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Summary - Multivariate restricted maximum likelihood (REML) (co)variance component
estimation using numerical optimization on the basis of Downhill-Simplex (DS) or quasi-
Newton (QN) procedures suffers from the problem of undefined ’covariance matrices’ as
are produced by the optimizers. So far, this problem has been dealt with by assigning ’bad’
function values. For this procedure to work, it is implied that the information this ’bad’
function value conveys is sufficient to avoid going in the same direction in the following
optimization step. To a limited degree DS can cope with this situation. On the other hand
QN usually breaks down if this situation occurs too frequently. This contribution analyzes
the problem and proposes a reparameterization of the covariance matrices to solve it. As
a result, faster converging QN optimizers can be used, as they no longer suffer from lack
of robustness. Four real data sets were analyzed using a multivariate model estimating
between 17 and 30 (co)variance components simultaneously. Optimizing on the Cholesky
factor instead of on the (co)variance components themselves reduced the computing time
by a factor of 2.5 to more than 250, when comparing the robust modified DS optimizer
operating on the original covariance matrices to a QN optimizer using reparameterized
covariance matrices.

multivariate REML / optimization / quasi-Newton / Downhill-Simplex / reparame-
terization

Résumé - Un reparamétrage pour améliorer l’optimisation numérique dans une
estimation REML multivariate de composantes de variance-covariance. L’estimation
du ma!imum de vraisemblance restreinte (REML) des composantes de variance-covariance
à l’aide des procédures numériques d’optimisation Simple!-Descendant (SD) ou quasi-
Newton (QN) se heurte à la difficulté résultant de la production de matrices de covariances
non définies. Jusqu’à présent, cette difficulté a été résolue en attribuant une vraisemblance
arbitraitement mauvaise à de telles matrices, de façon à éviter de revenir dans cette
même direction dans les étapes suivantes d’optimisation. Dans une certaine mesure,
la procédure SD est capable de faire face à cette situation, mais la procédure QN ne



converge plus lorsque cette situation se reproduit trop souvent. Cette note propose un

reparamétrage pour résoudre le problème. Il devient ainsi possible d’utiliser la procédure
QN dont la convergence est rapide et la robustesse assurée. Quatre fichiers de données
ont été analysés pour estimer simultanément de 17 à 30 composantes de (co)-variance.
L’optimisation du facteur de Cholesky au lieu des composantes elles-mêmes réduit le temps
de calcul d’un facteur compris entre 2,5 et plus de 500, quand on compare la procédure
QN avec reparamétrage des matrices de covariance à la procédure SD modifiée appliquée
aux matrices de covariance d’origine.
REML multivariate / optimisation / quasi-Newton / Simplex-Descendant / repara-
métrage

THE PROBLEM

In restricted maximum likelihood (REML) (Patterson and Thompson, 1971),
maximization of the likelihood is done using either the EM algorithm (Dempster et
al, 1977) or procedures that do not require explicit derivatives. A problem specific to
the latter class of optimizers is addressed in this paper. Graser et al (1987) proposed
a sampling technique that spanned the complete parameter space for a single trait
analysis. Meyer (1989) used a Dowhnill-Simplex (DS) and quasi-Newton (QN)
technique, Kovac (1992) modified the DS procedure and also expanded Powell’s
method of conjugate gradients.

All these authors had to deal with problems arising from parameters and posed
by optimizers that lie outside the parameter space. Despite this problem, a host of
REML estimates have been reported with a varying number of simultaneous traits
(Groeneveld, 1991; Meyer, 1991; Tixier-Boichard et al, 1992; Ducos et al, 1993;
Spilke et al, 1993; Mielenz et al, 1994).

Consider a mixed linear model with one random effect and no missing values
as specified in equations [1-5]. With a residual and an additive genetic effect the
log likelihood in equation [6] must be maximized. The computational procedure
requires setting up and solving the mixed-model equations (MME).

where:

y - vector of observations
X - incidence matrix for all fixed effects



Z - incidence matrix for the animal effect

j3 - vector of unknown parameters for fixed effects
u - vector of unknown parameters for the animal effect
e - vector of residuals
A - relationship matrix of order number of animals and their known ancestors
Ro - residual (co)variance among traits
Go - covariance matrix for additive genetic effects among traits
- Kronecker product

This requires a set of covariance matrices for both the residual and the additive
genetic components Ro, Go. Their inverses are used in setting up the MME.
After setting up the MME the system of equations may be solved by Cholesky
factorization and backward substitution.

where
LV - value proportional to the logarithm of the likelihood function
b° - solution vector of the MME
C* - inverse of the coefficient matrix of the MME
W - (XIZ)
na - number of animals
n - number of observations

In DS, a complete vertex is computed before the optimization begins. The DS
procedure used here follows Kovac (1992), and is, thus, very different from the
original DS as proposed by Nelder and Mead (1965). Initially, it performs frequent
restarts, terminating the iteration at increasing accuracy. This procedure alleviated
the well-known problem of the DS to get stuck at suboptimal points. In QN,
gradients are required. They may either be supplied in their analytical form or
approximated using finite differences (Schnabel et al, 1982).
REML is an iterative procedure and so the R° and Go matrices have to be valid

for each round when the MME are set up. Thus, initially, valid covariance matrices
have to be provided to the algorithm. For a 2-trait model with 1 additive genetic
component the residual and additive genetic covariance matrices Ro and Go of
dimension 2 have to be estimated amounting to an optimization in a 6-dimensional
parameter space.

However, in the following iteration, new sets of (co)variance are provided by
the optimizers. For both DS and QN, the covariance matrices are an unstructured
vector of parameters, in this case a vector of 6 values. The constraints of covariance
matrices, ie that eigenvalues have to be positive (equation [7]), are therefore
unknown to the optimizers. Given this background it is not surprising that the
outcome of an optimization step, ie a new set of (co)variances, is not guaranteed to
meet the requirements of covariance matrices. In practical terms, this means that
the determinant of the coefficient matrix generated on the basis of these covariance
matrices will become less than zero, thus aborting the whole process, because the
log of a negative number cannot be taken.

The danger of obtaining undefined ’parameters’ from the optimizers obviously
increases with the number of traits involved (Ducos et al, 1993; Spilke and



Groeneveld, 1994). Furthermore, when the true correlation between the traits is
high, the ’covariance matrices’ proposed by the optimizers are more likely to lie
outside the parameter space, and the true covariance matrices to be located close
to the edge of the parameter space.
An obvious (at least in the context of DS) solution to the treatment of undefined

covariance matrices is to assign a ’bad’ likelihood value, should negative eigenvalues
occur. This will tell the optimizer (DS) to avoid this direction in subsequent
optimization steps. While this procedure may work reasonably well with sampling-
based optimization algorithms, it produces major problems with QN, which requires
the function to be continuous and differentiable. If the condition occurs during
the proces of approximating the gradients by finite differencing, assigning a ’bad’
likelihood will result in a nonsensical gradient. When used during the following
optimization step obviously likewise nonsensical directions are chosen. In short,
assigning ’bad’ likelihood values when undefined covariance matrices occur will
often result in aborting the QN optimization step.
We can thus observe that the optimizers that have super linear convergence

properties (and are thus much faster than sampling-based procedures like DS

(Dennis and Torczon, 1991)) fail increasingly as the dimensionality of the problem
increases. Thus, the problem of undefined parameters arising during optimization
leads to the paradoxical situation that an efficient class of optimizers can only be
used with confidence on small problems with 1 or 2 traits, where computing time
is not important and efficiency of optimization not an issue, whereas inefficient
sampling-based optimizers, which are at best only linearly converging, must be
used on larger problems.

A SOLUTION

Part of the problem can be solved by performing a constrained optimization. This is
relatively easy for the variances in which the constraint is only that positive numbers
be chosen. However, no technique seems to be available to impose a set of constraints
such that no negative eigenvalues A occur for a subset of the dimensionality of the
optimization space as given in equation (7!.

Instead, we propose to perform the optimization on the Cholesky factor of the
covariance matrices. Let:

Thus, instead of optimizing on the Ro, its Cholesky factor Cr is used applying
the same operation to all covariance matrices in the model. Operationally, this
implies the following steps:
1) User supplies initial covariance matrices.

2) The Cholesky factorization is performed on all covariance matrices.
3) The optimizer is called with the Cholesky factors.



4) The function SMME is called by the optimizer. This function sets up and
solves MME and computes the likelihood value passing the Cholesky factor as
parameters.

5) SMME computes the original Ro and Go from the factors, sets up and solves
the MME and computes the likelihood value.

6) Control refers back to the optimizer (Step 4) to have it decide on the next step
based on the last LV and the current set of factors.

This process results in a matrix that always has the properties of a covariance
matrix, irrespective of the values that the optimizers may come up with. This is
because:

As a result, undefined ’covariance’ matrices cannot occur.
A special case arises when certain covariances are not estimable. This may hap-

pen with residual covariances when measurements on different traits are mutually
exclusive, a situation frequently occurring in joint analyses of data from 2 test en-
vironments. During optimization, the non-defined component is skipped, thereby
reducing its dimensionality. The current implementation of the reparameterization
computes the Cholesky factor on the basis of the complete covariance matrix with
zeros inserted for the undefined parameters. Although the values of the Cholesky
factor depend on the zero inserted for undefined convariances, the same optimum
has always been reached for optimization on the reparameterized and on the original
scale.

RESULTS

Four mutivariate runs are given to assess the effect of optimizing on the Cholesky
factors. The timings listed refer to a Hewlett Packard 7100 computer system with
the 99 MHz processor.

Run 1 was an analysis of a selection experiment in chickens with 5 traits, 2 fixed
effects, year and barn, and the animal component. As no traits were missing a
canonical transformation was performed, which reduced the number of numerical
operations dramatically. Thirty components must be estimated simultaneously. The
data set was kindly supplied by C Hagger (Swiss Federal Institute of Technology).

Run 2 was an analysis of 3 meat quality traits on around 2 000 pigs. Not all
records were complete. There were 6 class effects and 1 covariable in the model,
which was identical for all traits. Random components were common litter and
animal, resulting in 18 components to be estimated (Dietl et al, 1993).
Run 3 was an analysis of 4 048 station test records from swine comprising the

4 traits daily gain, feed conversion efficiency, valuable cuts, and a meat quality
parameter. There were 2 covariables, 4 fixed class effects, 1 random litter component
and the random correlated animal effect. The covariable weight at the end of test
was not defined for the trait daily gain. In all, 30 components were to be estimated.
Run 4 analyzed 2 traits from field test in pigs and a third from a test station

measured on different animals. Three class effects comprised common litter and
animal as random components and herd-year-season as a fixed effect and a
covariable weight for 1 trait only. Because daily gain was measured either in



the field or in test stations, but not in both environments, the corresponding
residual covariance component was not estimable. This results in 17 variances and
(co)variances to be estimated. All 4 models included the full relationship among
animals. A summary description of the runs is given table I.

Table II shows results from DS and QN using this procedure. The number of
function evaluations declines substantially for both.

The general picture shows a much smaller number of function evaluations for the
QN optimizer compared with DS. This is to be expected as QN optimizers have a
super linear rate of convergence, ie the number of iterations decreases for a fixed
increase in accuracy as convergence is approached. However, QN optimizers aborted
in 3 out of the 4 models when optimization was done on the original (co)variance
matrices attesting to the problems of undefined parameters outlined above.

With optimization on the components of the (co)variance matrices, only the
modified DS succeeded in locating the optimum (DS column in table II). The
costs, however, were large, particularly for run 1 (at 3.7 s per function evaluation).
This converged at the number of rounds indicated with an accuracy of 10-6 on

the distance between the worst and best parameter set in the vertex, but had
still not quite reached the optimum. Interestingly, apart from the 8 557 illegal
points that were produced by the DS optimizer, a loss of rank of the coefficient
system occurred 23 120 times. This condition is encountered during factorization
when a zero pivot is detected. In this case, factorization is aborted and, again,
a ’bad’ function value assigned to the current set of parameters. Losses of rank



are partly due to badly conditioned covariance matrices, that just about pass the
test for positive eigenvalues, but still do not render the coefficient matrix positive
definite. It is thus an effect of limited accuracy on digital computers for these
2 tests. Obviously, this phenomenon also produced a large amount of directional
misinformation, wasting a substantial amount of CPU time.

Runs 1-3 had to cope with a large number of undefined parameters nearly 1
undefined for the 3 or 4 that were within the parameter space, resulting in a
substantial amount of conflicting directional information. The situation was better
in run 4, where DS only left the parameter space 13 times.
QN aborted in the first 3 runs after a varying number of function evaluations

because of a discontinuous function surface introduced by the ’bad’ function values
given to undefined points. Only run 4 was completed successfully, despite the
occurrence of 96 illegal points.

With optimization on the Cholesky factor of the (co)variance matrices the picture
changes drastically. The extent to which the DS optimizer benefited was dependent
on the number of illegal points prior to reparameterization. Accordingly, run 1
finished in less than a 20th of the time converging to the best point, while run 2
and 3 finished twice as fast. Only run 4 did not benefit, which was to be expected.
In fact, the reparameterization resulted in more function evaluations. Whether this
is a chance result or an indication of a more general pattern, cannot be conclusively
decided at this point. However, experience from a large number of other runs has
shown a substantial variability in the number of function evaluation till convergence
for seemingly identical models in terms of number of parameters. It is therefore
assumed that the observed slow down is more likely a chance result than a general
phenomenon.
QN found the solution in all runs. Depending on the number of illegal points

encountered before, the speed up was substantial. This was computed as the ratio
of the number of function evaluations of QN with Cholesky factor versus DS on the
original scale. If QN and DS can only be used on the basis of the original covariance
matrices, only DS will reliably give results. Thus, this is considered as the reference
point.

Run 1 was particularly impressive: with DS operating on the original covariance
matrices, optimization was basically impracticable as computing time was at around
3 weeks or more of CPU time prohibitively high (and the best point was still not
quite reached). QN, on the other hand, solved the problem in less than 3 h. The
other 3 runs showed a speed-up factor of between 2.5 and 15.7.

CONCLUSIONS

Multivariate REML estimates for general statistical models suffer from high com-
putational demands and the rather low dimensionality in terms of number of traits
that they could handle. In most cases, only bivariate analyses could be done with
general models producing suboptimal covariance matrices of higher order (Spilke
and Groeneveld, 1994). The indicated improvement in speed by optimizing on the
Cholesky factor of the covariance matrices will have a 2-fold effect: firstly, it will
speed up convergence for any class of optimizer; and secondly, it will lead to a
shift from sampling-based optimizers (that were previously considered robust) to



much more efficient QN algorithms, which will considerably extend the scope of
multivariate REML (co)variance component estimation. Most importantly, it will
allow users to increase the dimensionality of the models that can be handled, thus
helping close the gap between the number of traits used in genetic evaluation and
(co)variance component estimation.

This analysis was done with the VCE program, a multivariate, multimodel
REML (co)variance component estimation package (Groeneveld, 1994), which is
available for research purposes on the anonymous ftp server under the Internet
number 192.103.38.1.
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