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Summary - For a quantitative trait controlled by polygenes and a major locus with 2
alleles, equations for the maximum likelihood estimation of major locus genotype effects
and polygenic breeding values, as well as major allele frequency and major locus genotype
probabilities, were derived. Because the resulting expressions are computationally un-
tractable for practical application, possible approximations were compared with 2 other
procedures suggested in the literature using stochastic computer simulation. Although the
frequency of the favourable allele was seriously underestimated when major locus geno-
types were entirely unknown, the proposed method compares favourably with the 2 other
procedures under certain conditions. None of the procedures compared can satisfactorily
separate major genotypic effects from polygenic effects. However, the proposed method
has some potential for improvement.

major locus / genetic evaluation / segregation analysis

Résumé - Évaluation génétique pour un caractère quantitatif contrôlé par des
polygènes et un locus majeur à génotypes inconnus ou seulement partiellement
connus. Pour un caractère contrôlé par des polygènes et un locus majeur à 2 allèles, les

équations pour l’estimation du maximum de vraisemblance des effects génotypiques au locus
majeur et des valeurs génétiques polygéniques ont été dérivées, permettant aussi d’estimer
la fréquence de l’allèle majeur et les probabilités des génotypes à ce locus. Les expressions
obtenues étant incalculables en pratique, des approximations possibles ont été comparées
par simulation stochastique à 2 autres procédures proposées dans la littérature. Bien que
la fréquence de l’allèle favorable soit sérieusement sous-estimée lorsque les génotypes au
locus majeur sont entièrement inconnus, la méthode proposée a quelques avantages sur
les 2 autres procédés sous certaines conditions. Aucune des procédures comparées n’est



satisfaisante pour séparer l’efJet des génotypes majeurs des effets polygéniques. Cependant,
la méthode proposée est susceptible d’être améliorée.

locus majeur / évaluation génétique / analyse de ségrégation

INTRODUCTION

Statistical methods based on the infinitesimal model, the assumption of many un-
linked loci all with small effects controlling quantitative traits, have been success-
fully applied in animal breeding. An increasing number of studies, however, have
reported single loci having large effects on quantitative traits. Such loci are referred
to as major loci. Examples are the prolactin (Cowan et al, 1990) and the weaver
loci (Hoeschele and Meinert, 1990) in dairy cattle, and the halothane sensitivity
locus (Eikelenboom et al, 1980) and a locus acting on &dquo;Napole&dquo; yield (Le Roy et al,
1990), a pork quality trait, in pigs. Only in the case of the halothane locus has the
responsible gene been identified and procedures for its genotyping become available
(l!TacLennan and Phillips, 1992).

There is no difficulty with genetic evaluation for traits controlled by a major
locus and polygenes when major locus genotypes are known. A fixed major locus
effect has to be added to the linear model and major locus effects and polygenic
breeding values can be estimated by the usual mixed model equations (Kennedy et
al, 1992). When genotypes are unknown, however, satisfactory statistical methods
are still lacking. Selection decisions could possibly be based on animal models that
include the major locus effects in the polygenic part of the model. In cases where
the allele has some positive effect on 1 trait but negative effects on others, it would
be desirable to have separate estimates of the major locus and polygenic effects
available. The 2 estimates would then be combined according to the breeding
objective. Because genotyping of all the animals of a population is likely to be
too expensive if at all possible, statistical methods are required that estimate
major locus genotype effects as well as polygenic effects and major locus genotype
probabilities for each candidate.

Such a method was first proposed in human genetics by Elston and Stewart
(1971). The unknown parameters of the model are estimated by maximizing the
likelihood of the data. For models with both major locus and polygenic effects exact
calculations are very expensive and become unfeasible for pedigrees with more than
! 15 individuals. Several studies compared the power of different approximations
of the likelihood function to detect a major locus in half-sib family structures
in animal breeding data (Le Roy et al, 1989; Elsen and Le Roy, 1989; Knott et
al, 1992a). Hoeschele (1988) developed an iterative procedure to estimate major
locus genotype probabilities and effects as well as polygenic breeding values. The
equations produced for the estimation of genotype probabilities were derived for
simple population structures and were based on an approximation of the likelihood
function. Kinghorn et al (1993) used the iterative algorithm of van Arendonk
et al (1989) to estimate genotype probabilities and estimated genotype effects by



regression on genotype probabilities. A method was proposed to correct for the bias
inherent in such analyses.

The objectives of this study were: i) to derive exact maximum likelihood equa-
tions to estimate major locus genotype probabilities and effects for a quantitative
trait with mixed major locus and polygenic inheritance without any restrictions on
population structure; ii) to examine possible approximations; and iii) to compare
these approximations with the methods of Hoeschele (1988) and Kinghorn et al
(1993) by stochastic computer simulation.

METHODS

Model

Consider a quantitative trait which is controlled by 1 autosomal major locus with
2 alleles, A and a, and many other unlinked loci with alleles of small effects.
Mendelian segregation is assumed for all alleles at all loci. The allele with the

major effect, A, has a frequency of p in the base population, which is assumed to
be unselected, not inbred and in Hardy-Weinberg and gametic equilibria. In the
base population the 3 possible genotypes at the major locus (AA, Aa and aa),
which will be denoted as 1, 2 and 3 throughout this paper, are therefore expected
to occur in frequencies of p2, 2p(1-p) and (1-p)2, respectively. Because genotyping
of animals might be impossible or too expensive, we assume for the moment that
the genotypes at the major locus are not known. With 1 observation per animal
the following mixed linear model can be formulated:

where y = observation vector
b = vector of non-genetic fixed effects
g = vector of fixed major locus genotype effects [g1 92 g3!!
a = vector of random polygenic breeding values
e = vector of random errors

X,Z = known incidence matrices
T = unknown incidence matrix indicating true major locus genotypes of all

the animals in the population
The expectation and variance of the random variables are assumed to be:

The linear model is mixed in both the statistical sense (Henderson, 1984), as it
contains fixed and random effects, and the genetic sense (Morton and MacLean,
1974), as it contains a single locus and a polygenic effect. Strictly additive gene



action of the polygenes is assumed but dominance is allowed for at the major
locus. In order to keep the model simple, it is further assumed that the variance

components Qa and Qe are known. This assumption implies that the genetic
variance caused by polygenes is known but not the genetic variation caused by
the segregating major allele, which is determined by the major genotype effects
and frequencies. This critical assumption has to be kept in mind when discussing
tlte simulation results.

Likelihood function

The likelihood for mixed model [1] was first discussed by Elston and Stewart (1971).
The likelihood can be written as:

is a normal density and Pr(Tlp) is the probability of T given the allele frequency
p and the pedigree information. Because variance components are assumed to be
known, cl = (27r)&dquo;°’!&dquo; - !V ! .ol e 21-1.1, with no as the number of observations, is
a constant. Following Elston and Stewart (1971), Pr(Tlp) can be computed as a
product of probabilities:

,,

where N is the total number of animals in the population and Pr(! !s!d) is the

probability of animal i having genotype indicated by ti, the ith row of T, given
the genotypes of its parents s and d, and is assumed to be known. Elston and
Stewart (1971) give Pr(ti!t9,td) for autosomal and sex-linked loci. When the parents
are unknown Pr(tz!ts,td) is replaced by the frequency of the genotype ti in the
base population. Known major locus genotypes can be accomodated by setting
Pr(! !,!) to zero whenever ti conflicts with the known genotype of animal i.

With the base population (animals with unknown parents) in Hardy-Weinberg
equilibrium, Pr(Tlp) can be written as:

where nl, n2 and n3 are the number of base animals of genotype AA, Aa and aa,
respectively, and nb = nl + n2 + n3 is the total number of base animals.

With 3 possible genotypes the sum in [2] is over 3N elements. For 20 animals the
sum is already over 3.5 x 109 possible incidence matrices T. Whenever T conflicts
with the pedigree information Pr(Tlp) is zero. Therefore, depending on the pedigree
structure, a large number of the elements to sum are zero, but there remains a
considerable number of non-zero elements.



As pointed out by Elston and Stewart (1971) the 3 likelihoods conditional on an
animal’s genotype ti are proportional to the probabilities of animal i having 1 of
the 3 possible genotypes. The conditional likelihoods can be obtained by skipping
animal i in the summation over all possible incidence matrices T.

Maximum likelihood estimation

In order to maximize L(y), we need the first derivatives with respect to b, g and p:

The probability of T given the data and the parameters of the model will be
denoted wT and can be computed as

where c2 is the product of cl and a scaling factor such that E WT = 1. Note that

T
without scaling this sum is equal to the likelihood L(y). After setting to zero and
rearranging we get the 2 following equations:

Solving for p in the last equation leads to:

This equation can be rewritten by replacing 2n1 + n2 by v!. T. [2 1 0!’, with v’ a
row vector of length N with ones for base animals and zeros for the other animals.

Because mT depends on b, g and p, equations [3] and [4] have to be solved
iteratively. Let tu! be wT with solutions for b, g and p after round r replacing the



true values and Q’ = L wTT. Note that the ikth element of Q! at convergence is
T

an estimate of the probability that animal i is of genotype k given the data and the
estimates for the fixed effects b, the major locus effects g and the allele frequency p.
As mentioned above, the same estimate can be obtained by calculating likelihoods
conditional on an animal’s 3 genotypes. Using these definitions, equations [3] and
[4] can be written as:

The solutions for bT, i’ and pr converge to maximum likelihood (VIL) estimates.
Local maxima in L(y) could pose a problem and will be discussed later. Hoeschele
(1988) estimated the allele frequency from the genotype probabilities of all animals
with records whereas [6] considers only base animals, which is in agreement with
Ott (1979). Because genotype probabilities of base animals take information from
their descendants into account, all information on the allele frequency in the base
populations is properly used by !6J.

Animal breeders are not only interested in estimating major locus effects g and
allele frequency p but also in predicting polygenic breeding values a. This is usually
done by regressing phenotypic observations corrected for fixed effects:

where Q is Q! at convergence. Using V-1 = [ZAZ,>.-1 + 1]!! = I - ZMZ’, where
M = [Z’Z + A-I >.]-1 (Henderson, 1984), a can also be computed as:

The same solutions for b, g and a are obtained by iterating on the following
equations together with [6] instead of using (5!, [6] and !7!:

Note that 2.:: wTT’Z’ZT = diag(v§ . q[) = Dr, where vb is a row vector

T

containing the diagonal elements of Z’Z and q[ the kth column of Qr. The



difficulty with this approach is that it is not feasible to compute Q’ and ! tUy - *
T

T’Z’ZMZ’ZT for large populations.

Approximations

Above Qr was defined as:

There are 2 problems associated with the computation of C!’’. Firstly, the
summation is over all possible incidence matrices T and, secondly, a quadratic
form involving V-’ has to be computed for each element in this sum. It can be
shown that the following is an equivalent expression not involving V-1:

where £11 = MZ’(y - Xbr - ZTgr) (Le Roy et al, 1989). Because aT depends
on T, we would have to compute fill for every possible T, which is not feasible.
In order to simplify the computations, we could replace *11 by M which does not
depend on T. Note that âr = L wT’ âT. This approximation was also considered

T

by Hoeschele (1988). The approximated Q! is then:

Instead of using a single estimate of the polygenic breeding value for each animal
irrespective of its genotype, we could use 3 values for each animal depending on
its genotype but independent of the genotypes of all the other animals. A similar
approximation was considered by Elsen and Le Roy (1989) and Knott et al (1992a,
1992b) for a sire model and was found to be superior to [9]. We considered the
following approximation:

where aL the element of aij for animal i with genotype k is calculated as:



where xi and tik are the ith rows of X and ZT, a?3 is the ijth element of A-1,
and cii is the diagonal element of the coefficient matrix in [8] pertaining to the ith
animal equation.

The summation over all possible incidence matrices T in [9] or [10] can be avoided
by using algorithms developed to estimate genotype probabilities. Here, the iterative
algorithm of van Arendonk et al (1989) was applied. This procedure will be briefly
described in the next section.

As with Q! the difficulty with expression E w’ - T’Z’ZMZ’ZT is two-fold;
the sum is over all possible T, and the computation of each element in that sum is
expensive. Let m2! be the ijth element of Z’ZMZ’Z, and tik(tjl) be the elements of
T for animal i(j) and genotype /c(l). Now, the klth element of L wTT’Z’ZMZ’ZT
can be calculated as:

Note that at convergence W’ - tik . <_,; is an estimate of the probability that
T

animal i is of genotype k and animal j of genotype L, given the data. For independent
animals this quantity is equal to q’ ik qj’l the product of the corresponding elements in
Q’’ and, therefore, the contributions of L wTT’Z’ZMZ’ZT and Q&dquo; Z’ZMZ’ZQ’

T
to B’’ cancel out. For dependent animals the contributions to the klth element of
B’ are:

Now if we neglect the dependencies between animals for the computation of

L w2.. tik . tjl we get:
T

and [8] becomes identical to the mixed model equations given by Hoeschele (1988).
Another way to approximate B’’ is to assume that A = I. We then get:

and B’’ simplifies to:



Estimation of genotype probabilities

Van Arendonk et al (1989) developed an iterative algorithm to estimate genotype
probabilities for discrete phenotypes. Kinghorn et al (1993) applied this algorithm
to continuous traits. The comparison of this algorithm with non-iterative methods
revealed some errors in the formulae given in the original paper (LLG Janss and
JAM van Arendonk, 1991; C Stricker, 1992; personal communications). We applied
a corrected version of this algorithm.

For each animal, genotype probabilities from 3 different sources of information
are computed using approximation [9] or [10]. One round of iteration involves 3
steps. First genotype probabilities are computed using information from parents and
collateral relatives proceeding from the oldest to the youngest animal. In the second
step, genotype probabilities are calculated using information from the progeny
proceeding from the youngest to the oldest animal. Finally, genotype probabilities
using information from each individual performance are calculated and the 3 sources
of information combined. The iteration process is stopped when the solutions for
genotype probabilities reach a given convergence criterion.

The algorithm works for simpler pedigree structures as simulated in this study
but does not allow for loops in the pedigree, also known as cycles (Lange and Elston,
1975). Loops in a pedigree occur through genetic paths (inbreeding loops), mating
paths, or a combination of the 2 (marriage loops), eg, a sire mated to 2 genetically
related dams. Both inbreeding and marriage loops are common in animal breeding
data. A non-iterative algorithm for pedigrees without loops was recently proposed,
which should be more efficient than the one used in this study (Fernando et al,
1993).

Method of Hoeschele (1988)

Hoeschele (1988) used a Bayesian approach to derive an iterative procedure to
estimate genotype probabilities Q, allele frequency p and major locus effects

g for simple pedigree structures. The genotype probabilities were estimated by
formulae that were developed for the specific pedigree structures considered using
approximation [9]. In contrast to [6], Hoeschele (1988) estimated p from the
genotype probabilities of all animals with records:

where no is the number of animals with records and vo is a row vector with ones for
animals with records and zeros otherwise. The equations that estimate the effects
of model [1] are the same as [8] approximated with [11]. We applied this method
in the simulation study using the iterative algorithm described above but with
approximation [9] to estimate genotype probabilities instead of the formulae given
by Hoeschele.

Method of Kinghorn et al (1993)

In least-squares analysis it is usually assumed that all independent variables are
known without error. When independent variables are measured with some error,



the least-squares estimates are biased (see, for example, Johnston, 1984, p 428).
Kinghorn et al (1993) treated the unknown incidence matrix T as the unknown
true independent variable and the genotype probabilities Q as an estimate for T
associated with some errors. Using Q instead of T in the model leads to biased
estimates of g*. Kinghorn et al (1993) derived a correction matrix W, such that
g = W!!§* . Given certain assumptions, they showed that W = V!V(, where
Vt is a 3 x 3 covariance matrix of elements in the 3 columns of T and V9 is
the corresponding covariance matrix of elements in the 3 columns of Q. Because
(co)variances in VQ are generally smaller than (co)variances in Vt, major locus
effects are overestimated in absolute terms when using Q instead of T. The
(co)variances in V9 were calculated from the actual solutions for estimates of
genotype probabilities of all animals with records. Covariances in Vt were computed
as:

where q.k is the average genotype probability for genotype k of all animals with
records and can be regarded as an estimate of the frequency of that genotype
in the population. Genotype probabilities were estimated with the algorithm of
van Arendonk et al (1989). This algorithm requires the allele frequency p as an
input parameter. Kinghorn et al (1993) kept the initial value for p constant over all
iterations, ie regarded the initial p as the true value. But if p was known, Cov(tk,t¡)
could also be derived from the expected frequencies of the 3 genotypes. In our
implementation Cov(t!,tl) was computed with [14] and the allele frequency p was
estimated with (13!, which is a natural deduction from !14!.

The linear model can be written in matrix notation as:

Kinghorn et al (1993) assumed that Var(a*) = Var(a) = A - Qa and Var(e*) =
Var(e) = I - Qe. The matrices Q and W are not known and have to be estimated
from the data as described above. Therefore, the following system of equations has
to be solved iteratively:

Estimates for g should be unbiased but estimates for b and a are still biased. We
attempted to correct for the bias in b by adding (X’X)-lX’ZQ(W - I)g’’+1, the
expected difference between br+1 and b*r+1 under the assumptions E(T) = E(Q),
E(a - a*) = 0, and E(e - e*) = 0, to the current solution 6*r+’.



Simulation

The methods of Hoeschele (1988) and Kinghorn et al (1993) were compared with
the method developed in this study applying approximations [10] and [12] using
stochastic computer simulation. Phenotypic observations were generated by using
the following mixed model:

where hysi is the fixed effect of herd x year x sex i, g! is the fixed effect of

major locus genotype j, a2!! is the polygenic breeding value and e2!! is the random
residual effect. The effects in the model were sampled as follows: f hysi N(0,IJfI)
faijk} - N(0,AJ§) and {e2!! } N N(0,IJ§) . Major locus genotypes were simulated
with 2 segregating alleles. Genotypes of base animals were generated by sampling
2 alleles from a uniform distribution between 0.0 and 1.0 with threshold p, the

frequency of allele A. Genotypes of progeny were determined according to mendelian
segregation. The effect of genotype 3 was set to zero as there is a dependency
between fixed herd x year x sex and major locus effects.

Three different sets of parameters were used (table I). Only additive effects of
the major locus were considered, although all of the methods compared allow for
dominance. In the first set of parameters, 50% of the phenotypic variance (variance
due to major locus + polygenic variance + residual variance) is due to genetic
effects, 75% of the genetic variance is due to the major locus, and 25% is due
to the polygenes. The frequency of allele A with major effect is 25% in the base

population, which results in an allele substitution effect a of 1.0, ie genotype effects
of 2.0 (AA), 1.0 (Aa) and 0 (aa). In parameter set 2, the allele frequency p is 0.5, but
the genotype effects and all the other parameters are the same as in set 1. Thus the
variance due to the major locus is increased from 0.375 to 0.5, and the phenotypic
variance changes from 1.0 to 1.125. In parameter set 3, the allele frequency p is 0.25
and 50% of the phenotypic variance is due to genetic effects, as in parameter set 1,
but the proportion of genetic variance due to the polygenes is increased from 25 to
40%, which results in an allele substitution effect a of 0.8.

Because the algorithm to estimate genotype probabilities used in this study does
not allow for complex pedigrees, the structure of the simulated population is very



simple. In each of 10 herds, 20 base dams each had a record in year 1. A group of
20 base sires each with their own record in a common herd x year (eg test station)
was mated with these base dams. Each sire was randomly mated with 1 dam in
each herd. Each mating produced 5 progeny in year 2. The sex of each progeny
was determined by sampling from a uniform distribution between 0.0 and 1.0 with
threshold 0.5. The population size was 1220, made up of 220 base animals and
1 000 progeny.

In each of the alternatives, the same sequence of random numbers was used.
Therefore, identical data sets were analysed with each of the 3 methods considered.
Each alternative was replicated 25 times.

With each of the 3 methods, final solutions are obtained by repeatedly computing
genotype probabilities and solving a system of equations to get new solutions for
major genotype effects and polygenic breeding values. A stopping criterion of the
form:

was used for major genotype effects g and the allele frequency p.

RESULTS

When the genotypes of all animals with records are known, the estimates for major
locus effects g are identical for all 3 methods considered (table II). Estimates for the
allele frequency p, however, differed slightly. Using formula [13] (Hoeschele, 1988;
Kinghorn et at, 1993) the standard deviations (SD) of estimated p were larger
than estimates by [6]. The estimates for g and p agree well with the true values.
Estimates of g across parameter sets are consistently slightly larger than the true
values, which can be explained by sampling effects and the fact that for each of the
25 replicates, data for the 3 parameter sets were generated with the same set of
random numbers. As expected from the heritabilities, the correlations between true
and predicted breeding values were the same for parameter sets 1 and 2 and slightly
higher for parameter set 3. The correlations between predicted breeding values and
estimated major locus effects were close to zero, showing that the 2 effects were
well separated in all cases.

Table III shows the simulation results for the 3 parameter sets using all 3

procedures when major locus genotypes were unknown. For parameter sets 1 and

2, estimates of major locus effects g were close to the true values or slightly
underestimated with approximated maximum likelihood (AML), underestimated
by about 20% with the method of Hoeschele (1988) and overstimated by 25 to
30% with the method of Kinghorn et at (1993). For parameter set 3, estimates
of major locus effects g were zero for 2 replicates using AML and for 21 replicates
using the method of Hoeschele (1988). Non-zero estimates of g were biased upwards
by 14% with A1VIL and by 47% with the method of Kinghorn et at (1993). Both
ANIL and the method of Hoeschele (1988) showed a large variability of the non-
zero estimates of major locus effects for parameter set 3. When the true allele

frequency was 0.25 the allele frequency p was substantially underestimated with



AML, but estimated quite well with the other 2 methods. Correlations between true
and predicted breeding values were similar for AML and the method of Hoeschele
(1988), but zero for the method of Kinghorn et al (199_3). For parameter sets 1 and
2, the correlations between true (Tg) and estimated (Qg) major locus effects were
similar for all 3 methods. When major locus effects were smaller (parameter set 3)
these correlations were largest with the method of Kinghorn et al (1993). Predicted
breeding values were positively correlated to estimated major locus effects Qg with
AML and to a larger extent with the method of Hoeschele (1988). Using the method
of Kinghorn et al (1993) these correlations were strongly negative.

Because poor estimation of p also affects all the other estimates, additional
simulations were done with the allele frequency fixed at the true (expected) value.
Results are reported in table IV for A1VIL and the method of Hoeschele (1988) for
parameter sets 1 and 3. All other results were close to those of table III and are
therefore not shown. Major locus effects g were underestimated less with AML and
the correlations were similar for both methods. For parameter set 3, the number of
replicates with estimates of zero for major locus effects was again much larger with
the method of Hoeschele (1988).

Table V compares the 3 methods for the case where all sires and 50% of the
dams are gendtyped at the major locus. There was still a tendency for AML to
underestimate the allele frequency p when the true frequency was 0.25. The method
of Hoeschele (1988) underestimated major locus effects considerably more than
AML (9 to 31% ver.sus 1 to 11%), whereas these effects were overestimated by
22 to 43% with the method of Kinghorn et al (1993). The accuracies of predicted
breeding values were again similar for AML and the method of Hoeschele (1988) but
much lower for the method of Kinghorn et al (1993). The accuracies of estimated
genetic values at the major locus were similar for all 3 methods with a tendency of
lower accuracies for the method of Kinghorn et al (1993). When all the sires but
none of the dams were genotyped the results, which are not reported here, were



intermediate between the 2 cases of no animals and all sires plus 50% of the dams
genotyped.

So far, final solutions have been reported for iterations where starting values
were equal to true (expected) values. Table VI shows the number of replicates that
converged to the same solutions using different starting values. Low starting values
were half the true values and high starting values were 1.5 times the true values
of major locus effects g and allele frequency p. When major locus genotypes were
not known, none to a few replicates converged to a single set of solutions with all 3
different starting values. For the method of Hoeschele (1988) with parameter set 3,
most of the replicates that converged to the same solutions converged to an estimate
of zero for major locus effects g. For AML and the method of Hoeschele (1988), all
replicates with 1 exception converged to 1 set of solutions when genotypes of all



the sires (but none of the dams) were known. The largest number of replicates with
all 3 solutions different was found with the method of Kinghorn et al (1993).

DISCUSSION

The method proposed here (AML) generally slightly underestimates major locus
effects g and seriously underestimates allele frequency p when the true frequency
is 0.25. The underestimation of p leads to increased estimates of g, although not to
the extent that the variance explained by the major locus stays constant (tables III
and IV). This variance is higher when the allele frequency is fixed at the true
value. The allele frequency was still considerably underestimated for parameter set
1 when the pppulation size was 10 times larger than considered here (results not
shown). The allele frequency was estimated by (6!, which was derived by maximizing
the likelihood of the data, whereas the other 2 methods used [13]. Additional
simulation runs with parameter sets 1 and 3 and approximations [9] and [11]
together with [6] showed considerably lower estimates of p and higher estimates
of g than results for the same 2 approximations applied together with [13], the
method of Hoeschele (1988) (results not shown). There seems to be a problem in
applying [6] together with approximations [10] and [12] or, to a lesser extent, with
[9] and (11!. Nevertheless [6] is the correct equation for the estimation of the allele
frequency by maximum likelihood.



The method of Hoeschele (1988) consistently underestimated major locus effects
g which is in agreement with the simulation results of the same author. For smaller
allele effects (parameter set 3), although still quite large, most of the estimates
of g were zero, indicating that the genotype effects have to be large in order to
be recognized. The same is true for A1VIL, but to a lesser extent. There was a
tendency for the accuracies of predicted polygenic breeding values (a) and estimated
major locus effects (6g) to be slightly higher with AML than with the method
of Hoeschele (1988). In an unselected population as simulated here the expected
correlation between true polygenic and major locus effects is zero. The correlations
between the 2 estimates were positive for both methods but in almost all cases they
were lower with AML. This indicates that the 2 estimates are less confounded with
A1!IL. With selection a negative correlation between the true effects will build up



(gametic disequilibrium) which will make separation of the 2 effects more difficult.
For AML and the method of Hoeschele (1988), the mean correlations ra,a were

lower and r- o- were higher when the allele frequency was 0.5 (parameter set 2)
than when the same allele had a frequency of 0.25 (parameter set 1) (tables III
and V). Although the proportion of variance explained by the major locus is higher
with parameter set 2 it seems to be more difficult to separate polygenic and major
locus effects with intermediate allele frequencies. This was also found by Knott et
al (1992a) for similar approximations. For parameter sets 1 and 2, both methods
showed a large reduction of 35 to 40% for ra,a and 25 to 32% for 7- Tg,Qg when
genotypes were unknown rather than known (tables II and III).

With the method of Kinghorn et al (1993), estimates of the allele frequency p were
generally closer to the true values than with the other 2 procedures. However, major
locus effects were overestimated and the correlations between true and predicted
breeding values were close to zero which is in agreement with their simulation
results. The method attempts to correct for the bias inherent in major locus
estimates by regression on the independent variable ZQ!, an estimate from the
data, which is associated with some error. The term ZQ! is postmultiplied by the
correction matrix W!. ZQ’’Wr is then used the same way as a usual incidence
matrix in the mixed model equations. Multiplication by wr increases the variance
of the independent variable to the variance expected for the unknown term ZT.
Because wr is calculated over all animals with records, the new variance is correct
only on the average. For an animal with known genotype, the elements in Q! are
identical to the values in T and should therefore not be altered by W!. Sires
had more progeny than dams, therefore their estimated genotype probabilities
were closer to the true values and should have been multiplied by a matrix



closer to an identity matrix in comparison to dams. In addition, breeding values
estimated by [15] are still biased. These 2 problems are probably responsible for
the overestimation of g and very poor prediction of polygenic breeding values.
The performance of the method was, however, less affected by smaller allele effects
(parameter set 3) than the other 2 procedures.

For all 3 procedures there was a problem of different solutions with different
starting values when genotypes were unknown. For AML and the method of
Hoeschele (1988) the cause could be the multimodality of the likelihood function.
It seems to be necessary to compute approximated likelihoods which then can be
used to select the solutions with the highest likelihood. This could of course also
be done with the method of Kinghorn et al (1993) but this method has no direct
relationship with maximum likelihood.

In this study variance components were assumed to be known but in practice
have to be estimated. Using incorrect values could lead to biased estimates of major
genotype effects and frequencies. For example, using an underestimated genetic
variance might result in an overestimation of the major genotype effects. If a major
allele is known to be segregating variance components free of major genotype effects
would have to be estimated with model !1!. This could be very difficult because even
when the true variance components were used, all 3 methods performed poorly when
no animals were genotyped.

Clearly, none of the methods is satisfactory for a separate genetic evaluation for
the major locus and the polygenes. In this study only large effects were considered.
AML and, especially, the method of Hoeschele (1988) were unable to detect smaller
effects than used with parameter set 3. For example, the effects estimated for the
prolactin locus in a Holstein sire family (Cowan et al, 1990) were much smaller
than considered here. The method proposed has some potential for improvement.
Future research should focus on the development of algorithms to estimate genotype
probabilities without any restriction on pedigree structures. The estimation of
joint genotype probabilities for any 2 pairs of animals together with sparse matrix
techniques to compute the elements of M could avoid the need for some of the
approximations made in this study.
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