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Summary - Until recently, the sib-pair linkage method of Haseman and Elston could
only be used for the detection of linkage between a quantitative trait locus (QTL) and a
marker locus. It was not possible to estimate the amount of genetic variance contributed
by the QTL or its recombination fraction with the marker locus. With the advent of dense
marker maps for nearly every domestic species, every QTL should be located between 2
flanking markers. In this situation, the Haseman-Elston test can be modified to estimate
the variance of a putative QTL as well as its recombination fractions with the 2 flanking
markers. In the present paper, we derive 2 different estimation methods for the QTL
variance based on the squared performance of full sibs: in one only the QTL variance
is estimated, while in the other both the QTL variance and the recombination fractions
are estimated. The method that estimates only the QTL variance turns out to be more
powerful than the other. With respect to the estimation of QTL variance both methods
give results close to the true values. However, the estimation of recombination fractions
resulted in an overall underestimation of the true parameters.

sib-pair linkage / quantitative trait locus / genetic marker / genetic variance /
recombination fraction
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Résumé - Emploi des méthodes d’évaluation des liaisons génétiques par les couples
de germains pour estimer la variance génétique à un locus de caractère quantitatif.
Jusqu’à une période récente, le test de liaison génétique de Haseman et Elston, basé sur les
couples de germains, ne pouvait être utilisé que pour la mise en évidence de liaisons entre
un locus à effet quantitatif (QTL) et un locus marqueur. Il n’était pas possible d’estimer
la part de la variance génétique totale liée au QTL, ni le tau! de recombinaison avec
le locus marqueur. Suite au développement de cartes denses dans la plupart des espèces
d’élevage domestiques, chaque QTL est susceptible d’être localisé entre 2 locus marqueurs
flanquants. Dans cette situation, le test de Haseman-Elston peut être modifié pour estimer



à la fois la variance du QTL et les taux de recombinaison avec chacun des locus marqueurs
flanquants. Dans le présent article, 2 méthodes d’estimation de la variance du QTL basées
sur les différences quadratiques des performances des germains sont développées : l’une
n’estime que la variance du QTL, en revanche l’autre estime la variance du QTL et les
2 taux de recombinaison. Une étude de simulation permettant d’apprécier la puissance
et la qualité des 2 méthodes d’estimation est présentée. La méthode permettant d’estimer
la variance du QTL uniquement apparaît plus puissante que la seconde. Chaque méthode
donne des résultats assez proches des vraies valeurs en ce qui concerne la variance du
QTL. Les taux de recombinaison sont en revanche globalement sous-estimés.
liaison génétique par couples de germains / locus de caractère quantitatif / marqueur
génétique / variance génétique / taux de recombinaison

INTRODUCTION

Haseman and Elston (1972) developed the idea of detecting linkage between a
genetic marker and a quantitative trait locus (QTL) by examining the squared
difference of the performance of full-sibs. Other studies (Blackwelder and Elston,
1982; Amos and Elston, 1989) showed that the method is robust against a variety
of distributions of the trait examined and that it can also make use of multivariate
data (Amos et al, 1989). G6tz and Ollivier (1992) found that in animal populations,
especially in pigs, the power of the method is at least comparable to that of methods
based on the analysis of variance. However, the Haseman-Elston method in its
original form could only detect linkage between a marker and a QTL, but could not
estimate whether this was due to a QTL with large effect at a large distance, or to
a QTL with small effect that is closely linked to the marker.

Studies for the establishment of a complete linkage map of the pig genome are
under way (Anderson et al, 1993; Rohrer et al, 1994). This will lead to the situation
that in the near future every QTL of economic importance will be in the vicinity of
2 flanking markers. This article will show how sib-pair linkage tests can be applied
for the estimation of the variance caused by a QTL located between 2 flanking
markers. A simulation study will be presented to examine the power and properties
of the method.

MATERIALS AND METHODS

Theory

Haseman and Elston’s test (1972) is based on the idea that the difference in the

performance of full-sibs becomes smaller if the sibs share a larger proportion of
alleles identical by descent (ibd) at a QTL with large effect. Elston (1990) gives
a general description of the method that will only briefly be outlined here for the
simplified case of a QTL with no dominance. The basic variable of the Haseman-
Elston test is the squared difference (Yj) between 2 sibs (1 and 2) within a family j:



Given the proportion of genes ibd at the QTL (!r!t), Elston (1990) shows that
the expectation of Yj is:

where a’ is the additive genetic variance due to the QTL and ae the variance of
the difference of all other genetic environmental components. Since the proportion
of genes ibd at the QTL cannot be observed, the proportion of genes ibd at the
linked marker locus (7rjm) must be used to estimate 7rjt. The expectation of Yj
given !r!! is:

where B is the recombination frequency between QTL and marker locus. This is a
general linear regression equation and can be written as:

The expectation of the regression coefficient is:

where b is an estimator of !3. This expectation is zero if either Q9 is zero or 0 is
equal to 0.5. Blackwelder and Elston (1982) showed that the distribution of the
estimated regression coefficients is asymptotically normal. Thus, a simple one-sided
t-test can be applied to test whether the regression coefficient is significantly
negative. However, it can also be seen from the expectation of b that a significantly
negative estimate can result from a large 0 together with a large QTL effect or from
a small QTL effect and tight linkage.

To estimate 0 and Qq, we suppose that there are 2 markers flanking the
QTL. This assumption seems valid in the case where a complete marker map
exists. The number of parameters to be estimated increases to 3: 2 recombination
frequencies, which will be designated 01 and 02, and the QTL variance Qq. The
total recombination frequency between the 2 markers (0t) can be supposed to be
known from a mapping experiment or can be estimated directly from the data.

Method I. Estimation using 2 separate tests of linkage

Two different approaches can be taken to estimate a§ in the case of 2 markers. The
first approach arises in a situation where separate test linkage for 2 markers lead to
significant results. If the marker loci are known to be linked, all 3 parameters can
be estimated using the expectations of the 2 regression coefficients (b1 and b2). As
a side condition, the relationship between the 2 recombination frequencies and 9t
is needed. This relationship can be assumed to be known, if assumptions about the
mode of interference are made. Throughout the rest of the paper we will assume



no interference between 01 and 82.

Since B2 can be inferred from 01 and 0t via equation [5], solutions for the 3
unknowns can be found. However, because the range of possible values for the 2
regression coefficients is theoretically between plus and minus infinity, there is not
always a solution in the range of real numbers.

Method II. Estimation using the combined information of 2 markers

The second approach starts out from the fact that from equation [2] the estimator
of the regression coefficient divided by &mdash;2 is already a biased estimator of o- q 2.
In the single marker case, the bias increases rapidly even for small recombination
frequencies, rendering the estimator practically useless. If, however, the data is
restricted to sib-pairs with the same proportion of genes ibd at both marker-loci
(7rjml = 7rj&dquo;2)1 then in the majority of cases the proportion of genes ibd at the QTL
(7rjt) is equal to the proportion of genes ibd at the 2 marker loci. This will not occur
in 2 rare situations: i) in case of double recombination and the 2 recombinations
take place on either side of the QTL; and ii) if 2 separate recombination events
in 2 sibs take place on different sides of the QTL. Consequently, the proportion of
alleles ibd at both marker loci is a reliable estimator of !r!t. The price to be paid
for this is that the proportion of usable sib-pairs is reduced by a factor that can be
expressed as:

where Tft = (1 - 20t + 20¡). In the case of a 20 cM marker map and informative
matings, 55% of the sib-pairs would be selected, and if the markers were at distances
of 4 cM that fraction would increase to 86%.

The expectation of F§ given a certain proportion (x) of alleles ibd at the marker
loci is:

which can again be written as a linear function of 7rjml : v

where 1Jt1 = (1 - 201 + 20i) and !2 = (1 - 202 + 2B2).
From this it follows that the expectation of the regression coefficient (bo) is:



Again, a9 = -bo/2 is a biased estimator of the QTL variance. Whether the bias
is acceptable or not, it depends on the size of the biasing factor

in the range of realistic values for Ot.
Figure 1 shows the value of k as a function of 01 for 4 different values of Ot.

The maximum bias always occurs if 01 = 02. The maximum is not equal to Ot/2
because with no interference, the 2 recombination rates do not act additively. For
large values of Bt, k can take values down to 0.93, while for smaller values the bias
is negligible. Figure 2 shows that range of possible values and the expectation of k
depending on Ot. It can be seen that the expectation of k results in a bias of less
than 5% over the whole range considered.

The expectation of k for a given 0t can be easily calculated. Since k is always
between 0 and 1, a second estimator for the QTL variance can be derived by dividing
the initial estimator by the expected value of k:



where E(k) is given by:

Simulation

A simulation study was conducted in order to examine the power of the 2 methods
and the goodness of estimation. Data were simulated according to the following
model: 

’

where:

rzj = phenotypic value of animal i in family j !’
f1, = overall mean

q2! = effect of the QTL genotype of animal i

6f! = sire’s contribution to polygenic breeding value (without QTL genotype)
bvdj = dam’s contribution to polygenic breeding value (without QTL genotype)
!2! = Mendelian sampling effect
cej = effect of common litter environment

eZ! = residual error
For the constant parameters in the simulation, the following values were used:

total phenotypic variance was set to 1000, the heritability of the trait was 0.3



(including the QTL effect) and common environmental variance was 0.2. The
population structure simulated was that of a typical pig-breeding situation with
25 sires, 10 dams per sire and 8 progeny per sire-dam pair. Thus, a total of 2 000
progeny were simulated in each replication. For a discussion of the effects of the
mating structure and common environment, see G6tz and Ollivier (1992).

Gbtz and Ollivier (1992) found that the use of fully informative matings can
increase the power of the Haseman-Elston test for a given number of genotypings.
Consequently, only these matings were used in the calculations. This has no

consequence for the validity of the results, but it should be borne in mind that
the number of genotyped individuals in practice would be slightly higher than
2 275. Within any family, all possible differences between full-sibs were used for the
calculation of Y!s as proposed by Blackwelder and Elston (1982). This resulted in
28 comparisons per family and 7 000 comparisons per round of simulation.

Variable parameters in the simulation were:

(i) the distance between the 2 markers (0t)
(ii) the position of the QTL between the 2 markers as expressed by 01 and 02
(iii) the size of the QTL effect

The distance between the 2 markers was varied approximately between 0.04 and
0.154, assuming no interference. The combinations of 01 and 02 that were simulated
are given in table I.

Two codominant alleles with equal frequencies were assumed at the QTL. For
both marker loci 10 alleles with equal frequencies were simulated and for the QTL
effect genetic variances of 40, 80 and 120 were assumed. This resulted in a total of
30 different variants, each of them being simulated with 1 000 replications.

Analysis of simulation results

The power of the methods was defined as the percentage of replications where
the null hypothesis was rejected at the 5% level. For Method II this approach is
unambiguous while this is not the case for Method I. For the first method there
are 2 null hypotheses of which 1 or both can be rejected at a = 0.05. Since
both tests rely on the same values for F§ , they are not independent so that the



nominal type I errors for a global error of 5% can only be determined by simulation
under the null hypothesis. However, these type I errors still depend on the 2
recombination frequencies so that the true state of nature must be known for an
exact determination. Therefore, it was decided that a replication was significant for
Method I if both null hypotheses were rejected at a 5% level. For the interpretation
of the results it should be borne in mind that Method I has a slight disadvantage.

For the estimation with Method II only sib-pairs with the same proportion of
alleles ibd at both marker loci were selected from the same data that were used
for the estimation with Method I. As was explained previously, this results in a
reduction of the number of effective sib-pairs of between 15% (for Bl/BZ = 0.02/0.02)
and 42% (for 01/02 = 0.02/0.14).

To assess the goodness of the estimation, all replications of a certain variant
(significant and non-significant) must be averaged. As can be seen from equations
[3] and [4], the first method requires the square-root of the ratio of bi and b2 for
the estimation of a q 2. In practical applications this is not likely to cause problems,
since significant regression coefficients always have a negative sign. In a simulation
with a low value for the QTL effect, however, this causes problems because the
estimated regression coefficients are normally distributed and a certain fraction can
be expected with positive values. For these replicates a value for Q9 cannot be
estimated. Because regression coefficients at positive values are all non-significant,
the missing QTL variances cause an overestimation of this parameter.

RESULTS

Power of the 2 methods

Table II shows the power of the 2 methods of estimation for all simulated variants.
For a QTL effect of 40, the power is low for both methods and all variants. However,
it can be observed that Method II has higher power in all variants and that the
decrease in power with increasing 0t is less for the second method. For a QTL effect
of 80, the superiority of the second method is evident. The superiority is more

pronounced if the values of 01 and 02 are unequal, which is caused by an increasing
proportion of replicates where only one of the 2 tests in Method I gives a significant
result. If the QTL effect is 120, both methods have high power with differences
occurring only if the 2 recombination rates were of very different size.

Estimation of Bl, 02 and a9 using Method I

The average estimated values for Qq are given in table III for the 2 methods. For
low values of Qq an overestimation occurs, which is caused by the fact that a certain
number of replications could not be calculated for reasons mentioned above. This
could be as much as 24% of the replicates. With or2 equal to 80 and 120, the
percentage of replicates without result decreased to 10 and 3%, respectively. In
accordance with these numbers, the overestimation is less with increasing QTL
variance and decreasing recombination fractions within QTL variance. For a QTL
variance of 120 some slight underestimations occur with higher recombination



fractions. In accordance with the fact that most of the dropouts occur if the 2
recombination fractions are of very different sizes, the worst estimates are achieved
if the QTL is located close to 1 of the 2 flanking markers.

The estimated values for the recombination fractions equally suffer from the
problem of replications without solution. In contrast to the estimation of QTL
variance, this leads to an underestimation of recombination fractions for small values

ofa q. 2 Table IV shows that for a QTL variance of 40 the estimators are heavily biased
downwards. This improves with increasing values for a q 2. A remarkable decrease of
the standard deviation of the estimates can also be observed. However, none of
the estimates are very precise, mainly due to the low expected numbers of double
recombinants within the 2 000 progeny.

Estimation of a using Method II

The estimates for a9 using the second method are also presented in table III. From
theory, Method II is expected to underestimate the true value of the parameter.
This expectation is confirmed by the results with a single exception.

Especially for QTL variance of 40 the estimates are clearly superior to those of
Method 7. For larger values of Bt the underestimation gets larger but stays within
the range that can be explained by the decreasing value of k.

The results for the second estimator (i!2*) are also given in table III as Method IIc.
On average, this manipulation reduces the underestimation of aq from about 3%
to less than 1%.





DISCUSSION

The present study has shown that with 2 flanking markers for a given QTL, the
principle of sib-pair linkage methods can be applied to obtain estimates of the QTL
variance and to locate the QTL in the interval. The simulation study made use
of the results of G6tz and Ollivier (1992), who showed that in animal breeding
the preselection of fully informative matings is an appropriate way to improve the
power of QTL-detection for a given number of genotypings. If many markers are
to be examined, the parents will only be informative for a fraction of the markers.
Since the major costs in the given design arise from the typing of progeny, these
should only be typed for the markers where their parents are informative. With
Method II it should also be possible to use multiple markers as proposed by Haley
et al (1994). However, without modification this only seems feasible if the linkage
phases in the parents are known, recombinant sibs are excluded from the analysis
and the markers are not so far apart that double recombinants become important.

The results on power for the detection of a given QTL suggest that a QTL
contributing 8% of the phenotypic variance can be detected with a power between
55 and 75% for the given design. In comparison with the results of G6tz and Ollivier
(1992) it must be taken into account that in the present study the QTL effect was
included in the total genetic variance. In a comparable situation the power of both
methods presented here is less than in G6tz and Ollivier (1992). The reasons are
that the type I error for Method I is not comparable to the 5% level in the previous
study and that Method II uses fewer sib-pairs. The power of Method II is superior
to that of Method I in all of the simulated variants. The reason is evident, since
Method I does not use the prior information that the 2 marker loci are linked with a
known recombination fraction for the test of linkage. This information is only used
in the estimation step, given that linkage of both loci to the QTL was detected.



Future research should be directed towards a way of incorporating the information
of linkage between the markers in the detection of linkage with a QTL.

One way to do this has recently been presented by Fulker and Cardon (1994).
They used the information of 2 markers to estimate 7rt and regressed g on this
estimated value. Since the estimation only works if 01 and 02 are known, they use
an approach similar to interval mapping (Lander and Botstein, 1989) to plot the t-
statistics against the putative QTL position. The authors also encountered problems
in trying to determine the correct t-value for a certain type I error rate, even for
the single interval case, which they solved by simulation under the null hypothesis.
However, in every realistic scenario this problem will occur since usually many
markers will be examined at a time. In this situation, none of the test statistics has
a simple distribution and one would always have to escape to simulation studies in
order to examine the distribution of the test statistic.
A comparison of the results of Fulker and Cardon (1994) at h2 = 0.125 with our

results (Method II) for a QTL variance of 120 shows little difference. This indicates
that sibs with different percentages of alleles ibd at the 2 marker loci contribute
little or nothing to the estimation of 7rt.

In the estimation of the QTL variance, Method I is characterized by the
overestimation of a§ if the true value is small. In practice, this is not likely to
be a problem, since significant regression coefficients are always negative, but it
makes it difficult to prove the unbiasedness of the estimator. However, for a QTL
variance of 120 no overestimations occurred and underestimations were in all cases
less than 3%. Method II is a priori a biased estimator. The results show that the bias
is small if the QTL is located close to one of the markers and that the estimation of
or2can be improved by dividing the initial estimator by E(k). The maximum bias
can also be quantified if the recombination fraction between the 2 markers is known.
However, since Method I gives similar estimates and information about the location
of the QTL, one could use Method II to detect simultaneous linkage of 2 markers
with a QTL and then use Method I for the estimation. Unfortunately, Fulker and
Cardon (1994) give little information about the quality of their estimator of the
QTL variance. The only result they give indicates that their algorithm leads to an
overestimation of a q 2

The estimation of recombination frequencies between the QTL and the markers
leads to unsatisfactory results. The majority of recombination fractions were
underestimated, although for higher QTL effects the estimators came close to the
true values. Non-estimable replicates certainly influenced these results as well. The
same observation can be made from the results of Fulker and Cardon (1994) which
show relatively flat curves in the vicinity of the true QTL location and a tendency
to place the QTL in the middle of the interval. In comparison, our Method I tends
to locate the QTL closer to the marker with the smaller recombination fraction.

Knott and Haley (1992) examined the application of maximum likelihood (ML)
in outbreeding populations with a full-sib structure. The advantage of ML is the
fact that it is possible to estimate the gene effects at the QTL as well as the gene
frequencies. However, the computational effort is much higher for ML than for
the approach in the present paper. The authors conclude that for the treatment
of realistic population structures and the inclusion of fixed effects, numerical
approximations are needed to render practical data tractable by ML.



Haley and Knott (1992) presented a method for the mapping of (aTLs by
regression in crosses between inbred lines. This design is not tractable with our
methods because of the complete linkage disequilibrium in an F2 derived from
inbred lines. However, those authors found that there ’seemed little advantage to
be gained from resort to maximum likelihood methods for the analysis of these
types of data’. The method is similar to that of Fulker and Cardon (1994) since
both methods are based on the idea of interval mapping (Lander and Botstein,
1989).

CONCLUSIONS

The extension of Haseman and Elston’s (1972) method of sib-pair linkage presented
here allows for the estimation of QTL variance and recombination fractions if a

relatively dense and informative marker map is available. Since the method uses
only intra-family comparisons it does not need to take fixed effect into account so
long as they affect all sibs in a family in the same way.

However, there are some limitations of the method that shall be mentioned here.
The first is that the results presented rely heavily on the availability of highly
polymorphic markers. If one or both of the markers is not very polymorphic, the
number of parents to be typed increases dramatically. For a discussion of this
topic see Gbtz and Ollivier (1992). The second limitation is the dependency of
sib-pair linkage tests on the magnitude of the residual variance. For traits with low
heritability the power of the method is low, while high heritability and common
environmental effects are favourable. In addition, large family sizes increase the
power of the method (G6tz and Ollivier, 1992).

In outbreeding populations the detection of segregating (aTLs is generally more
difficult than in crosses between inbred lines (Knott and Haley, 1992). However, the
detected (aTLs are known to be segregating while with (aTLs detected in crossing
experiments a large fraction of favourable QTLs will already be fixed in the superior
line. It is doubtful whether preselection of fully informative matings will still work
if many markers are to be examined, since parents will be informative only for a
fraction of markers. Nevertheless, it would be possible to type the progeny only for
those markers where their parents are informative.
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