
Original article

Estimation of variance components
of threshold characters by marginal

posterior modes and means
via Gibbs sampling

I Hoeschele B Tier

Virginia Polytechnic Institute and State University,
Department of Dairy Science, Blacksburg, VA 24061-0315, USA

(Received 19 October 1994; accepted 24 August 1995)

Summary - A Gibbs sampling scheme for Bayesian analysis of binary threshold data
was derived. A simulation study was conducted to evaluate the accuracy of 3 variance
component estimators, deterministic approximate marginal maximum likelihood (AMML),
Monte-Carlo marginal posterior mode (MCMML), and Monte-Carlo marginal posterior
mean (MCMPM). Several designs with different numbers of genetic groups, herd-year-
seasons (HYS), sires and progeny per sire were simulated. HYS were generated as fixed,
normally distributed or drawn from a proper uniform distribution. The downward bias
of the AMML estimator for small family sizes (50 sires, average of 40 progeny) was
eliminated with the MCMML estimator. For designs with many HYS, 0.9 incidence,
50 sires and 40 progeny on average, the marginal posterior distribution of heritability
was non-normal; MCMML and MCMPM significantly overestimated heritability under
the sire mode, while under the animal model the Gibbs sampler did not converge. For
designs with 100 sires and 200 progeny per sire, the marginal posterior distribution of
heritability became more normal and the discrepancy among MCMML and MCMPM
estimates vanished. Heritability estimates under the animal model were less accurate than
those under the sire model. For the smaller designs, the MCMML estimates were very
close to the true value when using a normal prior for HYS effects, irrespective of the true
state of nature of the HYS effects. For extreme incidence, small data sets and many HYS,
observations within an HYS will frequently fall into the same category of response. With
flat priors for the HYS effects, the posterior density is likely improper, supported by an
analytical proof for a simplified model and analyses from Gibbs output. In analyses of
limited binary data with extreme incidence, effects of a factor with many levels should be
given a normal prior. Assigning a proper uniform prior or fixing values of such levels was

* On leave from Animal Genetics and Breeding Unit, University of New England,
Armidale, NSW 2351, Australia



not useful. Most accurate estimation of genetic parameters requires very large data sets.
Further work is needed on diagnosis of improperness and on alternative proper priors.

Bayesian estimation / Gibbs sampling / categorical data / marginal maximum
likelihood / variance component estimation

Résumé - Estimation des composantes de variance de caractères à seuil par les

modes et les moyennes marginales a posteriori à l’aide de l’échantillonnage de Gibbs.
Un plan d’échantillonnage de Gibbs pour l’analyse bayésienne de caractères binaires
à seuil a été établi. Par simulation, on a pu comparer la précision de 3 estimateurs
de composante de variance, un maximum de vraisemblance marginale déterministe et

approximatif (MVMA), le mode marginal a posteriori de Monte Carlo (MVMMC) et la
moyenne marginale a posteriori de Monte Carlo (MMPMC). Plusieurs plans d’expérience
avec des nombres différents de groupes génétiques, de cellules troupeau-année-saison
(TAS), de pères et de descendants par père ont été simulés. Les TAS ont été établis
comme des effets fixes, ou tirés d’une distribution normale, ou tirés d’une distribution
uniforme. L’erreur par défaut du MVMA pour de petites tailles de famille (50 pères,
40 descendants par père) a été éliminée par le MVMMC. Pour des dispositifs incluant de
nombreux TAS, avec une incidence de 0,9, 50 pères et 40 descendants par père en moyenne,
la distribution marginale a posteriori de l’héritabilité n’est pas normale ; MVMMC et
MMPMC surestiment significativement l’héritabilité dans un modèle paternel, alors qu’avec
le modèle individuel la procédure de Gibbs ne converge pas. Avec 100 pères et 200
descendants par père, la distribution marginale a posteriori de l’héritabilité se rapproche
de la normale et les discordances entre les estimées MVMMC et MMPMC disparaissent.
Les estimées d’héritabilités avec le modèle individuel sont moins précises qu’avec le modèle
paternel. Pour les petits dispositifs, les estimées MVMMC sont très proches de leur vraie
valeur quand la distribution a priori des effets TAS est normale, quelle que soit la réalité
des TAS. Pour des incidences extrêmes, de petits échantillons et un grand nombre de TAS,
les observations à l’intérieur d’une cellule TAS tombent souvent dans la même catégorie
de réponse. Avec des a priori uniformes pour les effets TAS, la densité a posteriori est

probablement impropre, comme tend à l’indiquer l’analyse des résultats d’une procédure
Gibbs appliquée à un modèle simplifié. Dans l’analyse de données binaires en nombre limité
et avec une incidence extrême, une distribution normale a priori devrait être assignée aux
effets des facteurs ayant de nombreux niveaux, plutôt qu’une distribution uniforme ou
des valeurs fixées. Des estimations précises des paramètres génétiques requièrent dans ce
cas de très grands ensembles de données. Il reste encore à étudier la manière de déceler

l’impropriété des distributions a priori et de choisir de meilleurs a priori.
estimation bayésienne / échantillonnage de Gibbs / données catégorielles / maximum
de vraisemblance marginale / composante de variance

INTRODUCTION

Bayesian analysis of binary or polychotomous threshold traits via Gibbs sampling
has recently been described by Albert and Chib (1993), Sorensen et al (1995) and
Jensen (1994). In all 3 papers, the Gibbs sampler was implemented in combina-
tion with data augmentation, ie parameters and missing data were sampled from
their fully conditional distributions derived from the joint posterior density of the
parameters and missing data. The parameter vector included fixed and random



effects and variance components, while the missing data consisted of the liabilities
or latent continuous variables in the threshold model. In contrast with the afore-
mentioned papers, Zeger and Karim (1991) implemented Bayesian analysis with a
Gibbs sampler based on the posterior density of the parameters rather than the
joint posterior of parameters and missing data. Zeger and Karim (1991) also used a
different prior for the dispersion parameters. McCulloch (1994) derived maximum
likelihood rather than Bayesian estimation via an expectation-maximization (EM)
algorithm with Gibbs sampling of the liabilities within each E step.

In this contribution, a Gibbs sampling scheme applied to parameters and liabil-
ities was implemented for Bayesian analysis of a binary trait. A simulation study
was conducted to evaluate the accuracy of 3 estimators of variance components,
deterministic approximate marginal maximum likelihood (AMML) (Foulley et al,
1987; Hoeschele et al, 1987), the Monte-Carlo evaluated marginal posterior mode
(MCMML), and the Monte-Carlo evaluated marginal posterior mean (MCMPM).
The analysis was restricted to a threshold model with one variance component
and was performed under sire and animal models. In MML, the marginal poste-
rior density of the variance parameters is maximized with respect to these parame-
ters. ’Fixed’ effects and variance parameters have improper, flat prior distributions.
Thus, the marginal posterior density of the variance components is proportional to
their marginal likelihood. In Bayesian analysis implemented via Gibbs sampling
applied to all parameters (or all parameters and missing data), the parameter sam-
ples provide inferences about any parameter from its marginal posterior density.
For a single variance component, the marginal posterior mode is equivalent to the
MML estimator. Therefore, the Monte-Carlo evaluated marginal posterior mode
was termed the MCMML estimator.

With conventional deterministic algorithms, MML estimates are computed using
a normal approximation, and severe biases of variance and covariance estimates
have been reported (Gilmour et al, 1985; Hoeschele et al, 1987; Hoeschele and
Gianola, 1989; Simianer and Schaeffer, 1989). While Gilmour et al (1985) observed
an underestimation of heritability with small family sizes, Hoeschele et al (1987) and
Hoeschele and Gianola (1989) found an overstimation of heritability for a binary
trait with extreme incidence and in the presence of a fixed factor with many levels.

The objective of this study was to compare the 3 variance component estimators
AMML, MCMML, and MCMPM in terms of their frequentist properties, and, in
particular, to investigate whether the biases observed for the AMML estimator can
be eliminated by computing exact MML estimates via MCMC algorithms. A related
side objective was to investigate potential causes of the biases.

MATERIALS AND METHODS

Methodology

The Bayesian analysis described below is identical to that of Sorensen et al (1995),
when applied to a binary trait, but differs from Albert and Chib (1993) in the
sampling of the variance components. The Gibbs sampling scheme differs from the
sampler of Sorensen et al (1995) only when run under an animal model where
breeding values of sires and offspring were sampled jointly as in Janss et al (1994).



Let y represent the observed dichotomous variable and w the liability variable.
In the threshold model for 2 categories of response, yi = 1 if wi > 0.0 and

y2 = 0 otherwise. Conditionally on the fixed (!3) and random effects (u), the
wi are independent N(x!fJ + z!u, 1), and the yi are independent Bernouilli with
Prob(yi = 1) = 4i(xi# + ziu), where 4i(.) denotes the standard normal cumulative
distribution function. Matrices X and Z are the usual incidence matrices with row
i denoted by x! (zD. The parameter vector (0) includes #, u = [u! ..., u!,..., u9!’,
and the afj (I, j = 1, ... , q), with Cov(ui, u) ) = Aijaij and the A matrices known.

The joint posterior density of e and w = {wi} is

where c is a constant, 0( p,; a2) is the density function of N(!.; a2), and I(XES)
is the indicator function equal to 1 if variable x is contained in set S and zero
otherwise. For independent ujs’, the prior densities of the uj and the <7,! simplify
to products of the f(ujlaJ), the density of the MVN (0; A!Q! ), and products of the
f (a?) 3 or prior densities of the aJ. Samples from the joint posterior distribution can
be obtained by sampling in turn from f(Blw, y) f (0 1 w) and f (w 10, y). These 2
conditional distributions are of standard forms, and the fully conditional parameter
densities, derived from /(!w), are identical to those in the standard mixed linear
model (eg, Gelfand et al, 1990; Wang et al, 1993). Then, from standard mixed linear
model results (eg, Gianola et al, 1990), and with q = 1, Uj = u and a§ = Q!,

where (!Z is element i of vector fl, (3-i is this vector with element i omitted, xi is
column i of matrix x, x-i is x with column i deleted, aii is element (i, i) of the
inverse additive genetic relationship matrix A-1, and Ai is row i of A-1 without
element i.

Under the animal model, breeding values (u) of a sire and his offspring were
sampled jointly by sampling a sire’s u from its marginal normal distribution while
sampling the u of each offspring from its full conditional distribution in (3!. Mean
and variance of the marginal distribution were obtained as the BLUP of the sire’s
u and its prediction error variance after absorbing the offspring u into the sire’s u
in MME for this sire and his offspring.

For q = 1 and f(u u 2) = constant,

where the inverse chi-square distribution has n - 2 df with n equal to the number
of elements in u. The prior in [4] differs from that of Zeger and Karim (1991), who



reported problems in estimating variance components due to the Gibbs sampler
&dquo;being trapped at zero&dquo;. Their prior resulted from an inverse chi-square (or inverse
Wishart) distribution with zero prior degrees of freedom, yielding the prior density
f(afl) = (afl)!! and changing the df in [4] to n. This problem vanishes when
using the flat prior, as also observed by other researchers (D Sorensen, personal
communication). Note also that with an improper prior distribution the resulting
posterior distribution can be proper or improper (eg, Berger and Bernardo, 1992a,
b; Hobert and Casella, 1994). Hober and Casella (1994) established necessary
and sufficient conditions for the joint posterior density of the fixed and random
effects and the variance components in a hierarchical Bayes LMM to be proper,
ie integrable. One condition was that for any variance component j, besides the
residual, with prior f (!! ) = (!! )-!a!+1>, we must have aj < 0. Setting aj = -1

yields the flat prior f ( ?) = 1 used in this paper, while aj = 0 produces the prior
used by Zeger and Karim (1991). More specifically, in this study, a bounded flat
prior for afl was used under a sire model as in Sorensen et al (1995), while an
improper flat prior was used under the animal model.

The marginal posterior mode of heritability was computed by a grid search of the
Rao-Blackwell estimate (eg, Gelfand et al, 1990) of the marginal posterior density
of a2 and a change of variable to h2, or

where 6 = 4 or 6 = 1 for the sire or animal model, respectively, k denotes the Gibbs
sample, and J is the Jacobian of the transformation afl - h2,

Conditional on the parameters, the latent data were sampled from truncated
normal distributions, or

with

To implement the Gibbs sampler, starting values for the parameters were
obtained by computing the maximum a priori (MAP) estimates of /3 and u (eg,
Gianola and Foulley, 1983) evaluated at the approximate MML estimates (Foulley
et al, 1987) of the 0’!. Given initial parameter values, a first sample of the latent
data was drawn from !5!, followed by the sampling of new parameter values from
!2!, [3] and !4!, and further Gibbs cycles.

Because the prior distributions for the fixed effects and for the variance compo-
nent under the animal model are improper, the posterior distribution might also
be improper. Hobert and Casella (1994) gave conditions for the integrability of the



posterior distribution which only hold for hierarchical linear mixed models. Fur-
thermore, a reviewer pointed out that for a simple fixed model with one factor and
the logit link function, the joint posterior distribution of the fixed effects is im-
proper, if in at least one factor level all observations fall into the same category of
response. An analytical investigation of whether f(0)y) is proper for the nonlinear
mixed model considered here, however, is very difficult or intractable. Therefore,
it is desirable to be able to detect an improper posterior from Gibbs output. A
candidate approach is the MC evaluation of the marginal likelihood f (y). With B
representing the parameter vector, the marginal likelihood is

The reciprocal of f (y) is a normalizing constant ensuring that the posterior density
f (9!y) integrates to one, if it is proper. If it is not, [7] is infinite.

While the computation of Bayesian point estimates and related inferences (eg,
marginal posterior density plots, highest posterior density regions) from Gibbs
output is straightforward, computation of marginal likelihoods or Bayes factors
has proved to be very challenging (eg, Chib, 1994; Newton and Raftery, 1994).
Because all conditional distributions (ie !2!, [3] and !4!) are standard, the approach
of Chib (1994) for marginal likelihood estimation from Gibbs output was adopted
here. The marginal likelihood can be written as

and is estimated by evaluating [8] at a particular point, eg, the posterior mean
8 = .E(<!y). With data augmentation, the denominator of [8] can be written as

where w is the vector of missing data. The Monte-Carlo estimate of [9] is

where N is Gibbs sample size and the wi are samples from f (B, w!y) and hence are
also samples from f(wly). To evaluate the densities in the right-hand side of !10!,
let B = [0’, u’, u Then, one way of factoring the joint posterior density evaluated
at the vector of posterior means of the parameters is

where



Note that with the parameter vector partitioned into 3 subvectors, [12a, b, c]
represents one of 6 possible factorizations of the posterior density. Furthermore
note that density [12a] can be evaluated immediately at the termination of the
Gibbs chain, while the evaluation of [12b] requires output from a second Gibbs
chain with afl fixed at its posterior mean estimate obtained from the first chain,
and evaluation of [12c] is from a third Gibbs chain with u and Qu fixed at their
posterior mean estimates from the first Gibbs chain.

Simulated data and analyses

Data were simulated on a binary threshold trait. Eight different designs were
investigated, which firstly differed in the numbers of genetic groups, herd-year-
season (HYS) effects, sires, and progeny per sire. Secondly, designs different in the
way HYS effects were simulated: as fixed (generated once from a normal distribution
and held constant in all replicates), as random and normally distributed, or as
random and drawn from a proper uniform distribution. Genetic groups were always
fixed and sires or animals were random. The designs are defined in table I.

Genetic group means for liability were -0.4, -0.15, 0.15, and 0.4. Sire or animal
effects on liability were generated from N(0, .0D for a heritability of h2 = 0.25

(or2= h 21(6 -h 2) for HYS fixed and 72 = h 2(1 + (}!Ys)/(8 - h2) for HYS random,
with 6 = 4 (6 = 1) under the sire (animal) model), and residual liabilities were



generated from N(0, 1). HYS effects were generated from N(0, 0’ Hys ! 2 0.46) or from
U [a, b], where a = &mdash;0.5(12cr!Ys)!! ! -b was set such that HYS effects had the
same variance under both distributions. The truncation point used to dichotomize
the liabilities was !-1 (p)*(1 +a!Ys+a;)O.5, where p was the desired incidence equal
to 0.9 for all designs except VI-F with p = 0.5. With 135 HYS, the probabilities of
having 0, 1, or 2 offspring in any HYS were 0.8, 0.1, and 0.1, respectively, for each
sire; with 32 HYS, sires had 0, 6 or 7 offspring per HYS with the same probabilities;
and with 320 HYS, sires had 0, 2 or 4 progeny per HYS with probabilities 0.8, 0.09,
and 0.11, yielding approximately the average progeny group sizes given in table I.
The numbers of sires in the 4 genetic groups were 12, 14, 13, and 11. Designs with
average progeny group size of 40 (200) were replicated 40 (20) times.

All data sets were analyzed with the sire model, and data sets II-F, V-F and
VI-F were also analyzed with the animal model. Note that for these designs and
if a linear mixed model were used, sire and animal, models would be (linearly)
equivalent (Henderson, 1985), ie yield the same estimates of fixed and sire effects.
HYS effects were treated as fixed ( f ) in the analysis, ie had improper uniform priors,
for all designs where HYS effects were fixed (F). Additionally, HYS were treated
as random with normal prior (n) in the analyses of data sets for designs II-F, II-N
and II-U where HYS were fixed, random and normally distributed, and random and
drawn from the proper uniform distribution, respectively. Treating HYS as random
with normal prior required to also estimate HYS variance aHys.

For some of the designs, data sets contained HYS levels with the so-called
extreme category problem (ECP) (Misztal and Gianola, 1989). Extreme categories
are the first and last category, hence for a binary trait both categories are extreme.
In an HYS exhibiting the ECP, all records are in the same extreme category. On
average, frequency of HYS with the ECP was 45% for designs I-F and II-F/N/U,
22% for design III-F, 17% for design IV-F, and 0% for all other designs. Solutions
for such HYS classes do not converge but tend toward infinity in deterministic
AMML algorithms. Therefore, in AMML solutions for these HYS were fixed at
I 10 (Misztal and Gianola, 1989). For the Gibbs sampler, options were considered
for the treatment of HYS in the presence of the ECP: (i) to use a proper normal prior
in the analysis; (ii) to use a proper uniform distribution as prior, eg, U(&mdash;10., 10.);
and (iii) to fix HYS effects with the ECP at ± 10 or at ± 3 in all Gibbs cycles,
denoted by f10 and f3, respectively.

RESULTS AND DISCUSSION

Estimates of heritability (h2) were obtained under the sire model for all designs and
under the animal model for designs II-F, V-F, and VI-F. For designs II-F and IV-F,
HYS variance was also estimated when HYS effects had a prior normal distribution
in the analysis. Estimators were deterministic, AMML, MCMML and MCMPM.
MC estimates were computed from 20 000 consecutive Gibbs samples for the

sire model and 200 000 samples for the animal model, with a burn-in period of
an additional 2000 cycles. The burn-in period was determined based on plots of
sample values for heritability versus cycle number showing consistently that 2 000
cycles were more than needed. Typical plots for design-analysis combinations II-F-f
and IV-F-f are shown in figures 1 and 2, respectively. The short burn-in period was



due to the use of good starting values for both location and variance parameters,
which were the estimates obtained from the AMML procedure.

The number of Gibbs cycles of 20 000 (200 000) was determined as sufficient
based on the autocovariance structure of the sample of heritabilities. This entailed
calculating an effective sample size as the ratio of variance of samples to the variance
of the sample mean computed from the estimated autocorrelations (Sorensen et al,
1995). Autocovariance for lag t was estimated as

Variance of sample mean given the estimated autocovariances was estimated with
the initial positive sequence estimator of Geyer (1992), or



where m is the largest integer satisfying the condition

and effective sample size ESS was

For the sire model with 20 000 cycles, the minimum ESS was 580 and was found in
one of the design I-F data sets analyzed with HYS treated as fixed ( f ). For a typical
replicate with ESS = 1435, autocorrelations at lags 1, 10, 20 and 50 were 0.66, 0.34,
0.13 and 0.007, respectively. For most data sets of this design, ESS exceeded 1000.
For other designs (II-VI), ESS was in the 2 000 to 6 000 range, and, for example,
autocorrelations at the above lags were 0.39, 0.14, 0.03, and 0.006 with ESS = 3 705
for a design IV-F data set with HYS treated as fixed. For the animal model and
analysis of design V-F and VI-F data sets, 200 000 cycles were required to achieve
ESS values in the order of 500 to 1 000.



Mean estimates and empirical SE across 40 replicates are presented in table II.
The first column of table II specifies the design (eg, I-F) in combination with the
type of analysis (eg, I-F-f) according to the treatment of HYS effects. Progeny group
sizes typically ranged from 25 to 55 for average progeny group size of 40 and from
120 to 280 for an average of 200.

All estimators strongly overestimated heritability for the design-analysis com-
binations I-F-f and II-F-f under the sire model. The upward bias was largest for
MCMPM, followed by MCMML and AMML. The designs were characterized by
a small number of sires with average progeny group size of 40, a large number of
HYS effects, a high incidence of 0.9, and as a consequence a high percentage of ECP
HYS levels. The discrepancy between the posterior mean and mode of h2 indicate
that the posterior distribution was not normal, with the mode always closer to the



true value than the mean. A plot of the marginal posterior density of h2 based on

[5] for II-F-f can be found in figure 3.

For design-analysis combination III-F-f, with the design containing the same
number of sires and records as, but a smaller number of HYS levels than, I-F
and II-F, the upward biases of the MCMPM and MCMML estimators decreased
while the AMML estimator tended to underestimate h2. Overestimation (Hoeschele
et al, 1987; Hoeschele and Gianola, 1989; Simianer and Schaeffer, 1989) and
underestimation (Gilmour et al, 1985; Thompson, 1990) with AMML are in good
agreement with the literature. It appears that the AMML estimates are closest to
the true value of h2. However, a comparison between the results for I-F-f and II-F-f
versus III-F-f strongly suggests that this finding is due to a partial counterbalancing
of upward and downward biases of the AMML estimator for data sets with a small
number of records and progeny per sire.

For the larger designs with 100 sires and average progeny group size of 200,
biases of and discrepancies among estimators were strongly reduced (design IV-F)
and negligible for design VI-F with the mean as the only fixed effect and an incidence
of 0.5. For design-analysis IV-F-f, the number of records and the number of HYS



levels were increased by a factor of 10 relative to III-F-f. As a result, the AMML,
estimator no longer underestimated h2, while the overstimations obtained with and
the discrepancy between the MCMPM and MCMML estimators strongly decreased.
A plot of the marginal posterior distribution of h2 for design-analysis combination
IV-F-f is presented in figure 4, which shows a more symmetric distribution with
smaller variance relative to figure 3.

It may be concluded that the discrepancies found between the true h2, the
MCMPM and the MCMML estimates are due to a lack of information in the data

causing the posterior distribution to be non-normal and its mean to be a biased
estimator of h2. Another explanation might be that the joint posterior distribution
of the parameters is improper. As mentioned earlier, for the logit link and a simple
fixed model, improperness can be shown analytically when levels of the fixed factor
exhibit the ECP. Consequently, use of a proper prior distribution for the fixed
effects, resulting in a proper posterior, should eliminate this problem. Therefore,
2 proper uniform distributions were employed as priors, U(&mdash;3, 3) and U(&mdash;10, 10)
in the analysis of II-F. However, this leads to rejection of all sampled values for
HYS effects with the ECP. Figure 5 provides an explanation by presenting a plot



of sample value versus Gibbs cycle for an HYS with the ECP. In this analysis, an
improper uniform prior was used, and sample values drifted toward extremely small
numbers far below the lower limits of -3 and -10 in the proper uniform priors.

Next, values of HYS effects with the ECP (all records equal to 0) were fixed
at -3 or at -10 across all Gibbs cycles while the other HYS effects were sampled
and had an improper prior. Results from these analyses are in table II in the
rows for design-analysis combinations II-F-f3 and 11-F-flO. Upward biases were still
substantial and only slightly smaller than those for II-F-f. The posterior distribution
for the parameters sampled should have been proper and, if so, the results indicate
that biases were (mostly) due to limited information in the data.

Because a proper uniform prior could not be used for technical reasons, a normal
prior distribution was postulated for the HYS. The designs analyzed with a normal
prior were II-F, II-N, and II-U, where the true state of nature of the HYS effects
was fixed, normally distributed and drawn from a proper uniform, respectively.
The results for all 3 designs were very similar. The AMML estimator significantly
underestimated h2, MCMPM overestimated h2 with a smaller absolute bias, and
MCMML estimates were very close to the true value.



The empirical SE of the MC estimators tended to be slightly higher than the
SE of the deterministic AMML estimator for the smaller designs. Doubling the
number of Gibbs cycles had virtually no effect, suggesting that the cause was not
the Monte-Carlo error. Possibly the AMML estimator had smaller variance in cases
where it exhibited a large downward bias.
When an animal model was used for design-analysis combination II-F-f, the

Gibbs sampler ’blew up’ in each of several replicates analyzed, ie the additive

genetic variance continued to increase in subsequent Gibbs cycles, soon reaching
unreasonably high values. When design V-F with only one fixed effect was analyzed
under the animal model, the Gibbs sampler ’converged’, but estimates had larger
biases and were more variable compared to those obtained under the sire model.
’Convergence’ of the Gibbs sampler refers to the sampler reaching stationarity,
where sample values fluctuate around a constant (see figure 6 for presence of and
figure 5 for lack of ’convergence’; these figures are discussed further below). To
verify this result and ensure the correctness of the software under the animal model
option, the larger design VI-F was also analyzed under the animal model. Then,
the average estimates were much closer to the true values and almost identical to
the sire model estimates.



The results discussed so far strongly suggest that the cause of the upward bias
in the MCMPM and MCMML estimators is a highly non-symmetrical marginal
posterior distribution of heritability in situations where the data contain little
information. For the larger designs (IV-F, VI-F), the biases strongly decreased.
However, it appears to be likely that the posterior density of the parameters is
also improper in the presence of HYS levels with the ECP. As mentioned earlier,
improperness can be shown analytically for a simple fixed model and the logit link
for binary data when at least one level of the fixed factor exhibits the ECP. The
fact that the Gibbs sampler ’blew up’ for the smaller designs under the animal
model also supports the hypothesis of an improper posterior. Moreover, when a
joint posterior density of the parameters is improper, ’marginal posterior mean or
mode’ estimates or ’marginal posterior density plots’ from Gibbs output may look
’reasonable’, although these were not obtained from a Markov chain with known
stationarity properties (Hobert and Casella, 1994). In the logit link example, effects
of fixed levels not showing ECP are still ’reasonably well estimated’ in the presence
of other levels with the ECP causing the posterior to be improper.

Because an analytical proof of an improper posterior under the nonlinear mixed
model for binary data employed in this investigation appeared to be very difficult
or intractable, the marginal likelihood in !7J, or the reciprocal of the integration
constant of the posterior density, was considered as a potential criterion for

detecting improperness from Gibbs output. It was estimated from several modified
design II-F data sets using expression [11] and required 3 consecutive Gibbs chains
which were run at lengths of 10 000 and 20 000 (after burn-in) cycles. Two situations
were considered in which the posterior density was probably improper: in the

presence of the ECP and when using the prior 1/0, for the variance component.
To examine the ECP, 4 data sets were created. Data set 1 had 70 HYS with the

ECP, data set 2 had only 1 HYS with the ECP and data set 3 had none. Data sets
2 and 3 were obtained by reducing the incidence of the trait from 0.9 to 0.5 and
by reducing the size of the differences among HYS differences. Data set 4 was from
design II-N with random HYS effects.

Table III contains the estimated normalizing constants (reciprocals of marginal
likelihoods) and the MCMPM estimates of heritability for each of the 5 data sets
and the 2 lengths of the sampler. The estimates of the integration constant for
data sets 1 and 2 of table III differed strongly between lengths of 10 000 and 20 000
cycles, ie did not ’converge’. The estimate of the integration constant, however,
did converge for data set 3 not containing HYS with ECP and for data set 4
treating HYS as random. For all 4 data sets, the estimate of heritability appeared
to have ’converged’, because virtually the same means were obtained after 10 000
and 20 000 cycles. ’Convergence’ was also indicated by the plot of sample value for
heritability versus Gibbs cycle in figure 7 although it showed more variability than
a corresponding plot in figure 8 for data set 3 not containing any HYS with ECP.
Note that the numbering of the Gibbs cycles in the figures begins after burn-in.
Expectedly, a plot of HYS sample value versus Gibbs cycle (fig 5) showed non-
convergence for an ECP HYS in data set 1 of table III. As a control, figure 6
presents the plot of sample value versus Gibbs cycle for an HYS without ECP,
which demonstrated convergence. Plots of the marginal posterior density for an
HYS effect with and without ECP can be found in figures 9 and 10, respectively.



To verify the effect of the particular factorization of the posterior density
evaluated at the vector of posterior means of the parameters in [11], the analysis of
data set 1 in table II was repeated for the other 5 factorizations, which all indicated
non-convergence of the integration constant (results not presented).

To examine the second case of an improper posterior caused by the 1/<T! prior,
design V-F data sets were analyzed with this prior, which is known to produce



improper posteriors in the linear model (Hobert and Casella, 1994). Use of this
prior in estimation under design V-F occasionally yielded zero h2 estimates or
underestimated h2. Although heritability was underestimated (h2 = 0.09), the
Monte-Carlo estimates of the integration constant were almost unchanged after
10 000 and 20000 Gibbs cycles indicating that this form of improperness, if it

exists, was not detected by Monte-Carlo estimation of the integration constant
based on !11).

CONCLUSIONS

This study confirmed that the AMML estimator of the heritability of a threshold
character has a downward bias if family sizes are small (Gilmour et al, 1985), in
this case if sire progeny group size is small for a binary trait with high (or low)
incidence. This bias is due to the approximation in the AMML estimator (Foulley
et al, 1987; Hoeschele et al, 1987), because it is eliminated by computing exact
MML estimates via Gibbs sampling.

For small data sets with extreme incidence and many fixed effects ( eg, design
II-F), ie with little information about the heritability, the marginal posterior density
of heritability is highly non-normal, its mean and mode differ and overestimate h2 2
with the mean being more strongly biased. Even for a data set larger by a factor of
10 (design IV-F), marginal mean and mode were still significantly biased upward.
Biases became insignificant when in the large design the mean was the only fixed



effect and the incidence was 0.5. The phenomenon of obtaining biased estimates
when random effects are incorporated into a generalized linear model is quite
well known, and an iterative bias correction method for parametric models using
the bootstrap has been developed (Kuk, 1995). Moreno (personal communication)
obtained promising results when applying Kuk’s method to a binary threshold trait,
however, he noted that the bootstrap is computationally extremely demanding.

Without bias correction, accurate estimation of genetic parameters for binary
threshold traits requires a large amount of data in absolute terms and relative to the
number of fixed effects. This is likely even more important for genetic correlations
than for heritabilities with the former known to be poorly estimated from binary
data (Simianer and Schaeffer, 1989). An encouraging result, however, is that for
situations where only a small data set containing many HYS levels is available for
analysis, the MCMML estimator of heritability appears to be unbiased if a normal
prior is used for the HYS effects, irrespective of the true state of nature of the HYS
effects (fixed, normally or bounded uniformly distributed). As categorical traits are
usually not under intense selection, a non-random association of sires and herds
seems unlikely which justifies treating HYS effects as random in practice. Other
approaches to improving heritability estimation for such data, eg, fixing values of
HYS levels with the ECP at predetermined constants or use of a bounded uniform



prior, were not successful. The use of alternative prior distributions ( eg, Berger and
Bernardo, 1992a, b) for fixed factors with many levels exhibiting the ECP should
be investigated further.

The accuracy of heritability estimation was also found to differ among sire and
animal models. For data with extreme incidence, a limited number of sires (50) and
small progeny group size (40), estimates obtained with the animal model were less
accurate than those from the sire model. When the number of HYS effects (treated
as fixed) was additionally large, the Gibbs sampler did not ’converge’. Therefore,
the animal model should be used only when there is sufficient information in the
data; otherwise the apparently more robust sire model should be preferred.
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