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Summary - Recent developments in the theory of the covariance between relatives in
crosses from 2 populations, under additive inheritance, are used to predict breeding values
(BV) by best linear unbiased prediction (BLUP) using animal models. The consequences
of incorrectly specifying the covariance matrix of BV is discussed. The theory of the
covariance between relatives in crosses from 2 populations is extended for predicting BV
in models with multiple traits. A numerical example illustrates the prediction procedures.
cross / heterogeneous additive variance / segregation variance / genetic group /
BLUP-animal model

Résumé - Prédiction des valeurs génétiques avec des modèles individuels additifs
pour des croisements à partir de 2 populations. De récentes avancées de la théorie de la
covariance entre apparentés dans les croisements entre 2 populations, en hérédité additive,
sont utilisées pour prédire les valeurs génétiques (VG) par le BL UP-modèle animal. Les
conséquences résultant d’une définition incorrecte de la matrice de covariance des VG
sont discutées. La théorie de la covariance entre apparentés en croisement à partir de
2 populations est étendue à la prédiction de VG pour plusieurs caractères. Un exemple
numérique illustre les procédures de prédiction.
croisement / BLUP-modèle animal / variance génétique additive hétérogène /
variance de ségrégation / groupe génétique



INTRODUCTION

A common method used to genetically improve a local population is by planned
migration of genes from a superior one. For example, in developing countries,
US Holstein sires are mated to local cows in order to genetically improve the
local Holstein population. Genetic evaluation in such populations must take into
consideration the genetic differences between the local and the superior populations.

Best linear unbiased prediction (BLUP) is widely used for genetic evaluation
(Henderson, 1984). BLUP methodology requires modelling genotypic means and
covariances. Genetic groups are used to model differences in genetic means between
populations (Quaas, 1988). However, populations can also have different genetic
variances. Under additive inheritance, Elzo (1990) provided a theory to incorporate
heterogeneous genetic variances in genetic evaluation by BLUP. His procedure is
based on computing the additive variance for a crossbred animal as a weighted
mean of the additive variances of the parental populations plus one half the
covariance between parents. Lo et al (1993) showed that Elzo’s theory did not
account for additive variation created by segregation of alleles between populations
with different gene frequencies. For example, even though the additive variance
for an F2 individual should be higher than for an Fl, due to segregation (Lande,
1981), Elzo’s formulation gives the same variance for both. Lo et al (1993) provided
a theory to incorporate segregation variance in computing covariances between
crossbred relatives, and to invert the genetic covariance matrix efficiently.

The objectives of this paper are: 1) to demonstrate how the theory of Lo et al
(1993) can be used for genetic evaluation, ie to predict breeding values (BV), by
BLUP; 2) to study the consequences of using an incorrect genetic covariance matrix
on prediction of BV; and 3) to extend the theory of Lo et al (1993) to accommodate
multiple traits. A numerical example is used to illustrate the principles introduced
here.

MODEL

Even though the theory presented by Lo et al (1993) allowed for several breeds
or strains within a breed, we focus on the case of 2. A typical situation in beef
or dairy cattle is when a ’local’ (L) strain or breed is crossed with an ’imported’
(I) one. Usually the program starts by mating genetically superior L females with
I males to produce Fl progeny. Then superior Fl females are mated to I sires to
produce backcross progeny. The program is continued by repeatedly mating superior
backcross females to I sires. It should be noted that L, Fl and backcross sires are
also used to produce progeny. Thus, the crosses generated by such a program may
includeFl=IxL,F2=FlxFI,BI=IxFI,BL=FlxL,BII=BIxFl,
5/81 = BI x Fl, 3/81 = BI x L, etc. It is shown below how genetic evaluations for
such a mixture of crossbred animals can be obtained by BLUP using Henderson’s
(1984) mixed-model equations (MME).

Genetic evaluations are based on a vector of phenotypic records (y), which can
be modelled as:



where (3 is a vector of non-genetic fixed effects, a is a vector of additive genetic
values or BV and e is a vector of random residuals, independent of a, with null
mean and covariance matrix R. Although R can be any general symmetric matrix,
in general it is taken to be diagonal, and this simplifies computing solutions of (3
and predictions of a. The incidence matrices X and Z relate (3 and a, respectively,
to y. The mean and the covariance matrix of the vector of BV (a) for crossbred
individuals are modelled as:

and

, , L 

where g is a vector of genetic group effects for individuals in the I and L populations,
Q is a matrix relating a with the genetic groups. If there is only 1 group on each
breed, Q specifies the breed composition for each individual. The matrix G contains
the variances and covariance among BV as defined by Lo et al (1993).

In modelling the mean of a, genetic groups are only assigned to ’phantom’ parents
of known animals following the method proposed by Westell et al (1988). Quaas
(1988) showed that Q can be expressed as:

where P relates progeny to parents, P6 progeny to phantom parents, and Qb is
an incidence matrix that relates phantom parents to genetic groups. Elements in
each row of [Pb:P] are all zero, except for two 1/2’s in the columns pertaining to
the parents of the animals in a. It should be stressed that the above model for a
assumes additive inheritance (Thompson, 1979; Quaas, 1988; Lo et al, 1993).

In the genetic grouping theory of Quaas (1988), all the groups are assumed to
have the same additive variance. In this model, however, we allow the I and L
populations to have different additive variances, and the variances and covariances
of crossbred animals are computed following the theory of Lo et al (1993). They
showed that the covariance between crossbred relatives can be computed using the
tabular method for purebreds (Emik and Terril, 1949; Henderson, 1976), provided
that the variance of a crossbred individual i is computed as:

where j and k are the parents of i, and fjl, for example, is the breed I composition of
dam j, QAL is the additive variance of population L, U2 is the additive variance for
population I, and QALI is the segregation variance, which results from differences in
gene frequencies between the L and I populations. The term segregation variance
was used by Wright (1968) and Lande (1981) to refer to the additional genetic
variance due to segregation in the F2 generation over that in the Fl. Following
Quaas (1988), Lo et al (1993) further showed that the inverse of the genetic
covariance matrix (G), required to setup Henderson’s MME, can be constructed
as:



where G, is a diagonal matrix with the ith diagonal element defined as:

Note that these elements are linear functions of a 2 2 and !ALI!

PREDICTION OF BREEDING VALUES

Following Quaas (1988), MME for a model with genetic groups can be written as:

where

and

The matrix H can be constructed efficiently using algorithms already available
(eg, Groeneveld and Kovac, 1990). Quaas (1988) gave rules to construct E effi-

ciently for a model with homogeneous additive variances across genetic groups. To
construct E efficiently for a model with heterogeneous additive variances, replace
x(= 4/[number of unknown parents + 2!) in the rules of Quaas (1988) with 1/Ggi.

CONSEQUENCES OF USING AN INCORRECT G

Henderson (1975a) showed that using an incorrect G leads to predictions that are
unbiased but do not have minimum variance. His results are employed here to
examine the consequences of using the same additive variance (QA* ) for L, I and
crossbred animals.

Let Caa be the submatrix of a g-inverse of the right-hand-side of the MME
corresponding to a, but calculated with G* = Aa2 A.. Then, as in Henderson (1975a)
and Van Vleck (1993), the prediction error variance (PEV) of a is not equal to Caa,
but is:

where G is the correct covariance matrix of a. Now, let D be a diagonal matrix
with the ith diagonal element being equal to 0.5[1 - 0.5(Fsi + FDi)!, if the father
(Si) and the mother (Di) of i are known, and Fsi is the inbreeding coefficient of Si.



Also, Dii = 0.25(3 - Fsi), if only the sire of i is known, and Dii = 0.25(3 &mdash; FDi)
if only the dam of i is known. Finally, if both parents of i are unknown Dii = 1.
With this definition of D and after some algebra, [11] becomes equal to:

Therefore, PEV of a obtained from Caa will be incorrectly estimated by
the second term on the right of [11] or [12]. As this term depends on

the structure of G, and D, no general result can be given. However, if

caa(I-p’)D-1(Go -D)D-1(I-p)caa is positive definite, it adds up to C&dquo; and
true PEV is underestimated. This happens if both (G, - D) and Caa(I - P’)D-1
are positive definite (see, for example, theorem A.9 in page 183 of Toutenburg,
1982). Now, the fixed effects are reparameterized so that [X:ZQ] is a full rank
matrix. Then, !Caa(I - P’)D-’]-’ = D(I - P’)-1 (Caa)-1 and Caa(I - P’)D-1 is

positive definite. Finally, if (Go - D) is positive definite its diagonal elements are
positive (Seber, 1977, page 388), which in turn happens when the diagonal elements
of Gi are strictly greater than corresponding elements of D. For example, this may
happen whenever u2 ALI contributes to the variance of crossbred individuals (such as
F2 or 5/8I), and this variance parameter is ignored. Under these conditions PEV
will be underestimated, and the amount of underestimation will depend on the
magnitude of or ALI* 2

It has been shown that if all data employed to make selection decisions are
available, then the BLUP of a can be computed ignoring selection (Henderson,
1975b; GofF!net, 1983; Fernando and Gianola, 1990). This result only holds when the
correct covariance matrix of a is used to compute BLUP. Thus, in the improvement
of a local breed by mating superior I sires to selected L females, the use of the
same additive variance for the I and L populations will give biased results if the
2 populations are known to have different additive variances and the process of
selection and mating to superior males is repeated.

MULTIPLE TRAITS

The theory presented by Lo et al (1993) can be extended to obtain BLUP with
multiple traits. Consider the extension for 2 traits: X and Y. To obtain BLUP for
X and Y the additive covariance matrices for traits X and Y, and between traits
X and Y are needed. The covariance matrix for traits X and Y can be computed
as described by Lo et al (1993). It is shown below how to compute the additive
covariance matrix between traits X and Y.

Following the reasoning employed by Lo et al (1993) to derive the additive
variance for a crossbred individual, it can be shown that the additive covariance
between traits X and Y for a crossbred individual is:



where a A(XY)L and aA<xY>I are the additive covariances for traits X and Y
in populations L and I, respectively, and a A(XY)LI is the additive segregation
covariance for populations L and I.

Provided that the covariance between traits X and Y for a crossbred individual
is computed using equation !9!, the covariance between X and Y between crossbred
individuals i and i’ can be computed as:

provided that i’ is not a direct descendant of i.
Now let a(2q x 1) be the vector containing the BV of q animals for the 2 traits,

ordered by trait within animal. Then, G is the 2q x 2q covariance matrix between
traits and individuals. Following Elzo (1990) the inverse of G, required to setup
Henderson’s MME, can be written as:

where for individual l, the diagonal elements of GE! can be calculated by equation
(7!, and the off-diagonals elements can be computed as:

All covariances in the above equation are functions of UA(XY)L, a A(XYL)I and

o-A(XY)Li and can be computed using equations [13] and !14!.
Equation [15] gives rise to simple rules to setup MME for 2 or more traits.

By appropriately redefining all vector and matrices to include 2 or more traits,
equations [8], [9] and [10] are valid for the multiple trait situation. Again, matrix
H can be constructed efficiently by commonly used algorithms (Groeneveld and
Kovac, 1990). Cantet et al (1992) gave rules to construct E efficiently for a model
with homogeneous additive (co)variances across genetic groups. Their algorithm
can be modified to construct E efficiently for a model with heterogeneous additive
(co)variances as follows. Let:
ir = equation number of individual i for the rth trait.
jr = equation number of the sire of i or its sire group (if base sire) for trait r.
kr = equation number of the dam of i or its dam group (if base dam) for trait r.
Now let t be the number of traits, for m = 1 to t and n = 1 to t, and add to E

the following 9 contributions:

where Gti;&dquo;n is element (m, n) of the inverse of the t x t matrix G£i, which is
associated to individual i. If E is full-stored, every animal makes 9t2 contributions.



For example, if 2 traits are considered (t = 2), there are 9(22) = 36 contributions. If
E is half-stored, there are [9t(t -1)]/2 + 6t contributions. For t = 2, each individual
makes 21 contributions to the upper triangular part of half-stored matrix E.

To obtain BLUP under a maternal effects model (Willham, 1963), the additive
covariance matrices for the direct effect, the maternal effects, and between the direct
and maternal effects are needed. These matrices can be computed using the theory
used to compute the covariance matrices for traits X and Y as described above.

NUMERICAL EXAMPLE

Consider a single trait situation where a sire from breed I (animal 1) serves 2 dams:
animal 2, from breed I, and animal 3 from breed L. Individuals 1 and 2 are the
parents of 4 (purebred I), and 1 and 3 are parents of 5 (an Fl male). Finally, the
F2 animal 7 is the offspring of 5 and 6, the latter being an Fl dam with unknown
parents. Individuals 1, 4 and 5 are males and the rest are females. Age at measure
and observed data for animals 2-7 are 100 (age), 100 (data); 110, 103; 95, 160; 98,
175; 106, 105; and 100, 114; respectively. There are 2 genetic groups for breed I and
1 for L. The model of evaluation includes fixed effects of age (as a covariate), sex
and genetic groups (Al, A2 and B), and random BV for animals 1 through 7. In
order for [X:ZQ] to have full rank we imposed the restriction: sex 1 + sex 2 = 0,
or sex 1 = -sex 2. Hence, f3 contains only 2 parameters: 1) the age covariate; and
2) the sex 1 effect (or -sex 2). Matrices y, X and Q are then equal to:

Variance components are (TÃL = 80, QAI = 120 and UpLI = 50. Using [7], the
diagonal elements of matrix Ge (the variances of Mendelian residuals) are 80,
80, 120, 40, 50, 100 and 100 for animals 1-7 respectively. Residual variance is

R = 16(400). Matrix G is:

MME are equal to the following matrix:





Solutions are -2.903201, -28.95692, 402.73785, 431.59906, 452.07844, 402.68086,
417.28243, 452.16393, 409.6967, 427.70734, 441.69628 and 434.41686. The large
absolute values of the solutions are due to multicollinearity associated with genetic
groups in the model for the small example worked. This is evidenced by a small
eigenvalue (4.36 x 10-7) in the coefficient matrix. Van Vleck (1990) obtained a
similar result in an example with genetic groups for direct and maternal effects.
If groups are left out of the model, solutions are 1.3540226 for the age effect,
- 36.19053 for the sex 1 effect, and 0.602659, -0.247433, -1.030572, -0.276959,
1.1075823, 0.6457529, 3.6589865 for the BV of animals 1-7, respectively. The
smallest eigenvalue is 0.0046413, almost 10 000 times larger than the situation where
genetic groups are in the model.

The consequences of assuming an incorrect G can be seen by taking G* -
A(100). The value of 100 for QA* is chosen because it is the average between

ol2 AL = 80 and ail = 120. To alleviate the problem associated with multicollinearity,
the system is solved using regular MME (Henderson, 1984) rather than the QP-
transformed system !8!. Therefore, PEV are estimated for BV deviated from their
means. Incorrect PEV for animals 1-7 are 99.91, 99.66, 99.91, 98.30, 98.66, 99.66
and 99.91, respectively. Whereas true PEV for the same animals computed by
means of [11] or [12] (or direct inversion of the MME) are: 79.94, 79.79, 119.88,
78.98, 98.52, 99.66 and 149.59 for animals 1-7, respectively.

DISCUSSION

A model has been presented to predict BV of different crosses between 2 populations
under an additive type of inheritance. It allows for different additive means and
variances. Computations are as simple as when there is only 1 a A 2 and, as usual,
R is a diagonal matrix. A practical application is the analysis of data from crosses
between ’foreign’ and ’local’ strains of a breed, as in dairy or beef breeding. Also,
records from registered vs grade animals, or ’selected vs unselected’, etc, can be
analyzed in this fashion. Although the developments presented were in terms of
2 populations, inclusion of more than 2 can be done as indicated by Lo et al

(1993). With p being the number of populations, the number of parameters in
G is !p(p + 1)] /2, so that for p = 4 there are 10 variances to consider. Some of these
estimates may be highly correlated depending on the type and distribution of the
crosses involved.

The approach taken in the present paper differs from Elzo (1990) in the inclusion
of the segregation variance (o, ALI). 2 The magnitude of this parameter depends on
differences in gene frequencies between the 2 populations (Lo et al, 1993). The
change in gene frequency due to selection is inversely related to the number of loci
because change in gene frequency at a locus due to selection is proportional to the
magnitude of the average effect of gene substitution at that locus (Pirchner, 1969,
page 145), and the magnitude of average effects across loci tend to be inversely
related to the number of loci. Thus, oAL, due to different selection criteria in
2 populations is expected to be inversely related to the number of loci. The change
in gene frequency due to other forces (mutation, migration and random drift) is not
related to the magnitude of average effects. Thus, o, ALI 2 due to differences in gene
frequency between populations brought about by these forces is not related to the



number of loci. Now, the greater the value of QALI, the larger the difference between
the predictors calculated following the approach of Elzo (1990) and the one used in
the present work. This is due to QALI not only entering into the diagonal elements
of G, but also into off-diagonals which are functions of the diagonal elements (Lo
et al, 1993). For example, consider the additive covariance between paternal half
sibs (cov(PHS)) i and i’, from common sire s and unrelated dams. By repeated use
of expression [10] in Lo et al (1993), cov(PHS) is equal to:

Expression [17] shows that cov(PHS) is a function of the additive variance of the
sire, and is not a function of the additive variance present in progeny genotypes.
For I, Fl, BI or F2 sires, cov(PHS) are equal to:

Note that or2 ALI enters into the covariance of individuals whose sire belongs to
later generations than the Fl (eg, BI or F2). It must be pointed out that although
predictions are still unbiased, ignoring o,2 ALI would result in a larger shrinkage of
predictions in [8] than otherwise. As there are no estimates of a2 ALI so far, nothing
can be said about the magnitude of the parameter on genetic variation of economic
traits in livestock.

If dominance is not null, the model should be properly modified to take into
account this non-additive genetic effect. Proper specification of the variance-
covariance matrix for additive and dominance effects in crosses of 2 populations
can involve as many as 25 parameters for a single trait (Lo et al, 1995). Therefore,
predictors of BV and dominance deviations may be difficult to compute for a general
situation, involving animals from several crossbred genotypes. Lo (1993) presented
an efficient algorithm for computing BLUP in the case of 2- and 3-breed terminal
crossbreeding systems under additive and dominance inheritance.
Up to this point the animal model has been employed. However, the ’reduced

animal model’ (Quaas and Pollak, 1980) can alternatively be used by properly
writing matrix Z with 1/2’s, whenever a BV of a ’non-parent’ (an animal that has
no progeny in the data set) is expressed as a function of its parental BV. Residual
genetic variances are obtained by means of expression !7!.

In order to solve equations [8] the parameters o,2 2 2 and the residual

components, have to be known. Usually variance components are unknown and
should be estimated from the data. Elzo (1994) developed expressions for restricted
maximum likelihood (REML) estimators of variance components (including aÃL1)
in multibreed populations, through the expectation-maximization algorithm.



CONCLUSIONS

For 1 or several traits governed by additive effects, predictions of BV from crosses
between 2 populations can be obtained by means of animal models that allow
for different additive means and heterogeneous additive genetic (co)variances.
Calculations required are similar to those with homogeneous additive (co)variances.
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