

Data and experimental design

The data originate from a crossbreeding experiment between Large White (LW) and
Meishan (MS) pig breeds which took place between 1983 and 1989 at the INRA
experimental domain of Le Magneraud (Surg6res, Charente-Maritime). The three-
step design of the experiment was described in detail by Bidanel et al (1989). The
first step was a complete 2-breed diallel, which led to the production of 4 genetic
types of females (MS, LW x MS, MS x LW, LW) and 3 genetic types of males (MS,
LW, Fl = LW x MS or MS x LW). In the second step, females chosen at random
within each of the above-mentioned genotypes were mated to randomly chosen MS,
Fl or LW boars and produced 12 genetic types of litters. In the third step, randomly
chosen females from these 12 genotypes were inseminated with semen from Pi6train
(PI) boars in 5 successive parities.

In the present study, data from 1 148 litters belonging to the 24 genetic types
produced in the second and third steps of the crossbreeding experiment were used
to estimate dominance and epistatic components of heterosis on litter size, litter
weight loss and feed consumption during lactation. The distribution of sows and
litters according to genetic type is presented in table I.



Herd management

The sow herd has been managed under a batch farrowing system. Each batch
included a maximum number of 24 sows. With the exception of some LW gilts
showing delayed puberty, young females were bred at the age of 32 wk, after a
synchronisation treatment with a progestagen. In order to avoid any effect of this
treatment on prolificacy, inseminations were not made on the induced oestrus, but
on the following natural one. Females were inseminated twice at a 24-h interval.
All females that did not conceive at first mating joined the subsequent farrowing
batch where they had the opportunity to be mated once more.

Litters were born in individual farrowing crates. When necessary, some piglets
could be moved to another crate within the first few h after farrowing. With very
few exceptions, these procedures were practised within each genetic type. Creep
feed was provided to piglets at ! 5 d of age. Weaning occurred at around 28 d
post-farrowing. ,

A 16% crude protein and 3 100 kcal DE/kg diet was fed ad libitum to all sows
during lactation and at the rate of 2 - 2.2 kg for MS, 2.2 - 2.5 kg for crossbred and
2.5 - 2.7 kg for LW during gestation. A 3 - 4-kg forage complement (beetroots or
alfalfa) was also given during gestation.

Trajts measured

Thirteen traits were considered: total number of fully formed piglets born (TNB);
numbers of piglets born alive (NBA); unadjusted (NW) or adjusted for TNB

(ANW) number of piglets weaned per litter; unadjusted (WB and W21) and
adjusted (AWB and AW21) litter weights at birth and at 21 d, respectively; sow
weight loss during lactation, computed as the difference between sow weights before
farrowing and at weaning (SWL); sow feed consumption during lactation (SFC),
adjusted to a 30-d period as explained by Bidanel et al (1989); sow maximum
daily feed consumption during lactation (SFCM); ratios of sow feed consumption
to number weaned (SFC/NW) or litter weight gain (SFC/LWG). These 2 latter
traits were proposed by Bidanel et al (1989) for evaluating feed efficiency of the
lactating sow.

Statistical analyses

As recently shown by Komender and Hoeschele (1989), the accuracy of crossbreed-
ing parameters estimation can be increased by including the genetic relationships
among individuals in the model, ie by using an animal model. When variances are
known, the resulting set of equations can easily be solved using standard mixed
model techniques (Henderson, 1984). When variances are not known, as in the
present case, estimates of fixed effects can be obtained as backsolutions from a re-
stricted maximum likelihood (REML) analysis (Patterson and Thompson, 1971) by
replacing the unknown variances by their REML estimates. In the present study,
variances were estimated using K Meyer’s DFREML set of programs (Meyer, 1988,
1989). Estimation of fixed effects and hypothesis testing were then performed using
the PEST package (Groeneveld and Kovac, 1990).



Estimation of genetic type marginal means

The assumed model ..for estimating genetic type means was’as follows:

Where:
Y = vector of records

p = vector of fixed effects
a = vector of random genetic effects of sows
c = vector of random permanent environmental effects
e = vector of random residual effects

X, Z, W = design matrices relating records to the appropriate fixed or random
effects

A = numerator relationship matrix
I = identity matrix
ol a 2,a c 2, ol = additive genetic, permanent environmental and residual variances

respectively.
E, var = expectation and variance operators, respectively.
The fixed effects for estimating genetic type marginal means were farrowing

batch (66 levels), litter genetic type (24 levels) and parity (5 levels). The interaction
between genetic type and parity and the effect of individual Pi6train boars (in the
third step of the experiment) were tested in preliminary analyses. They were not
significant for any of the traits (P > 0.10) and were consequently discarded from
final analyses. Two covariables, ie litter size at birth (for ANW and AWB) or
at weaning (for AW21) and exact age at measurement, were added to the model
when appropriate. Preliminary analyses indicated that regression coefficients did
not differ (P > 0.10) according to the genetic type. Simple linear regressions were
used for AW21, but a quadratic term was added for ANW and AWB.

The significance of contrasts between genetic type means was tested using the
following F statistics:

where X, Z and W are the same as in !1!, K’ is the vector of rank s defining the
contrast, CI1 is the submatrix of the generalized inverse of the coefficient matrix of



the mixed model equations corresponding to X’X§ fi is the generalized least squares
solution for 13, a and c are the BLUP of a and c, respectively, n is the number
of records and r the rank of X. Under the null hypothesis that K/13 = 0, S has a
central F distribution with s and (n - r) degrees of freedom.

Estimation of crossbreeding parameters

Crossbreeding parameters can either be estimated from genetic type marginal
means (provided that their variance - covariance matrix is available) or from

multiple regression procedures (Komender and Hoeschele, 1989). The latter method
was used in the present study. The model was the same as model (1!, except that
genetic type effects were replaced by their decomposition according to adequately
parameterized crossbreeding parameters. Additive effects between breeds were

partitioned as proposed by Dickerson (1969, 1973) into direct, maternal and

grand-maternal effects. Direct and maternal nonadditive effects were partitioned
as proposed by Hill (1982) into their dominance (d° and d&dquo;’), additive x additive
(aao and aa!), additive x dominance (ad° and ad!) and dominance x dominance
(dd° and dd&dquo;‘) epistatic components in a 2-locus model. The decomposition of the 24
genetic types of litters produced in the experiment according to the corresponding
parameters is shown in table II. For sow traits, only the first 12 genotypes from table
II have to be considered. This model is applicable under the following hypotheses:
1) traits are governed by unlinked loci; 2) gametes are produced by random samples
of purebred or crossbred parents and unite at random; 3) paternal heterosis, sex-
linked, imprinting and cytoplasmic maternal effects are negligible; 4) epistatic
effects of order higher than 2 are negligible.

In fact, not all of the above-mentioned parameters could be estimated simulta-
neously from the present experiment. The direct genetic effect of PI breed (g!I)’
PI x MS and PI x LW direct heterosis effects (h!M and hPL, respectively) were
partly confounded. This problem was solved by replacing go Pj I hpm 0 and h!L by the
2 following parameters:

Oh&dquo; represents the difference in direct heterosis effects between PI x MS and PI
x LW crosses; dpL is more difficult to interpret, as it includes both the direct
effect of PI boars crossed with LW dams and the effect of the type of mating
(artificial insemination vs natural mating). Hence, results for this parameter have
little interest and will not be presented hereafter. Then, direct and maternal
additive x dominance epistatic effects (ad° and ad&dquo;‘) were confounded with direct
(go) and maternal (g&dquo;‘) additive genetic effects, respectively. Finally, maternal
nonadditive effects on sow traits could not be partitioned into their dominance
and epistatic components, so that only maternal heterosis was estimated. Hence,
the full model included either g°, g&dquo;‘, g&dquo;, dpL, Oh°, d°, aa°, dd°, dm, aa’, ddl (litter
traits) or g°, g&dquo;t, gn, do, aao, dd°, h&dquo;‘ (sow traits).

The estimation process was performed as follows. The goodness of fit of all
possible constrained models (obtained by deleting one or several of the above-
mentioned parameters) was first compared and tested with regard to the full model





on the basis of their mean squared error (MSE) as proposed by Fimland (1983). A
total of 49 and 7 models for litter and sow traits respectively, were investigated. The
model with the lowest MSE was then considered as the best model for prediction
and used to estimate the relevant crossbreeding parameters.

RESULTS

Analyses of variance

Litter size, sow feed consumption and efficiency traits showed significant batch
effects, but without any consistent seasonal trend. Parity affected all traits except
SWL. Its influence on litter weights and sow feed consumption and efficiency
followed a similar pattern. No significant difference appeared from the 2nd to the
5th parity, whereas first parity gilts had lighter litters (- 2.7 kg and - 10 kg at
birth and 21 d respectively), consumed less feed (- 22 kg) and had a better feed
efficiency (- 1.6 kg feed / piglet and - 0.11 kg feed / kg LWG) during lactation
than multiparous sows. Conversely, litter size at birth was constant over the first 2
parities and then steadily increased (+ 0.8; + 1.3 and + 1.5 piglet / litter for the
3rd, 4th and 5th parities respectively). At weaning, litter size increased linearly up
to the 3rd parity, then plateaued (NW) or decreased (ANW).

The effect of genetic type was highly significant for all traits. Genetic type means
for litter traits in the second step of the experiment were rather similar to those
previously obtained by Bidanel et al (1989) in a first analysis of a subsample of this
second step. Hence, they will not be presented here again. Estimates of genetic type
means for litter traits in the third step of the experiment are presented in table III.
F1,MS(LW x MS) and Fl(LW x MS) had the largest litters at birth. On average,
they farrowed 1.2 piglets more per litter than an intermediate group including MS,
MS(MS x LW), LW(MS x LW) and Flx MS, 2.5 piglets more than Fl(MS x
LW), LW(MS x LW) or Fix LW and 3.4 (TNB) to 4.3 (NBA) piglets more than
LW. These differences remained similar for UNW, but were reduced after adjusting
the data for TNB. Genetic types ranked almost the same as at birth, except that
MS(MS x LW) and LW(LW x MS) joined the prolific group. Females born to MS
x LW dams tended to have a better prolificacy than those born to MS x LW. The
difference was significant (P < 0.05) for F2 and 3/4LW females, but not for 3/4MS.
Fi sows and to a lesser extent Fl (LW x MS) had the heaviest litters at birth

and at 21 d, with a mean advantage of 1.2 kg (WB) and 6.0 kg (W21) over a group
including MS(LW x MS), MS(MS x LW) and LW(LW x MS). The other genetic
types except LW had similar WB (from 13.0 to 13.9 kg), but more variable W21
(from 43.5 kg for MS to 53.5 kg for LW(MS x LW)). LW had the lightest litters at
birth, but its average W21 was comparable to Fi sired dams and superior to MS.
Adjusting the data for litter size reduced the amount of variation between genetic
types and led to some changes in their ranking. Fl, 3/4LW and LW had similar
AWB and were 1 kg heavier than F2 or 3/4MS, except F, x LW which were close
to MS. MS x LW had the heaviest AW21, with an advantage of ! 5 kg over LW,
3/4LW, F2 and LW x MS, of 9 kg over 3/4MS and of 18 kg over MS.

Estimates of genetic type means for sow traits are presented in table IV. MS
sows lost much less weight from farrowing to weaning than the other genetic types:





17 KG less than in Fl,10 - 12 kg less than in LW, LW xFI, FI(LW x MS) or
MS(LW x MS) and 5 - 7 kg less than in remaining genotypes. MS also consumed
about 25 kg less feed during lactation than LW, Fl, F2, or 3/4LW (except fix
LW) and 17 kg less than 3/4MS of Fi x LW. As a consequence, MS had the highest
feed efficiency per piglet weaned (SFC/NW). On average, feed consumption per
piglet increased with increasing proportions of LW genes. On the other hand, feed
consumption per unit of litter weight gain (SFC/LWG) did not differ much between
purebreeds, but was lower in most crossbred sows, especially Fi sows.

Crossbreeding parameters

The simple dominance model (ie with do and dm only) had the lowest mean squared
error (MSE) for all litter traits. Conversely, the best model for all sow traits except
SFCM included either additive x additive or dominance x dominance epistatic
effects. It should also be noted that in most cases several models had rather similar
MSE, so that 7 to 20 models (litter traits) and 2 to 4 models (sow traits) could not



be rejected at the 5% significance level. However, models without do and d&dquo;’ were

generally rejected.
Crossbreeding parameters for litter traits ar given in table V. Breed differences

for prolificacy were essentially of maternal origin and in favour of MS. Conversely,
significant (P < 0.05) direct breed effects in favour of LW were obtained for litter
weight traits except W21. Maternal breed differences were nonsignificant for WB
and W21, but were largely in favour of LW for AWB and AW21. Grand-maternal
effects were of little importance for all traits except AW21. Differences between
Pi6train x Meishan and Pi6train x Large White heterosis effects (Oh°) were
slightly negative for litter size and slightly positive for litter weights, but none of the
estimates approached significance. Direct dominance effects (d°) on litter size were
close to zero at birth and were positive at weaning (P < 0.10 for NW; P < 0.01
for ANW). Estimates of d° were positive for all litter weights. All litter traits also
exhibited highly positive, ie favourable, maternal dominance effects (P < 0.001).
Crossbreeding parameters for sow traits are shown in table VI. Additive effects on
SFC, SFCM and, to a lesser extent, SWL were mainly of direct origin. MS genes were
associated with lower weight loss and feed consumption during lactation. Direct
effects were also the most important source of variation for breed efficiency traits,
though significant maternal (and even grand-maternal) effects were obtained. Direct
and grand-maternal effects were in favour of MS, whereas maternal effects were in
favour of LW. All traits exhibited significant favourable direct dominance effects.
Epistatic effects were significant for SFC/NW (P < 0.05), SWL and SFC/LWG
(P < 0.05) and of the same sign as dominance effects, ie were unfavourable.
Maternal dominance effects were favourable but nonsignificant, except for SFC and
SFCM (P < 0.10).

DISCUSSION

The modelling of between-breed nonadditive effects has given rise to an impor-
tant and somewhat controversial literature over the last 10 yr (Kinghorn, 1980;
Sedcole, 1981; Sheridan, 1981; Hill, 1982; Willham and Pollak, 1985; Eisen,
1989). Alternative models to the widely used Dickerson (1969; 1973) decompo-
sition of between-breed variability have been suggested. Sheridan (1981) proposed
a ’parental epistatic’ model. Each parental line is homozygous for different pairs of
complementary genes which act additively with other pairs. Kinghorn (1980, 1982)
compared different epistatic models differing in the type of gene action. However,
the most general and satisfactory model, based on Cockerham’s (1954) decompo-
sition of genetic variance in a 2-locus model, was proposed by Hill (1982). Later,
Koch et al (1985) partly extended Hill’s model to include maternal effects. However,
they included only additive x additive interactions. Hill’s model was preferred to
Dickerson’s model because of its greater generality. Indeed, it can be shown that
Dickerson’s model is equivalent to Hill’s model when dominance x dominance ef-
fects are assumed to be 0 and that, in that case, the following relationships hold
(Koch et al, 1985):





Hence, Dickerson’s model can be viewed as one possible submodel of Hill’s general
model. Consequently, as emphasized by Hill (1982), ’recombination loss’ generally
cannot be expressed as a function of d, aa and dd parameters. For instance, in the
present case the estimation of r° involves 2 types of contrasts which have different
expectations in terms of epistatic interactions:

where P, Fl, F2, BC,!, BCP = average performance of purebreds, Fl, F2, maternal
and paternal backcrosses, respectively; ro, aa°, ddo = direct epistatic recombination
loss, direct additive x additive and dominance x dominance epistatic effects,
respectively.

Because of its generality and its consistency with within-breed decomposition
of genetic variance, Hill’s model appears as the model of choice from a theoretical
viewpoint. However, it still has several limitations which should be pointed out.
First of all, it is generally highly overparameterized. In some instances, it is of
no importance for predicting the average performance of advanced generations of
crossings. This is the case for additive x dominance effects which do not seem
to be estimable when the model includes maternal effects. In other instances,
some parameters have to be assumed negligible to make the model tractable.
For example, several parameters are necessarily confounded when a general model
including direct, maternal and paternal heterosis effects is used. In the present
study, paternal nonadditive effects have been assumed to be zero. This appears
as a quite reasonable hypothesis in pigs, as suggested by a now quite abundant
amount of results (see reviews by Buchanan, 1987; or Bidanel, 1988). The number
of nonestimable parameters also increases when more than 2 populations are

involved and when interactions of order higher than 2 are considered. Other



effects, such as interactions between direct and maternal nonadditive effects or
heterosis x environment interactions which might be of some importance in

pigs (see for instance Kennedy and Quinton, 1987), are not taken into account.
These interactions might be alternative explanations for discrepancies between
’ performance of advanced generations of crossings and their expectation under
the dominance model for heterosis. Unfortunately, they could not be investigated
through the present experimental design.

As emphasized by Hill (1982) and Koch et al (1985), another important lim-
itation of complex heterosis models stems from the difficulty of getting accurate
estimates of parameters. Even large well-designed experiments have a limited abil-
ity to distinguish between different models for heterosis. For example, the basic
estimable functions to estimate additive x additive and dominance x dominance
effects are 4(’BC’M - F2) and (P + T, + 2 F2 - 2 BCM - 2 BCp), respectively
(P, F 1, F 2, BC M, BC p = average performance of purebreds, Fl, F2, maternal and
paternal backcrosses, respectively). Assuming no fixed effect, an equal sample size
n for each genotype and unrelated animals, the respective variances of aa and dd
estimates are 32Q2/n and 14o,’/n where a2 is the within-genotype variance. Then,
the respective number of observations per genotype required to show an effect of
0.5 piglet with a type I error rate of 5% and a power of 90% are as large as 14 000
and 6 500. This is clearly the main reason why experimental studies of components
of heterosis in animals are not very numerous. Some evidence of epistatic losses
in egg production of chickens, in milk production of dairy cattle and in growth
rate of beef cattle was reported in the review by Sheridan (1981). More recent evi-
dence of epistatic effects has been provided by Kinghorn (1983) for various growth
and reproductive traits in mice, by Koch et al (1985) for survival, pregnancy and
marbling score in beef cattle, by Hagger (1986; 1989) and Fairfull et al (1987) for
egg production and by Ericson and Danell (1986), Syrstad (1988) and Pedersen
and Christensen (1989) for milk production in dairy cattle. Conversely, epistatic
effects have been reported as negligible by Me Gloughlin (1980) for reproductive
traits in mice, Dillard et al (1980) and Koch et al (1985) for growth rate in beef
cattle and Robinson et al (1981) for milk production in dairy cattle. Contrary to
these species, there does not seem to be any report of significant epistatic effects
in swine. Some indication of lower than expected prolificacy of F2 or backcross
sows has been reported by Sheridan (1981), but none of the epistatic loss estimates
reached significance.

In spite of its limited power, the present experiment provides some information
about the relative importance of dominance and epistatic components of heterosis
for reproductive traits in swine. Significant epistatic losses were observed for sow
weight loss and feed efficiency during lactation. These epistatic effects could be
additive, x additive, but also dominance x dominance interactions. Consequently,
models considering only additive x additive epistatic, such as Dickerson’s model,
may be unsuitable to some animal breeding situations. However, dominance effects
clearly appeared ’in most cases as the main component of both direct and maternal
heterosis effects, even if in most cases the existence of epistatic effects of limited
magnitude cannot be excluded.
An important practical question raised by the low power of the experiment aimed

at estimating components of heterosis lies in the amount of bias due to using a



wrong genetic model for prediction. Kinghorn and Vercoe (1989) concluded from
a re-analysis of the data from Koch et al (1985) that in their study predictions
were generally quite robust to differences in the genetic model used. As illustrated
in table VII, this is not always the case. Some non-negligible differences between
models were obtained: 1.6 kg feed / piglet weaned for the F2 - P contrast on
SFC/NW (ie 84% of heterosis value); 4.6 kg for the RC - P contrast on SWL (ie
39% of heterosis value). As expected, the average absolute &dquo;bias&dquo; (average absolute
deviation between predicted and observed values) noticeably increased when an
important parameter, such as dd° for SWL, is ignored. It also increased when

unimportant parameters were included in the model. The amount of bias is of
course related to the precision of the estimation of crossbreeding parameters, which
also depends on the model. It may therefore be crucial to choose the right model
for prediction. In any case, it seems advisable to precisely evaluate the impact of
the choice of the genetic model through sensitivity analyses (France and Thornley,
1984) when estimating crossbreeding parameters and when using these parameters
to evaluate the relative merit of different crossbreeding systems.

Finally, the large differences observed between F2 and backcross sows differing
only in their dam’s genotype (LW x MS vs MS x LW) is not taken into account by
standard models for crossbreeding. These differences may result from chance, but
may also reflect true variations due to genetic effects not accounted for in the model.
One possible hypothesis would be the existence of variation due to mitochondrial
genes. Mitochondrial DNA in known to be maternally inherited in animals (see
for instance Hayashi et al, 1978; or Gyllensten et al, 1985). Hence, differences in



mitochondrial gene effects between MS and LW would generate variations due to
the breed of the maternal ancestor similar to those observed in the present study.
Including the effect of mitochondrial genes in the model would lead to some changes
in estimates of crossbreeding parameters, as shown in table VIII. The main changes
concern grand-maternal and, to a lesser extent, maternal breed effects. Direct breed
and nonadditive effects remain unaffected. ’Mitochondrial’ effects appear as highly
significant and in favour of MS for litter size. Their influence on litter weights is less
important and due to differences in prolificacy. However, these significant estimates
cannot be regarded as a proof of the presence of mitochondrial gene effects. Other
hypotheses, such as the existence of genomic imprinting, can be proposed to explain
the observed differences, even if the way such effects would act is not as clear as
hereabove.

CONCLUSION

The present study clearly shows the possibilities and limits to the use of complex
genetic models for heterosis in pigs. Significant epistatic effects were found, thus
showing that a simple dominance model for heterosis cannot always adequately
predict the performance of advanced generations of crosses. However, epistatic
effects in farm animals can only be estimated with a limited accuracy at a reasonable
cost. As a consequence, predictions based on these parameters should be used
cautiously, after looking at the impact of this uncertainty on the evaluation of
crossbreeding schemes through sensitivity analyses.
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