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Summary — The design of progeny tests to identify the best 1 or 2 sires tested is considered
for populations consisting of a large number of genetically different strains, such as the
Australian Merino. A fixed number of studs enter sires in the test, for which a fixed number
of progeny in total are recorded. Evaluation is by best linear unbiased prediction (BLUP)
with strain effects being taken as random. When there is little variation between strains
the results are similar to the well-known results of Robertson, but when between-strain
variation is high the optimum number of sires to be tested is higher and family sizes are
smaller, because information on sires from the same strain provides information on each
sire.

progeny testing / family size / variation between strains / Australian Merino /
selection

Résumé — Taille optimale de famille pour I’épreuve de descendance dans des popu-
lations composées de lignées différentes. La planification des épreuves de descendance
pour chotsir le meilleur ou les 2 meilleurs péres est étudiée dans le cadre de populations
comprenant un grand nombre de lignées génétiquement différentes, comme c’est le cas par
exemple pour le Mérinos australien. Un nombre donné de lignées soumettent des péres
Uépreuve de descendance, avec un nombre total fizé de descendants contrélés. L’évaluation
des péres se fait par la meilleure prédiction linéaire sans biais (BLUP) avec des effets lignée
considérés comme aléatoires. Quand la variation entre lignées est faible, les résultats sont
similaires d ceuz bien connus de Robertson, mais quand la variation entre lignées est forte,
le nombre optimal de péres a soumettre d ’épreuve de descendance est augmenté et les
tailles de famille sont diminuées. La raison en est que linformation sur l’ensemble des
péres d’une méme souche fournit une information sur chacun des péres de la souche.

épreuve de descendance / taille de famille / variation entre lignées / mérinos
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INTRODUCTION

Progeny testing of bulls has been very extensively used in dairy cattle breeding for
many years, and more recently has been widely used in beef cattle breeding. In
contrast, it has been very little used in Australian Merino sheep breeding, though
there has been some increase in its application in the last few years. This use has
largely been in sire reference schemes, aspects of the design of which were discussed
by Miraei Ashtiani and James (1991). In this work attention was concentrated on
the design of systems to minimise prediction error variances of differences between
estimated breeding values, in a similar way to that of Foulley et al (1983). This is,
however, not necessarily the best criterion for design of such schemes.

It was pointed out by Robertson (1957) in the dairy cattle context that, when
the aim is to select a fixed number of sires and the total number of progeny available
is also fixed, there is an optimum family size which will give the greatest expected
response. This optimum is a compromise between greater accuracy of estimated
breeding values and greater selection intensity. When there is prior information on
breeding values, the optimum structure is altered, as shown by James (1979).

It seems useful to adapt Robertson’s approach to the design of Australian Merino
sire evaluation, but one feature of this breed needs to be taken into account. Short
and Carter (1955) showed that the breed is divided into several strains which are
much more differentiated than in most livestock breeds, in which strain formation
has usually been slight. Mortimer and Atkins (1989) have recently demonstrated
that there are substantial genetic differences between studs within a division of
the Merino breed such as the Peppin strain. Thus in considering an optimal design
to identify (say) the best 1 or 2 sires from those evaluated, it is necessary to take
account of both between strain and within strain variation, where here we use strain
to mean any genetically different group, so that different Peppin studs are referred
to as strains.

In this paper, a progeny test at a single location is assumed, and rams from a
given number of studs are to be evaluated with a view to identifying the best 1 or
2 of those tested. The total number of progeny available is fixed. The problem is to
determine how many rams from each strain (stud) should be tested in order that
the true breeding values of the 1 or 2 with the best estimated breeding values are
as high as possible. It will be assumed that the studs involved in the program may
be regarded as a random sample from a large population of such studs, and that
sires within strains can be taken as unrelated.

THEORY

In the progeny testing program there are s sires from each of b strains which are
mated to females from a common source, and n progeny from each of the bs sires
are recorded, so that the total progeny is T = bsn. T and b are regarded as fixed,
so that the problem is to find optimum values of s and n.

If Y,k is the record on the kth offspring of the jth sire of the ith strain, our
model is:

Yijk =u+ B; + Sij + Eijk [1]
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where B; is half the deviation of the mean of the ith strain from the population mean
breeding value (BV'), S;; is half the deviation of the BV of an individual sire from
its strain mean, and E;j; is an individual progeny deviation. We assume genetic
and environmental variances are the same for all strains, denoting the phenotypic
variance as Vp and the heritability as 2. Then B; ~ N(0,Vg); Si; ~ N(0,Vs);
Eijx ~ N(0,Vg) where ~ N(u,V) means normally distributed with mean p and
variance V. It is assumed twins are rare so that all offspring may be taken to be
half sibs. We have:

VE = (1 — i’hz)VP,VS = 1/4h2Vp and VB = st,

so that f represents the ratio of the between-strains to within-strains genetic
variance. We define the ratio k as:

k =Vg/Vs = (4 — h?)/h2.

The overall BV of a sire is 2u;; where u;; = B; +S;;. We want to consider BLUP
estimates of u;;. These can be obtained in 2 ways. In one approach equation [1] is
used as the model, and BLUP of B; and S;; are used to find:

ﬂij =B, + Sij.

This would give a diagonal variance-covariance matrix for the random variables
to be estimated by BLUP, but the prediction error variances (PEVs) would need
to be calculated for the %;; from those for B; and §,J In the second approach we
rewrite the model as:

Yijk = p+uij + Eiji 2]
with a pattern of correlations among the u;;. We then have:
var(u;;) = Vg + Vs, cov (us5, uij) = Vp and cov (u5,uq ) = 0. We shall adopt the
second approach.

Writing [2] in matrix terms we have:

y=X0+Zu+e 3]

with var (u) = G and var(e) = IVg, where G is block diagonal, consisting of b

blocks, each s by s, with Vg + Vs on the diagonal and Vp elsewhere. All other

elements of G are zero. We let C, be the s by s matrix and then G = I, ® C,

where ® denotes the direct product. Then the Henderson mixed model equations
X'X X'Z ] {0

are:
X'y
!’ ’ -1 = ’ [4]
Z’X Z'Z+VegG Z'y

In these equations X’X is a scalar, bsn, X'Z and Z'X are row and column
vectors of length bs with each element equal to n. Z’'Z is a diagonal matrix with
each diagonal element being n.

~

u

C, = Vs, + VI,
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where I, is an s by s unit matrix and Js an s by s matrix with all elements unity.
Therefore:

G l=L®C;!
and
C' = (1/Vs)L — [f/{Vs(1 + s£)}3s.
Therefore each block of Z’'Z + Vg G~! has the form:

(n+ k), — [fk/(1 + sf)]JTs.

Inverting the coefficient matrix in (4], one finds that diagonal terms for the bottom
right corner are:

1/(n+ k) + fk/{(n+ k)[n(1 + sf) + k]} + [n(1 + s£)?]/{bsk[n(1 + sf) + k]}.
Let:

a=1/(n+k)

B =rk/{(n+k)n(1+sf)+kl}

§ = {n(1 + sf)?}/bsk{n(1 + sf) + k}.
Then the PEV for any sire is given by:

PEV = Vg(a+ B8+ §).
For sires from the same strain the prediction error covariance (PEC) is:
PECw =Vg(B+6)

while for sires from different strains the PEC is:

PECp = Vgé.
Now var(u — 1) = G — var(Q)
So var(d) = G — var(d — u).

Thus for a given sire:
var(u;;) = Vg + Vs — Ve(a+ B+ 6)
= Vs[f+1—k(a+B+9)).
For two sires from the same strain:
cov(Uyj, Uijr) = Vg — Ve(B + 6)
= Vs[f — k(B + )],
while for 2 sires from different strains:
cov(Usj, Uy o) = —VEb = —Vgké.

The correlation between true and estimated breeding values which measures the
accuracy of the design and is referred to as reliability, is given by:
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Tfﬁl = [cov(u, @)]?/[var(u) var()]

= [var(@))?/[var(u) var(a)]

= var(u)/var(u)
=[1+f - Ka+B+8)/1+])
o ra =1+~ {kla+B+8)}/(1+ .

The response to selection, R, which is the criterion for the optimum number of
sires to be tested and thus the size of each sire family, is obtained as:

R = ir 22(Vp + V5)*?
= 2ir ~os(1 + s
= 2ios[1 + f — k(a+ B+ 6)]°°
=i04[l + f — k(a+ B+ 6)]°°. (5]

Here o 4 is the within-strain genetic standard deviation, and ¢ is the standardised
selection differential corresponding to the proportion of sires selected.

We also need to consider the intra-class correlation of the estimated BV's. The
analysis of variance involves £XaZ;, £u? /s and 42 /bs. Omitting the factor Vs we
can find:

E(XXul;) =bs[1+ f —k(a+B+6)
E(Z62/s) =b[l +sf —ka —ks(B+ 6))
E(u?/bs) =1+ sf —ka—ks(B+6)—s(b—1)ké
Then:
E(SSW) =b(s —1)(1 —ka)
E(SSB) = (b—1)[1 +sf —k(a+ sB)]
which gives us:
EMSW) =1-ka
E(MSB) =1—ka+ s(f —kpB)
The between strains component is then (f — k8).
Thus the intra-class correlation between strains is:
t =(f—kB)/[1 - ka+f—kf]
=(f —kB)/[1 + f — k(o + B)]. (6]

This intra-class correlation is important because the standardised selection
differential may be seriously affected when t is large, especially if b is small.

Values of the standardised selection differential were approximated as follows.
Burrows (1972) showed that the finite population effect for selecting S animals
from N can be approximated in the following way. Let P = S/N and let i* be

the standardised selection differential for selecting a fraction P from an infinite
(normal) population. Then:

i(S/N) = i* — (1 — P)/[2i"P(N +1)].
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This assumes the animals are independent, e, all selection criteria are uncorre-
lated.

The case where the N animals are not independent, but consist of g groups each
of size m so that gm = N was dealt with by Hill (1976) and Rawlings (1976). As
well as giving an exact treatment, each gave an approximation. We investigated
both approximations and found that, although they often agree well, on occasions
the Hill formula gave greater selection differentials for selecting two sires than for
selecting one. These were conditions outside the range for which Hill suggested his
approximation, but as they included conditions we wished to use we decided to use
the Rawlings formula rather than that of Hill. If ¢*is the average correlation among
all pairs of animals, the Rawlings formula is:

i(S, N, t*) =~ i(S/N)(1 — t*)*°
and on substituting the value of t* we have:
i(S, N, t*) = i(S/N)[1 — (m — 1)t/(N — 1)]'/? [7]

To find the optimal structure, a design was evaluated by calculating R/o 4 using
equation [5] for 1 and for 2 sires selected, with i calculated using [6] and [7]. The
design giving the highest value was taken as optimal. Results of this approximate
calculation were checked using a simulation program with 2000 replications for a
given set of parameters.

For each set of simulations, the procedure was as follows. For each strain, a
random variable was sampled from the appropriate population. Then for each sire
to be tested an appropriate random variable was sampled and another random
variable was sampled to provide the progeny mean deviation. The BLUP procedure
was then used to get EBVs for all sires, and the known true breeding values for the
best 1 or 2 on EBV were used to calculate genetic gains. This was replicated 2 000
times, and the mean and SE of the genetic gain were calculated. Standard errors
were never more than 2.2% of the mean gain.

In the case of 1 strain or when the f value is very small, the Robertson (1957)
approach would be a suitable solution. If p is the proportion selected, = is the
truncation point of the standard normal distribution corresponding to p, then the
optimal structure should be given by:

T/pk = (2z —i*)/[2p(i* — z)]

and when b =1 then T = sn.

RESULTS

Calculations were made with the total testing facilities set at T' = 300, 600 and
1000. The number of strains (b) was taken as 3, 5, or 10, h? was taken as 0.1, 0.3
or 0.5, and the f ratio as 0.5, 0.1 or 0.01. For all 81 combinations the values of s
which maximised the expected genetic gain were located by a search process and
sire family sizes were obtained from n = T'/bs.
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The maximum responses for different combinations of the parameters are illus-
trated in tables I, II and III. These were calculated using the Rawlings approxima-
tion.

Table I. Maximum responses to selection for a range of values of h2, b, s and T when
f =0.1and 1 or 2 best sire(s) is(are) selected. ¢ is the corresponding intraclass correlation
between strains.

No selected
1 2

h? T b sb  R/(Va)/? t sb  R/(Va)/? t
3 15 0.3169 0.1560 18 0.2766  0.1632
300 5 15 0.3236 0.1511 20 0.2821  0.1759

10 10 0.3241 0.1376 20 0.2860  0.1541
3 18 0.3877 0.1435 14 0.3449 0.1551
01 600 5 20 0.3953 0.1434 25 0.3518  0.1511
10 20 0.4007 0.1397 20 0.3551  0.1397
3 24 0.4412 0.1391 30 0.3975  0.1481
1000 5 25 0.4496 0.1373 30 0.4053 0.1435
10 30 0.4540 0.1391 30 0.4105  0.1391
3 24 0.7546 0.1407 30 0.6791  0.1499
300 5 25 0.7690 0.1450 30 0.6924  0.1511
10 30 0.7756 0.1404 30 0.7014  0.1404
3 36 0.8808 0.1345 42 0.8049  0.1405
0.3 600 5 35 0.8966 0.1309 45 0.8200 0.1396
10 40 0.9075 0.1318 40 0.8296 0.1318
51 0.9729 0.1312 57—60* 0.8976  0.1375
1000 5 50 0.9901 0.1283 60 0.9141  0.1345
10 50 1.0021 0.1256 60 0.9253  0.1309
33 1.1074 0.1352 39 1.0093 0.1418
300 5 35 1.1277 0.1343 40 1.0285 0.1390
10 30 1.1399 0.1270 40 1.0414 0.1349
3 51 1.2689 0.1295 60 1.1719 0.1355
0.5 600 5 55 1.2912 0.1298 60 1.1931 0.1328
10 50 1.3064 0.1243 60 1.2077 0.1294

3 72-75* 1.3855 0.1271 84 1.2899 0.1311
1000 5 75 1.4094 0.1254 85 1.3128  0.1295
10 80 1.4259 0.1249 90 1.3285 0.1284

* The intraclass correlation corresponds to the higher value. R: maximum response;

h: heritability ; b: number of strains; s: number of sires per strain; T: total progeny;
f: between-strains/within-strains genetic variance.

In table I the value of f has been taken as 0.1, so Vg = 10 V. When
the heritability or the total number of progeny increases, with other parameters
constant, the response is greater, as it is when selecting the best one rather than
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Table II. Maximum responses to selection for a range of values of h2, b, s and T when
f =0.5and 1 or 2 best sire(s) is(are) selected. ¢ is the corresponding intraclass correlation
between strains.

No selected

1 2
h? T b sb  R/(Va)/? t sb  R/(Va)/? t

3 18 0.3782 0.5532  27-30* 0.3376  0.6271

300 5 20 0.4053 0.5447 30 0.3620  0.5980

10 20 0.4184 0.5158 20 0.3708  0.5158

3 27 0.4525 0.5382 36 0.4095  0.5793

01 600 5 30 0.4860 0.5361 40 0.4414  0.5754

10 30 0.5036 0.5117 40 0.4555  0.5447

3 33 0.5077 0.5091 45 0.4636  0.5510

1000 5 35-40* 0.5457 0.5226 50 0.5004  0.5527

10 40 0.5676 0.5033 50 0.5196  0.5297

3 33 0.8695 0.5148  42—45* 0.7932  0.5575

300 5 35 0.9348 0.5110 50 0.8562  0.5586

10 30 0.9713 0.4772 50 0.8884  0.5343

3 48 0.9987 0.4858 60 0.9212  0.5133

03 600 5 55 1.0729 0.4953 70 0.9934  0.5260

10 60 1.1198 0.4927 70 1.0375  0.5110

3 66 1.0927 0.4684  78-81* 1.0152  0.4917

1000 5 75 1.1722 0.4784  90-95* 1.0927  0.5067

10 80 1.2261 0.4770 100 1.1443  0.5029

3 45 1.2590 0.4917 57 1.1590  0.5216

300 5 50 1.3528 0.4971 65 1.2504  0.5307

10 50 1.4115 0.4839 70 1.3044  0.5236

3 69 1.4238 0.4676  81—84* 1.3238  0.4898

05 600 5 80 1.5270 0.4799 95 1.4245  0.5003

10 80 1.5974 0.4718 100 1.4920  0.4971

3 93-96* 1.5431 0.4515 111 1.4441  0.4663

1000 5 110 1.6519 0.4629 130 1.5501  0.4811

10 120 1.7297 0.4667 140 1.6254  0.4836

* The intraclass correlation corresponds to the higher value.

the best 2 sires tested. Higher h? and T result in a greater number of sires being
tested, the greater response coming from higher selection intensity rather than
more accurate evaluation. The accuracy of evaluation would be fairly low, with
10 progeny per sire often being close to optimal in many situations. When two
sires rather than one are selected, the number to be tested should be somewhat
greater, but the ratio of responses for the 2 selection regimes is not very sensitive
to differences in other parameters, being typically about 1.1 to 1.15. The between
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Table III. Maximum responses to selection for a range of values of hz, b, s and T when
f =10.01 and 1 or 2 best sire(s) is(are) selected. t is the corresponding intraclass correlation
between strains.

No selected
1 2

h? T b sb  R/(Va)/? t sb R/(Va)/2 t
3 15 0.3058 0.0165 18 0.2668 0.0170
300 5 15 0.3065 0.0165 20 0.2668 0.0171
10 10 0.3033 0.0154 20 0.2627 0.0170
3 18 0.3758 0.0153 24 0.0161 0.0161
0.1 600 5 20 0.3764 0.0155 25  0.0161 0.0161
10 20 0.3770 0.0155 20  0.0155 0.0155
3 24 0.4287 0.0148 30 0.0154 0.0154
1000 5 25 0.4295 0.0148 30 0.0153 0.0153
10 20 0.4283 0.0142 30 0.0152 0.0152
3 24 0.7330 0.0149 30  0.6586 0.0156
300 5 25 0.7342 0.1050 30 0.6600 0.0155
10 20 0.7332 0.0143 30  0.6611 0.0154
3 36 0.8579 0.0142 42 0.7831 0.0147
0.3 600 5 35 0.8596 0.0141 40  0.7846 0.0145
10 40 0.8595 0.4144 40 0.7857 0.0144
3 48 0.9492 0.0137 57  0.8749 0.0142
1000 5 50 0.0509 0.0138 55  0.8765 0.0140
10 50 0.9522 0.0137 60 0.89775 0.0142
3 33 1.0782 0.0143 39 0.9816 0.0148
300 5 35 1.0798 0.0144 40  0.9834 0.0148
10 30 1.0810 0.0140 40  0.9849 0.0147
3 51 1.2381 0.0138 57  1.1423 0.0141
0.5 600 5 50 1.2404 0.0136 60 1.1444 0.0141
10 50 1.2421 0.0136 60  1.1460 0.0140
3 60-72* 1.3537 . 0.0134 81  1.2592 0.0134
1000 5 70 1.3561 0.0132 80  1.2615 0.0136
10 70 1.3579 0.0132 80 1.2632 0.0135

* The intraclass correlation corresponds to the higher value.

strain correlation in estimated breeding values is = 50% greater than the correlation
between true breeding values, but is not especially high.

In table II it has been assumed that the variance between strains within the
population is half the variance of BVs between sires within strains. In populations
like the Merino there is variation between strains for economically important traits
of this order of magnitude (Mortimer and Atkins, 1989). If the results are compared
with those in table I it is seen, as expected, that the selection response is greater,
and also that, other things being equal, the number of sires tested is somewhat
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greater. The magnitude of change is dependent on several variables, but responses
are 20-25% greater, and the number of sires in the test is &~ 50% greater. The
differences between selecting 1 or 2 sires are very similar to those when f = 0.1
for selection response and number of sires tested. The between strain correlations
in estimated breeding value are > 3.5 times those in table I, because of the large
change in Vg/(Vp + Vs).

Table III shows the results of an extreme case, when genetic variance is 100
times greater within than between groups (f = 0.01). Consequently, the between
strain correlations are very small and, as expected, the results are less dependent
on the number of strains involved in the test and are almost uniform for each level
of h? and T. The effects of h? and T on responses are more or less the same as in
tables I and II. Another expectation is that in this case the results should be fairly
close to those for an undivided population (Robertson, 1957). We found reasonable
agreement between the 2 sets of results. Perfect agreement could not be expected
because of differences in calculation procedures, as well as the small differences in
underlying assumptions.

The proportion selected in all cases studied was never more than 11%, so selection
differentials are reasonably high.

Table I'V. The differences between the maximum responses to selection and corresponding
number of sires in the test, relative to the case of b = 3, when sires from 10 strains are
involved in the test.

No selected h?
0.1 0.8 0.5
Relative changes in:
f T sb  R/(VA)”2 sb  R/(VA)? sb  R/(VA)/?
1 0.1 300 0.33 0.0227 0.25 0.0278 —0.09 0.0293
600 0.11 0.0335 0.11 0.0303 —0.02 0.0296
1000 0.25 0.0290 —0.02 0.0300 0.07 0.0292
0.5 300 0.11 0.1062 —0.09 0.1171 0.11 0.1211
600 0.11 0.1129 0.25 0.1213 0.15 0.1219
100 0.21 0.1180 0.21 0.1221 0.25 0.1209
2 0.1 300 0.11 0.0340 0.00 0.0328 0.03 0.0318
600 -0.17 0.0296 —0.05 0.0307 0.00 0.0305
1000 0.00 0.0327 0.05 0.0309 0.07 0.0299
0.5 300 -0.33 0.0983 0.11 0.1200 0.22 0.1255
600 0.11 0.1123 0.16 0.1262 0.19 0.1271
1000 0.11 0.1208 0.23 0.1272 0.26 0.1255

A comparison of having 10 versus 3 strains in the test is shown in table IV,
where results are presented as the change in response or number of tested sires as
a fraction of the value when b = 3. When f = 0.1 the extra response from using 10
strains is & 3%, but when f = 0.5 the extra response is ~ 12%. The effects of T
and h? on these ratios are very small.
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The approximation results were checked by simulation with 2 000 replicates per
parameter set, for a number of parameter sets. In almost all cases the simulation
gave significantly greater responses than the approximation. Figures 1 and 2 show
the approximation as well as the simulation results plotted against the number of
sires per strain. In figure 1, A2 = 0.1 and in figure 2, h?2 = 0.3. In both figures
T = 300 and different values of f and b were used. Although for a given value of
b the simulation results for successive s values show sampling fluctuations, they
generally show a fairly flat pattern near the optima. The sampling fluctuations
meant that determination of optimal numbers of sires was rather questionable from
the sirulations, and we preferred to use the approximation despite its apparent
bias in estimating response.
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Fig 1. Comparison of the approximation and the simulation results when h? = 0.1 and
T = 300. The response is for selection of the best sire out of sb tested.

DISCUSSION

The results show the effect of genetic variation between strains on the design of
progeny testing programs. The calculations were based on the assumption that
the number of strains taken from the population is fixed, and equal numbers of
candidates from each strain are tested. It is also assumed that the strains may be
regarded as a random sample of the population from which they come and that
sires are unrelated apart from being members of the same strain.

The assumption that the number of strains is fixed will often be reasonable, since
the number of breeders interested in entering sires in the evaluation will determine
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Fig 2. Comparison of the approximation and the simulation results when A% = 0.3 and
T = 300. The response is for selection of the best sire out of sb tested.

how many strains are available. This is currently the situation in the Australian
Merino. However, sometimes the number of strains included should also be regarded
as variable, and an optimum for this variable would also be sought. This would
significantly increase the amount of computing required, but would not involve any
further theoretical developments, and presents an opportunity for extension of these
analyses.

The assumptions on relationships among sires are perhaps oversimplified, but
are probably not unreasonable for the early stages of such programs. However, once
a few highly selected sires were widely used the existing differences among strains
would be reduced, and some of the sires from different strains would be related.
Thus our conclusions would not be applicable over a long period.

We have assumed that the estimation of breeding values is by BLUP, with
random group effects and known parameters. In some cases this led to fairly high
correlations between EBVs of sires from the same strain (0.5 — 0.6). If the group
structure were to be ignored, the estimates of breeding value would be less accurate,
since they ignore relationships between animals from the same strain. This problem
does not arise in the same way in most cattle populations where distinct strains
have not formed, and pedigrees can be used to account for genetic similarities
between animals. If there are only a few genetic groups, they may be best treated
as fixed effects, but in the Australian Merino there are a large number of studs,
and it appears reasonable to assume their mean breeding values can be regarded as
random effects. The between-strain genetic parameters are, however, poorly known
.so that our assumption that true values are used in estimation will overestimate the
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gain to be achieved. The difficulties arising from lack of knowledge of between-strain
genetic parameters have been discussed in another context by Atkins (1991).

When the between-strain genetic variation was low, our results turned out to be
rather similar to those of Robertson (1957). The minor differences probably arise
from our use of the finite population selection differential adjusted for correlation
between selection criteria on candidates, and from our estimation of the overall
mean by BLUP rather than assuming it to be known.

When b = 1 and sires from only 1 strain are evaluated, results are the same as
if there were no variation between strains (f = 0). In this case the optimum family
size is approximated by n = 0.56 (K/h?)%®, where K is the number of progeny
tested per sire selected (Robertson, 1957). When there are more strains in the trial
and there is appreciable variation between strains, the total number of sires tested
increases with the number of strains, and also with f. The response to selection
also increases. This is attributable to the fact that with a greater number of more
variable strains represented there is more variation between tested sires, so that not
so many progeny per sire are required to differentiate between them. As a result,
more can be tested to allow a greater selection differential to be achieved.

For a given set of conditions, increasing the total number of progeny recorded
leads to an increase in both the family size and the number of sires tested.

The comparison of the simulation results and the results of the approximation
appears to show a consistent downward bias in the estimates of response given by
the approximation, though the location of the optima appears to be little affected.
Nevertheless it seems that better approximations for selection differentials than
those of Hill (1976) and Rawlings (1976) may be worth searching for. As is not
uncommon, the curves of response plotted against number of tested sires are rather
flat near the optima, so that precise location of the optimum is not of practical
importance, since a value close to the optimum will give a response negligibly less
than the best possible.

From a practical viewpoint, the optimum structures seem unlikely to appeal
to breeders, because the small family sizes in many cases would be considered too
small to give reliable results. The small family sizes are possible because of the use of
information on progeny of other sires from the same strain. However, within-strain
comparisons will not be very accurate when f is large.

Our results show that selection across strains can give worthwhile improvements
over selection within strains, as expected on theoretical grounds. Smith and
Banos (1991) have studied this question under different conditions ana also found
worthwhile advantages for selection across populations in some situations.
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