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Summary - Procedures to interpret correlation and regression coefficients involving pre-
dicted breeding values (BV) calculated for the same animals in different environments
have been developed. Observed correlations are a function of the additive genetic cor-
relation between performances in the 2 environments but are also affected by selection
of animals that produce data in both environments, the accuracy of BV predictions in
each environment, relationships among animals within and across environments and co-
variances among BV predictions within an environment arising from estimation of fixed
effects in best linear unbiased prediction (BLUP) of animal BV. Methods to account for
effects of selection and variable accuracy and experimental designs to minimize effects of
relationships and covariances among BV predictions from estimation of fixed effects have
been described. The regression of predicted BV in environment 2 on predicted BV in envi-
ronment 1 is generally not affected by selection in environment 1, but both correlation and
regression coefficients are sensitive to covariances among breeding value predictions within
environments. In general, caution must be exercised in interpreting observed associations
between predicted breeding values in different environments.

predicted breeding value / genetic correlation / regression / selection index / best
linear unbiased prediction

Résumé - Utilisation des covariances entre les valeurs génétiques prédites pour
estimer la corrélation génétique entre les expressions d’un caractère dans 2 milieux.
Des procédures sont établies pour interpréter les coefficients de corrélation et de répression
impliquant des valeurs génétiques prédites (VG) calculées pour les mêmes animaux dans
différents milieux. Les corrélations observées sont fonction de la corrélation génétique
entre les performances dans les 2 milieux, mais elles dépendent aussi de la sélection des
animaux sur lesquels des données sont recueillies dans les 2 milieux, de la précision des
prédictions de VG dans chaque milieu, des parentés entre animaux intra-milieu et entre
milieux et des covariances entre les prédictions de VG dans un milieu qui résultent de
l’estimation des effets fixés dans la meilleure prédiction linéaire sans biais (BL UP) de



VG. L’article présente des méthodes pour prendre en compte les effets de la sélection et
de la précision variable des prédictions et des plans d’expérience pour minimiser les effets
de la parenté et des covariances entre les prédictions de VG à partir de l’estimation des
effets fixés. La régression des VG prédites dans le milieu 2 en fonction des VG prédites
dans le milieu 1 n’est généralement pas affectée par la sélection dans le milieu 1, mais
la corrélation et la régression sont toutes deux influencées par les covariances entre les
prédictions de VG intrn-milieu. D’une manière générale, une grande prudence est requise
dans l’interprétation d’associations entre des valeurs génétiques prédites dans différents
milieux.

prédiction de valeur génétique / corrélation génétique / régression / indice de

sélection / meilleure prédiction linéaire sans biais

INTRODUCTION

Procedures to estimate additive genetic correlation (rG) between expressions of the
same trait in different environments were introduced by Falconer (1952), Robertson
(1959), Dickerson (1962) and Yamada (1962). The procedures are analogoes to those
for estimation of genetic correlation between 2 traits in the same environment,
but recognize that performance is normally not measured on the same animal in
multiple environments. Instead, related animals (often half-sibs) are produced in
each environment and rG is derived by comparing the resemblance among relatives
in different environments to that observed among relatives in the same environment.

In single-generation experiments utilizing half-sibs, sires can produce progeny in
pairs of environments. If sires are evaluated in environment 1 before being used
in environment 2, divergent selection of sires can increase precision of estimates of
the genetic regression of one trait on the other when a fixed number of progeny
is measured (Hill, 1970; Hill and Thompson, 1977). This strategy makes use of
the fact that ’selection of sires biases correlation between parent predicted breeding
value (BV) and offspring performance but does not affect the regression of progeny
performance on parent predicted BV so long as there is no selection of progeny
records.

Data from industry performance-recording programs often include records of
relatives evaluated in different environments, but the data structure is not under
experimental control. Animals differ in the amount of information available, and
unknown non-genetic sources of resemblance among relatives can exist. Likewise,
little information may exist on procedures used to select parents in each environ-
ment. Procedures to estimate additive genetic covariances from these industry data
sets exist (Meyer, 1991) and have been used to estimate covariances between ex-
pressions of the same trait in different environments (eg, Dijkstra et al, 1990). These
analyses require that the model includes all genetic and nongenetic sources of re-
semblance among relatives and that information used to select parents be included
in the data. Large numbers of records often exist, but only a fraction of them mey
represent records of relatives in different environments. Restriction of data to only
records of animals with close pedigree ties across environments is tempting to reduce
computational requirements, but may violate assumptions regarding selection.



If predicted BV for the same animals in different environments were derived
using only data from within each environment, correlations among predicted BV
across environments should provide information about rc. Observed correlations in
such situations (Oldenbroek and Meijering, 1986; DeNise and Ray, 1987; Tilsch et
al, 1989a,b; Mahrt et al, 1990) were usually < 1, but, as noted by Calo et al (1973)
and Blanchard et al (1983), the expected value of the correlations is also < 1, even
if the underlying genetic correlation is unity. Thus correlations between predicted
BV in different environments must be interpreted relative to their expected value.

This paper will consider the expected values of observed correlations and consider
alternative experimental designs. Expected values of correlation and regression
coefficients under ideal conditions will first be reviewed. Effects of non-random

selection, variation in the accuracy of BV predictions, relationships among animals
within and across environments, and covariances among BV predictions arising
from estimation of fixed effects under best linear unbiased prediction (BLUP) will
then each be considered.

RELATIONSHIP BETWEEN PREDICTED BV
IN 2 ENVIRONMENTS

Let a population in environment 1 have additive genetic variance Qul for some
trait. Predict BV (Mi) in that environment, and choose m sires to produce progeny
in environment 2. Predict BV in environment 2 (Û2) using only data from that
environment. Let the additive genetic variance for the trait in environment 2 be
ol u 22and the genetic correlation between BV in environment 1 (ul) and 2 (u2) be rG.
Let the accuracy of BV prediction, al and a2 for environments 1 and 2, respectively,
be the correlation between actual and predicted BV and be constant within each
environment.

Under certain conditions, the expected correlation between predicted BV in the
2 environments (Tulu2! is a,rGa2 and rG can be estimated as rG = r&mdash; ! /ala2-ul!!2) Ul 2

The conditions include (Taylor, 1983): 1) no environmental correlation between
performance in the different environments; 2) no relationships among parents of
measured animals; and 3) no other covariances among predicted BV within either
environment. An additional assumption (4) is that sires are chosen at random.
For sire evaluation with these assumptions, a ij 2 = nij/(nij + A) where nij is the
number of progeny for sire i in environment j and A is the ratio of residual to
sire variance. Assumption (1) is normally met if different animals are measured
in different environments. Assumptions (2) and (4) can be met through choice of
sires. Assumption (3) will not normally hold for BLUP, but may approximately
hold under some conditions.

The regression (b) of u2 on ill has the expectation:

such that TO = b!2u1 (Q!1 /a2!!z ). Taylor’s (1983) assumptions are required for
this expectation, but random selection of sires is not. Knowledge of a!l and Qu2 is

required to calculate the expected regression coefficient and for prediction of ui and



u2. Effects of using incorrect values of o,2 on estimates of rG will not be considered

further, but may be important.
Expected confidence limits for observed correlation (F) and regression coefficients
(b) can be used to evaluate experimental designs in terms of their ability to detect
significant departures of r and from their expectations. For correlation analysis,
Fischer’s z = 0.5[ln (1 +r) -In (1 - r)] (Snedecor and Cochran, 1967) has variance of
! (m-3)-1 where m is the number of sires in the sample. For ) r) 6 0.65, confidence
bounds on F are of similar width at fixed m, whereas for Irl > 0.65, confidence
bounds narrow with increasing r. Large numbers of sires are thus required if
accuracies are low to avoid confidence limits that overlap 0.

For regression analysis, variance of b [V(b)] is:

(Snedecor and Cochran, 1967) where Q!2I!1 is the variance in Û2 at a fixed value of
! U2 Ut 
Ûl (ie, the mean square for deviations from regression) and SS(ul) is the sum of
squares for ul. Given T_aylor’s (1983) assumptions for m sires sampled at random
from environment 1, V(b) is:

Numbers of sires and progeny required to detect significant departures of 6 from
its expected value are given in figure 1 for several values of rc, au, , O&dquo;U2 and al = a2
or al = 0.95. When al = a2 (eg, when sires are being proven simultaneously in 2
environments), numbers of progeny required in each environment to reject the null
hypothesis that rG = 1 are minimized at aj = 0.7 to 0.8 for rG between 0.5 and
0.8. For al = 0.95 (eg, when proven sires are chosen from environment 1), progeny
numbers in environment 2 are minimized with one progeny per sire, but increase
little until a2 exceeds 0.5 to 0.6. Thus relatively efficient designs at al = 0.95 would
include 35 to 45 sires with 400-500 progeny at rG = 0.6, but 250-400 sires with
1200-1300 progeny at rG = 0.8.

Critical numbers required for correlation analysis were similar to those for

regression analysis at low accuracies and rG, but lower at higher accuracies due
to asymptotic declines in the width of confidence intervals as expected r increased.
The ratio of the critical number of sires for correlation analysis to critical number for
regression analysis (SRAT) was predictable (R2 = 0.983) as a function of q = ala2
and re such that SRAT = 1.115-0.101 q-0.667 q2-0.161 1 rG . This ratio adjustment
can be applied directly to values in figure 1 to approximate critical sire and progeny
numbers for correlation analysis.

The above derivations assume that accuracies are calculated correctly in both
environments. Under BLUP, accuracies of ui for non-inbred animals are given by
(1 &mdash; Ci2/Q!)’S where Cii is the ith diagonal element of C22, the prediction error
covariance matrix of u (Henderson, 1973). If the model is complete and properly
parameterized, accuracies are expected to equal correlations between actual and
predicted BV. In most applications, u is derived by iterative solution of Henderson’s
(1963) mixed model equations (MME) rather than by direct inversion. Diagonal





elements of C22 are approximated but off-diagonal elements of C22 are usually
not estimated. To date, no completely satisfactory procedures to obtain diagonal
elements of C22 exist. Alternative methods have been presented by Van Raden and
Freeman (1985), Greenhalgh et al (1986), Robinson and Jones (1987), Meyer (1989)
and Van Raden and Wiggans (1991). Evaluation of procedures to estimate accuracy
is beyond the scope of this study, but the assumption that accuracies are estimated
correctly is critical to the discussion.

Effects of departures from the ideal conditions described above will now be
discussed.

Effects of non-random selection from environment 1

Let sires be non-randomly selected based on Ûl and accuracies be constant within
each environment. Let unselected population variances, covariances, correlations
and regressions be symbolized by Q2, 0&dquo;, r and b, respectively, and let V, Cov,
Corr and Regr respectively represent observed values for some sample from the
population. For truncation selection on ul,

where w = 1 - V(Û¡)/0&dquo;1 (Robertson, 1966). For directional truncation selection,
m

w = i(i &mdash; x) and for divergent truncation selection w = -ix where i is the
standardized selection differential (Becker, 1984) and x is the truncation point on
a standard normal curve (Snedecor and Cochran, 1967) corresponding to random
selection of sires from the upper or lower fraction, p, of the ul distribution for
directional selection or from the upper and lower fraction p/2 for divergent selection.
Also:

(Hill, 1970; Johnson and Kotz, 1970; Robertson, 1977). The observed correlation
is thus biased by selection but the observed regression is not, and the deviation of
Regr (u2u1 ) from its expected value provides a test of the hypothesis that rG = 1.0.

If selection is non-random but not clearly directional or divergent or not based on
truncation, additional complications arise. To account for such selection, let V(Ei )
be calculated for the selected sample and define w empirically as the observed value
1- V(iil)lo,!! . Use of this empirical value of w to predict rG using equation [3] was

U¡ i

evaluated by computer simulation. Predicted BV for the ith sire in environment 1
was simulated as:



where 61i is a random normal deviate (SAS, 1985), 0&dquo;;B = 315 and al = 0.7.

Predicted BV in environment 2 were then simulated for a2 = 0.7 and Q!! oru2 as:

Three selection scenarios (SS) were considered:
SS1. 80% divergent, 20% random: 80% of the bulls chosen such that lxl > 1.282(i =

1.755) and 20% chosen at random;
SS2. 50% high, 50% random: 50% of the bulls had x > 0.842 (i = 1.400);
SS3. 50% high, 50% stabilizing: lxl < 0.5 for 50% of the bulls and x > 1.282 for

50% of the bulls.
Each scenario was repeated for rG = 1.0 or 0.5 and replicated 10 times.
Each replicate contained 5 000 selected animals.

Agreement between predicted and simulated values of V(ii2) and Corr(iclu2)
(table I) was within theoretical 95% confidence limits of the expected value
(Snedecor and Cochran, 1967). Thus equation [3] predicted Corr(ûlû2) satisfac-
torily in bulls selected non-randomly on ul with fixed accuracy al.

With selected sires, the expected V(b) is:

using values from equations [1] and [3]. The SD of is inversely proportional to
vi --w and varies from 48 to 243% of its value when w = 0 as w varies from
- 3.39 (divergent selection from the top and bottom 5% of the population) to 0.83
(selection from the top 10% of the population). Sample sizes to detect significant



departures of Regr(u2u1) from its expectation using selected sires can be derived
from figure 1 by dividing sire and total animal numbers by 1 - w.

Effects of variation among animals in accuracy of predicted BV

Calo et at (1973) and Blanchard et at (1983) derived the expected correlation
between predicted BV for 2 traits when BV for each trait were estimated in

separate single-trait analyses and individuals differed in accuracy of BV prediction
as C’OT’r(uiM2) = rGal2 for:

(see Appendix) and recommended using this expression to estimate rG from ob-
served COrr(iilii2). Similarly:

Taylor (1983) criticized equation [5] as unstable, however, asserting that it

may yield estimates of rG that are outside the parameter space, and presented
assumptions required to allow estimation of rG with this equation. Taylor (1983)
concluded that, if all assumptions are met, equation [5] is appropriate to estimate
rG so long as the a! are derived from MME as (1 - C,,/0,2).

The equations of Calo et al (1973) and Blanchard et al (1983) do not consider
selection on Ûl. With selection, equation [5] appears appropriate to estimate
Corr(ulu2) for the selected sample, but not within the unselected population.
Equations [3] and [5] could, however, perhaps be combined to give the expected
correlation in a selected sample of animals with variable accuracy as:

To evaluate equation [7], several accuracy scenarios (AS) were considered by
simulating samples from the ui distribution.
AS1: 20 000 animals from the upper 10% of the ul distribution. al varied uniformly

over the interval 0.7 to 0.95.
AS2: 20 000 animals from the upper and lower 10% of the ui distribution. al varied

uniformly over the interval 0.7 to 0.95.
AS3: 10 000 animals from the upper 10% of the Ûl distribution with al uniformly

distributed over the interval 0.7 to 0.95 and 10 000 animals selected from the
lower 10% of the distribution with al uniformly distributed over the interval
0.5 to 0.7.

AS4: 10 000 animals from the upper 10% of the ui distribution with al uniformly
distributed over the interval 0.7 to 0.95 and 10 000 animals selected from



the bottom 80% of the distribution with al uniformly distributed over the
interval 0.5 to 0.7.

ASS: 15 000 animals from the upper 10% and 5 000 animals from the lower 80%
of the Ûl distribution with al uniformly distributed over the interval 0.7 to
0.95.

AS6: 5 000 animals from the upper 10% and 15 000 animals from the bottom 80%
of the Ûl distribution with al uniformly distributed over the interval 0.5 to
0.995.

AS7: 10 000 animals from the upper 10% of the Ûl distribution with al uniformly
distributed over the interval 0.795 to 0.995 and 10 000 animals from the lower
80% of the distribution with al uniformly distributed over the interval 0 to
0.50.

a2 was uniformly distributed over the interval 0.5 to 0.7 for all scenarios. Each
scenario was repeated for rc = 0.5 or 1.0 and replicated (table II). Empirical
calculation of w requires use of a2 , which varies with accuracy. Simulated values

! 
ul

of Mi were thus standardized by dividing by aliaul and empirical w calculated as
1 &mdash; V(ul) using standardized ul.

For all accuracy scenarios, observed Regr(u2u1) agreed closely with predicted
values from equation [6] (table II). Observed values of Corr(ulu2) were usually
also close to expectations from equation [7], but with some systematic departures
from expectations. For directional selection (ASl), the mean observed Corr(ulu2)
was slightly but significantly larger than predicted (by 0.010 t 0.002 for both rG).



Thus equation [7] produced a small negative bias under directional selection with
variable accuracy. This result was confirmed by producing 10 more replicates at
rG = 1; the results were identical.

For divergent selection, differences between observed and predicted correlations
were again small, but sometimes significant and now negative for AS2, 3, 5 and 6,
ranging from -0.001 to -0.008 (!0.002). However, with both non-symmetrical
selection from high and low groups and different accuracy distributions between
groups (AS4 and AS7), observed correlations were considerably larger than pre-
dicted, especially for rG = 1 (table II). The appendix shows exact expectations for
correlations and regressions involving ui and Û2 under non-random selection from
environment 1 and variable accuracies within environments. Correlation between
means and accuracies of divergently selected groups violate some of the assump-
tions used to derive equation [7] and presumably account for the departures from
predicted values in AS4 and AS7.

Equation [7] thus produced slightly biased predictors of Corr(EiE2) but still

appears useful, especially when exact selection rules are unknown. However, biases
in predicted values of Corr(ûl Û2) in equation [7] will be multiplied by the inverse
of the coefficient of rG in equation [7] to estimate rG. Potential bias in re thus is
larger with lower aj or more directional selection. If V(ui) is larger than expected
from random selection and greater precision than that provided by equation [7] is

desired, ApPendix equations can be used.
The expected correlation between Ûl and Û2 thus depends on the distribution

of accuracies within each environment, the selection applied on Ûl (quantified by
w). and rG. To evaluate net effects of these variables, values of Corr(ûlû2) from
equation [7] were calculated for rG = 1 and when a12 varied from 0.10 to 0.90 and w
varied from -3.3 to 0.9 (table III). For re = 1.0 and a12 = 0.90, Corr(ulu2) varied
from 0.55 to 0.97 due to selection, although rG exceeded 0.79 so long as directional
selection was not intense (w 6 0.6): For w = 0 and rG = 1.0, Corr(ulu2) equalled
al2, but still varied from 0.10 to 0.90, depending on observed values of al and a2.

Effects of relationships

Previous results assume independence of predicted BV within each environment.
However, relationships among animals lead to covariances among predicted BV
within and across environments. If ui and U2 are predicted by BLUP, covariances
among predicted BV within environments also arise from estimation of fixed
effects. These covariances affect expectations of both Corr(ulu2) and Regr(u2u1).
Their impact is difficult to generalize, depending upon the extent and nature of
relationships in the data and the distribution of records among fixed effect classes.

Covariances among predicted BV associated with relationships and estimation
of fixed effects arise simultaneous in BLUP solutions to MME, but effects of
relationships alone can be seen under selection index, or best linear prediction
(BLP), assumptions of known mean and variance for both ul and u2. In that case:

where Ûj is a vector of breeding value predictions for environment j and yj is

the data vector in environment j with covariance matrix Vj. Hj is the covariance



matrix between yj and u’.. For non-inbred animals, Hj = ZjG = ZjAo, 2 where
Zj is the incidence matrix relating yj to Uj, and G and A are additive covariance
and numerator relationship matrices, respectively, for animals in Uj. The covariance
matrix of Gj (Qj ) and the covariance matrix between Ûl and u2 (Qi2) are thus:

Expectations of sample variances of Uj (s3- ) and covariance between Mi and
_ 

Uj

u2(Sulu2) are functions of elements of Qj and Q12:

where tr is the trace of the matrix and sum is them sum of all elements. If animals
recorded in the 2 environments resemble one another only because of relationships
to animals sampled from environment 1,



This assumption is warranted if animals are evaluated using unrelated popula-
tions of mates in the 2 environments but may not be correct if mates are poten-
tially related across environments. If selected animals are likewise unrelated, and
relationships among recorded animals within each environment arise only through
relationships to selected animals, Qj will be diagonal with elements a? . 2 for the
ith animal in the jth environment, A is an identity matrix of size m and Qlz is di-

agonal with elements aiiaiirGaul!u2. Sample correlation and regression coefficients
then have expectations equal to those previously discussed.

In most applications, Qj are not diagonal and off-diagonal elements are not
calculated due to the nature and size of V! 1. Thus explicit consideration of off-
diagonal elements of Qj may not be possible unless the data set is small or highly
structured. However, if the accuracy of all Ûij approaches 1, Qj approaches Ao, &dquo;j 2
(ie, Qu --! or2 uj) and Q12 approaches ArcO&dquo;utO&dquo;u2 such that Corr(ûlû2) = TG and

°/J ’

Regr(û2û¡) = rCO&dquo;U2/O&dquo;Ut’
A more realistic situation is one in which sires from environment 1 have a,

approaching 1 but are evaluated in environment 2 with a2 < 1. In this case,
Ql = AQ!I,Qz = H2VZ lHz, and Q12 = Q2(rcO&dquo;Ut/O&dquo;U2)’ These quantities, and
associated expected sample variances and covariances, could be obtained if the size
or structure of the data allows calculation of all elements of Q2 and would allow
derivation of an exact predicted value for C’orr(uiU2)-
A small example will demonstrate the impact of relationships on Corr(ûlû2)

and Regr(û2ûl), which are equal in these examples. Let hz = 0.25, Qu, = O&dquo;U2 = 1
and rG = 1. Let 3 sires produce 8 progeny each in each of 2 environments.
If sires are unrelated and progeny are related only through the sires, sample
variances and covariances involving Ûl and Û2 equal expected population values,
and Corr(ûl Û2) = alaz. If all 3 sires are full sibs, Qj and Qlz are no longer diagonal
and al = a2 = 0.643. The expected Corr(ûlû2) is 0.211 versus ala2 = 0.414. If
sires are half sibs, Corr(ûl Û2) = 0.286 versus ala2 = 0.365, reducing bias by one
half as relationships among sires decline. Still, with many close relationships among
sires, ala2 may considerably overestimate the expected correlation.

If only 2 of the 3 sires are full sibs, bias is reduced. al = a2 = 0.621 for related
sires and 0.590 for the unrelated sire, and a12 = 0.374 (equation [5]). Now a12
overestimates the observed correlation by only 3.9% (0.374 versus 0.360). Thus if
sampled animals represent a reasonable number of unrelated families, Qj and Q12
are correspondingly sparse and little bias in Corr(uiU2) is expected.

Turning to effects of relationships within environments, let the 3 sires be
unrelated but cross-classified within each environment with only 2 dams. In that
case, al =az =0.566 and Corr(iiIU2) = 0.364 which is 13% larger than ala2 = 0.321.

However, under the more realistic assumption of cross-classification with 2 maternal
grandsires, Corr(ûl Û2) = 0.352 versus alaz = 0.338, yielding little bias. When sires
were cross-classified with 8 dams, Corr(ûlû2) = 0.364 versus ala2 = 0.349, again
yielding little bias. These examples suggest selection of widely proven, lowly related
animals from environment 1 followed by evaluation in environment 2 using a broad
sample of mates.



Effects of covariances arising from estimation of fixed effects

If fixed effects are estimated simultaneously with BLUP of iij, Mallinckrodt (1990)
noted that off-diagonal elements of Qj and Q12 are not zero, even in the absence
of relationships. By BLUP:

for # = (X!V! 1X!)-1X!V! ly! and P_, = X!(X!V! 1X!)-1X! and wherep is the
vector of fixed effects with incidence matrix X.

The covariance matrix of Ûj is:

composed of a term due to BLP relationships minus a term due to estimation of
fixed effects. If relationships across environments arise only through sires sampled
from environment 1 such that Cov(yly2) is given by equation (10], Q12 is still given
by equation [11], but regardless of the relationship structure of the data, Qj now

approaches a diagonal matrix only as aj approach 1. Also, for a given number of
progeny, aij will be less for BLUP than for BLP and depends on the number of sires
and their distribution among fixed effect classes. The above solutions are identical
to those obtained from MME (Henderson, 1963, 1984) such that:

The impact of fixed effect estimation on Corr(ûlû2) can be seen most readily
using MME for a sire model without relationships among animals in u and where
P includes only contemporary group effects. Note that in all remaining examples,
Corr(£iE2) = Regr(u2u1) when al = a2. For such a model, after absorption of
fixed effects into u equations and factoring of residual variance from both sides of
the equation, the coefficient matrix for u has:

(Do, 1991) where A is the ratio of residual to sire variance and ni.,n.k and

nik are numbers of records for sire i, contemporary group k (of g) and sire x
contemporary group subclass ik, respectively. For balanced data, nik = n for
all i and k, diagonals reduce to [gn(m - 1)/m + A][vs(gn + A) for BLP] and



off-diagonals reduce to (-gn/m) [vs 0 for BLP]. The corresponding inverse of
the coefficient matrix has diagonal elements of (gn + mA)/[m(gn + A)] and off-
diagonals of gn/[mA(gn + A)] (Searle, 1966). Q will have corresponding diagonal
and off-diagonal elements of gn(m &mdash; 1)/!m(gn + A)] = a2 and -gn/[m(gn + A)],respectively. s2 is thus gn/(gn + A) = a !(m - l)/77t]. If design matrices are the
same for both environments and rG = 1, Q12 will have diagonal elements of
92n 2(M_ 1)/[,rn(gn+A)21 = a4m/(m-1) and off-diagonals of -g2n2/[m(gn+À?] =
- a9m/(m - 1) to give S12 = g2n2/(gn + A)2 = a4m2/(m - 1)2 and Corr(ûlû2) =
gn/(gn + A) = a2m/(m - 1). With balanced designs, Corr(ulu2) has the same
expectation under both BLUP and BLP, but accuracies are lower under BLUP such
that ala2 from BLUP underestimates expected Corr(ûlû2). The extent of bias is
proportional to m/(m&mdash;1) and decreases from 20% at m = 5 to 11% at m = 10 and
2.6% at m = 40. This expectation is maintained if design matrices differ between
environments provided designs are balanced within each environment.

The situation is more complicated for unbalanced designs, but general conclu-
sions are similar in that the number of sires compared as contemporaries needs to
be large enough to minimize confounding between sire BV predictions and fixed
effects estimates. Otherwise, BLUP accuracies are reduced and their product un-
derestimates expected Corr(ulu2). For example, consider a block of 8 sires with
progeny distributed over 4 contemporary groups (eg, 4 yr of an experimental eval-
uation in some environment) as shown in table IV. The size of the experiment may
be varied by increasing the number of sire blocks (to 16, 24, etc, sires), by varying
the number of progeny per sire and contemporary group (n), by replicating the sire
block over additional contemporary groups (8, 12, 16, etc), or by a combination of
these approaches. The same design is assumed for each environment.

Define bias (fig 2) as the difference between the expected Corr(ulu2) calculated
from equations [8] and [9] and the product ala2 which is constant for all sires
in this design. With n = 6 and only 8 sires, bias was relatively large with
Corr(£1 £2 ) = 0.41 vs ala2 = 0.35. Bias decreased as number of sire blocks increased
and was < 0.03 with 24 sires (12/contemporary group). Doubling n or replicating
sire blocks across more contemporary groups (not shown) did little to change the



pattern of bias. Expected values of Corr(ûlû2) were also compared to the product
of BLP accuracies calculated ignoring contemporary group effects. The product of
BLP accuracies overestimated Corr(ulu2) as shown by negative bias in figure 2,
but the product of BLP accuracies was superior to the product of BLUP accuracies
as an estimator of Corr(ulu2).

Design like that in table IV can be used under experimental conditions, but
are less feasible when sires are compared on cooperator farms. It particular, use
of large numbers of experimental sires on individual farms may not be feasible.
Instead, sires from environment 1 may be tested together on several farms in a
loosely connected design but with only a few sires represented on any one farm.
If only data from introduced sires are used in the evaluation, considerable bias in
Corr(ulu2) may result. However, this bias can be reduced if introduced sires are
evaluated with sires represented only in environment 2 and data from all sires are
included in the evaluation. To demonstrate this effect, two additional sires were
added to each contemporary group in table IV to give 16 sires/sire block with
n = 6. Added sires produced progeny in only one contemporary group. Bias in



resulting values of Corr(ulu2) for introduced sires was reduced (fig 2). Thus if
sires from one environment are introduced into another and if evaluation occurs
primarily in cooperator herds, sires should be evaluated in contemporary groups
containing reasonably large numbers of sires (either introduced or native) to increase
precision of estimates of contemporary group effects, and data from all sires should
be included in the evaluation.

CONCLUSIONS

Interpretation of correlations between predicted BV in different environments is
not straightforward. Expectations of such correlations are influenced by accuracy
of evaluation of animals in both environments, by selection of animals chosen for
evaluation, by relationships among chosen animals and by the design of the evalua-
tion in both environments. If animals are chosen from environment 1 for evaluation
in environment 2, Regr(£2£1 ) may be a more useful statistic than Corr(ulu2) be-
cause it is unbiased by selection on iij. However, both Regr(û2û¡) and Corr(£1£2 )
are biased by covariances among predicted BV within environments. Also, use of
proven sires (a -! 1.0) from environment 1 simplifies interpretations and reduces
the number of sires required to attain a specific level of significance for measures of
association.

Equations in this paper allow calculation or approximation of expected values of
Corr(£1£2) under various sorts of selection and with variable accuracies in each
environment (equation [7]). Evidence for selection can be obtained empirically
if necessary by comparing observed V(Û¡) to its expectation from Blanchard et
al (1983) (see Appendix). Expected values of both Corr(£1£2) and Regr(û2û¡)
may involve off-diagonal elements of Qj matrices which are often not available for
BLUP BV predictions. Effects of off-diagonals may be minimized by ensuring that a
number of families are represented in both the experimental animals and their mates
and by using several (eg 8-16) sires per contemporary group. Use of small numbers
of sires per contemporary group can lead to considerable underestimation of the
expected value of Corr(£1 £2 ) if off-diagonal elements are not considered. Prediction
of expected values of Corr(£1 £2 ) and Regr(ii2iii) from observed accuracies may be
superior when selection index (BLP) rather than BLUP accuracies are used.
A number of potential difficulties in deriving and interpreting Corr(ûl Û2) have

not been explicitly considered. Accuracies are assumed to be properly calculated,
even though approximations are normally used and are probably not completely
satisfactory. Additive genetic variances must be known for both environments in or-
der to calculate ul and U2 correctly and to interpret Regr(u2u1). If sires introduced
into environment 2 for evaluation are a selected sample from environment 1 and
BLUP evaluations are used, grouping strategies and(or) adjustment of covariances
may be required to derive unbiased ii2- Values of o,2 U2 for animals selected from
environment 1 will depend both on selection applied and on rG. Thus results given
for correlations involving BLUP predictions of Ûj are probably striclty correct only
for random selection of sires. See Diaz (1992) for additional discussion of effects of
selection and grouping on Corr(£1£2) with BLUP predictions. Despite these prob-
lems, however, correlations and regressions involving BV predictions in different



environments will often be relatively easy to obtain and, if properly interpreted,
can provide information on rG.

APPENDIX

This appendix addresses general expectations for variances and covariances of
ill and M2 with non-random selection on Ûl and variable accuracies in both
environments. Sample m animals from environment 1. If sampling is non-random
and selection rules are not specified or if accuracies differ, the resulting distributions
of uj and Mz are mixtures of m unique distributions. The sample sum of squares
(SS) of ui is:

The expected value (E) and variance of Û2i with accuracy a2i are:

The resulting expected SS(u2) and sum of cross-products (SCP) are:

Expected correlation and regression coefficients can be derived from these SS
and SCP. If animals are chosen at random, ul and U2 have mean 0 and expected
Corr(£1£2) is given by text equation [5] (Blanchard et al, 1983).

If selection is non-random but accuracies are constant within environments,
formulae for SS(u2) and SCP(ulu2) become consistent with text formulae 2 and
3. For directional selection with constant accuracies, w can be replaced by i(i &mdash; x)
without loss of generality. For divergent selection, let fraction wH of the selected
animals come at random from the upper fraction OH of the distribution with



standardized mean and truncation point of iH and xH, respectively. Let fraction W L
come from the lower fraction ø L. Let accuracies within high and low groups, and
within environment 2, be constant at alH, alL and a2, respectively. V(û¡) within
selected groups are [1 - iH(iH - xH)]aîHO&dquo;î and [1 - i!(iL - xL)]aîLO&dquo;I. The
expected value and variance of ul and u2, and their expected covariance are:

The resulting Corr(ûlû2) reduces to text equation [4] only if alH = alL and
selection is symmetrical (ie, wH = WL and iH = -iL).
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