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Summary - A simple and flexible selection method, ’restricted truncation selection’, has
been developed to screen superior individuals from populations with family structure.
’Restricted’ means placing limits on the contributions of families to the selected group
and on the number of families allowed to contribute. Selection is made on the basis of
individual performance judged by phenotype or breeding value estimate. Formulae have
been derived to predict the approximate effective population size in the selected group.
Changes in the restrictions used modify the distribution of family contributions and thus
lead to different effective sizes in the selected population. Effective size is influenced by
sib type, heritability, selection intensity, initial family number and size. It is decreased by
restrictions on the family number but increased by restrictions on family contributions.
The application of the predictions of effective sizes to planning a breeding population is
discussed.
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Résumé - Sélection avec restriction et effectif génétique. Une méthode de sélection
simple et flexible, appelée «sélection par troncature avec restriction», a été mise au

point pour retenir les individus supérieurs dans des populations à structure familiale. La
restriction revient à imposer des contraintes sur la contribution des familles au groupe
sélectionné et sur le nombre de familles autorisées à contribuer. La sélection est basée
sur la performance individuelle phénotypique ou sur une estimée de valeur génétique.
Des formules approximatives de calcul de l’effectif génétique du groupe sélectionné sont
données. Des changements dans les contraintes appliquées modifient la distribution des
contributions familiales et conduisent ainsi à des effectifs génétiques différents dans les
populations sélectionnées. L’effectif génétique dépend du type de famille, de l’héritabilité,
du nombre initial de familles et de leur taille. Cet effectif diminue si on impose des
contraintes sur le nombre de familles mais augmente si les contraintes portent sur
les contributions familiales. L’application des prédictions d’effectif génétique dans la

planification d’expériences de sélection est discutée.
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INTRODUCTION

In a population with uniform family structure, selection leads to different families
making different contributions to the selected group. Effective population size, if

concerning family number (Robertson, 1961), is thus always lower in the selected
population than the initial size, except when all families contribute the same
numbers of individuals. Reduction of effective population size is an inevitable effect,
for example, of truncation selection based on either phenotype or optimal index
(Lush, 1947; Robertson, 1961; Burrows, 1984; Falconer, 1989). Wei (1995) has
therefore proposed a modified truncation selection method in which restrictions are
placed on the number of individuals selected from a family, and also on the number
of families from which selections are made. It has been shown that truncation
selection with restrictions can be used for the manipulation of both effective size and
genetic gain in the selected population (Wei, 1995). This study attempts to increase
the general applicability of the method and to derive approximate formulations for
predicting the effective size following selection.

ASSUMPTIONS AND SELECTION THEORY

Consider a group of m unrelated or equally related families, each of s members that
are genetically related by the coefficient of relatedness, r. The observed phenotypes
of all individuals are recorded. The phenotype of the kth individual of the jth family
could be expressed as the sum of two independent variables.

where Xj are family means, and d!k are within-family deviations. If the family
means have variance o, and within-family deviations have variance Qw, the total
phenotypic variance, !t , is af = Qb -f- <7! and the ratio of the phenotypic variance
of family mean to the total phenotypic variance is

Selection criteria will be the phenotypic value or optimal index that best predicts
the breeding value of an individual (Lush, 1947; Falconer, 1989). In the following
development the index will be treated in the same way as phenotypic value but
with a different value for the ratio (K*) of the variance of family mean to the total
variance given by Wei and Lindgren (1994) in the form

A proportion (P) of individuals will be selected. Two restrictions are imposed:
one on the maximum number (sr) of individuals that may be contributed by a
family and one on the number (mr) of families that are allowed to contribute.
Thus, the mr top-ranking families with the Sr top-ranking individual in each family
are shortlisted. Superior individuals are finally truncated from the shortlist, on the
basis of phenotypic value or optimal index.



Let P1 = sr/s and P2 = mr/m, the proportions of the restrictions sT and

mr to the family size and number respectively. The extreme cases of restricted
selection with specified P1 and P2 values describe conventional selections and one-

step restricted selections as follows (Falconer, 1989; Wei, 1995; Wei and Lindgren,
1996). When both P1 and P2 are one, selection is based on either phenotypic or
optimal index value but is unrestricted. P1 = P (and thus P2 = 1) describes
within-family selection, and P2 = P (and thus P1 = 1) corresponds to between-
family selection. Selection with P1P2 = P represents the permutations of combined
between-family and within-family truncation. One-step restricted selection means
restrictions being imposed on either just family number (P2 = 1) or just family
contributions (Pi = 1).

EFFECTIVE POPULATION SIZE AND APPROXIMATIONS

Let n! denote the number selected from the jth family and total selections n = Enj.
Two types of definitions for effective population size are considered:

and

where E(n! ) is the second moment of nj samples and E[n! (n! - 1)] is the second
factorial moment. Both were developed for considering inbreeding effect in offspring
(NR by Robertson, 1961; NB by Burrows, 1984) although the values may have
potential uses in other senses. Considering selfing of selected individuals into
random mating, 0.5[r/NR + (1 - r)/n] is the average inbreeding coefficient (OF)
of progeny. If selfing is excluded, 0.5/NB is then the average pairwise coancestry
in the selected group relative to the parents of the population, and therefore is
the average inbreeding coefficient of progeny produced by random mating among
selected individuals.

For planning breeding programmes, breeders often need to predict selection
differentials (genetic gain) as well as effective population size by using existing
information (eg, K value) and designated operation parameters (m, s, P, Pi, P2 in
the present case). Here we proceed in analogy with Burrows (1984) and Wei and
Lindgren (1996) to reformulate [1] and [2] to enable the prediction of effective size.
We assume that U! represents the number of individuals in the jth sampled

family with performance exceeding the truncation point relative to P, P1 and P2.
Thus, they sum to a random variable and are distributed over integers 0,1, ... , sr.
As shown in the Appendix, the required moments of U! are



and

where Nr(K, P, P1, PZ) stands for the corresponding effective population size under
selection from a population of infinitely large family number and size. Let f (x)
denote the density function of the family mean (x) in an infinite population,
and p(x) the proportion of members selected from a family. Then the term
7Vr(-f!,f,fi,-P2) is expressed in the integral form (Wei, 1995; Wei and Lindgren,
1991)

Clearly Nr(K, P, Pl, P2) measures the relative value of effective size compared to
that before selection. As K = 0, selection is completely based on within-family
deviations, thus Nr(K, P, Pl, P2); as K = l, selection is completely based on family
means, thus !(!,f,fi,f2) = P/P1. To obtain Nr(K, P, Pl, PZ) for K between
0 and 1, numerical computation is needed (for full details see Burrows, 1984; Wei
and Lindgren, 1991; Wei, 1995).

In contrast to Uj, n! represents a consequence of censorship applied to the
population sample. The nj are constrained to sum to n and are distributed
over integers 0,1, ... , min(sT, n). Thus we do not directly employ E(UJ) and
E(U! (U! -1)! as the respective approximations of E(n! ) and E[nj(nj -1)]. Instead,
we assume that 
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and

in which W and V will be obtained for two cases.

When only K = 0 is considered

When K = 0 there is no difference among families, and selection is based on within-
family deviations but is random with respect to pedigree. By using K = 0 as a
factor, formulations for predicting effective population sizes have been developed
for unrestricted selection and one-step restricted selection (Burrows, 1984; Wei and
Lindgren, 1996). Proceeding in a similar way, the relevant hypergeometric sampling
moments for the present situation yield

and



When K = 0, [7] yields the same result as (10!. By using Nr(K, P, Pi, PZ) = P2, !4!,
[7] and !10!, W is solved in the form

Therefore an estimative approximation to [1] is

As [8] yields the same result as [9] at K = 0, we could obtain

Mid

When both K = 0 and K = 1 are considered

Obtaining the consequences of selection for the special case when K = 1 is easy.
Because K = 1 means no variation within families, and truncation selection is

completely based on family means with family contributions either P1 or zero, we

have
a - -

and

Meanwhile, for infinite populations, Nr(K, P, Pi, P2) = P/Pl. A linear relationship
between W and Nr(K, P, P1, PZ), which passes the two limiting cases [10] and !15!,
produces

Thus, [1] could be predicted using

In the same way, we can obtain the following using !5!, !8!, [9] and !16!:



and

RESULTS AND DISCUSSION

The effective population size following selection illustrates the possible disadvan-
tages (eg, inbreeding depression) of using selection in production populations, and
the richness of genetic resources achieved for further selection and breeding. Knowl-
edge of effective size helps a breeder assess the benefits and risks associated with a
breeding operation such as selection in planning a breeding programme.
When selection is applied to a breeding population or progeny test, effective

population sizes can be calculated directly from pedigrees of selections using [1] and
(2!. Before testing, the prediction of effective sizes requires prior knowledge of K
and Nr(K, P, Pl, P2), except in the extreme cases P1 = P, P2 = P and PiP2 = P.
To plan an advanced- or improved-generation breeding population, values of K
derived from measurements of the last generation could be directly employed. In
planning a new breeding programme, a reliable value of K is often not available.
Any information about the genetics of the species under consideration can then
be used to synthesize K, such as data from similar tests in the same or similar
environments, or trials at clonal, individual, family (sibs), population, provenance
or even species levels in greenhouse, nursery or field conditions. Breeders should
use existing knowledge to make the best possible estimate of K.

The effective population size, Nr(K, P, P1, P2), from infinite populations is used
to draw general conclusions and to predict NR and NB from finite populations.
For unrestricted selection, Nr (K, P, PI, P2) could be computed using the same pro-
cedure as Burrows (1984) and Wei and Lindgren (1991). Truncation points corre-
sponding to P can be obtained or interpolated from existing tables and compu-
tational programmes. When restrictions are imposed, the population for selection
has truncated distributions of family means and within-family deviations. Search-
ing for a truncation point corresponding to P, P1, and P2 becomes complicated. A
numerical procedure to calculate Nr(K, P, Pl, P2) has been documented in previous
studies (Wei, 1995; Wei and Lindgren, 1996).

With assumption that family mean and within-family deviations are normally
distributed, and the total phenotypic variance is one, an example is given to
show Nr(K, P, P1, P2) at P = 0.01 for different K, P1 and P2 values (table I).
As K increases, effective size rapidly decreases except where P1 = P, P2 = P
and PlP2 = P. At given K values, the restrictions yield different results, in

comparison with unrestricted selection, depending on which type of restriction is
used. A restriction on family contributions leads to a more dispersed distribution of
selections among families, and thus higher effective size. The trend becomes most
evident when K is high and the restriction is strong. In contrast, a restriction on
family number drastically reduces effective size, especially at low K.

Analysis of predicted effective population sizes for a small population (table II)
suggests the same effects. The optimal index selection is, for instance, worse than
phenotypic selection in conserving effective size because K* is much higher than



K. This is consistent with unrestricted selection (Robertson, 1961; Burrows, 1984;
Wei and Lindgren, 1991). The two definitions, [1] and [2], are different in value
but are related in a way (Kimura and Crow, 1963; Burrows, 1984). The inbreeding
coefficient of progeny produced by random mating among selections can be easily
obtained using either [1] or (2!. For both of them, two types of approximations give
very close results, especially when a strong restriction on family number is used.

Several other factors may influence effective size following selection. For charac-
ters with given hereditary ability (heritability), half-sib families have larger within-
family variation (lower K) than full-sib families, so they are a better choice for
conservation of high effective size. Intense selection (low P), which is often used for
rapid genetic gain in selective breeding, often leads to drastic reductions in effective
size (Wei and Lindgren, 1991). Values of P should be deliberately chosen. Table III
shows the effects of family number and size on the effective size following selec-
tion. While the effective size (NR) increases significantly with family number, the



increase with family size is trivial. This suggests that if effective size is of concern,
having many families in breeding populations is more important.

Because selection is totally at random when K = 0, a drift effect due to small
family size is included in the approximations of effective size (eqs (12!, !14!, [18]
and (20!). Small differences between NR and NR2 (or NB and NB2) (table II) may
be explained by the decreasing influences of K on drift effect as it approaches one
(Wei and Lindgren, 1994, 1996). The approximation (eqs [12] and [14]) yield the
exact values when K = 0 and m ! oc (Burrows, 1984; Woolliams, 1989). This is
also true for [18] and [20]. Moreover [18] and [20] give the exact value at K = 1.
It has been found that the approximations for unrestricted selection underestimate
effective size when K > 0 and family number is small (Woolliams, 1989). Computer
simulation shows (table IV) that restriction (both P1 and P2) greatly improves the
prediction of effective size. Increasing family number could also better the prediction
at a given family size, although large family size has a negative effect (table IV).
The quantity Nr(K, P, Pi, P2) is a limiting result for large family number (m). The
prediction of effective size for small m could then be improved by the adjustment
of Nr(K,P,P1,P2), denoted by N;(K,P,P1,P2), according to Burrows (1984).



which is bounded at P2 as N,.(K,P,P1,P2) = P2, especially N;(K,P,P1,P2) =
Pz=lasm=1.
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APPENDIX

Restricted selection is applied to the mrsr(= msPiP2) individuals shortlisted by
considering both restrictions. Those with the highest performances are truncated at
the point XT, corresponding to P, P1 and P2. Assume that the family mean, Xj = x,
is a continuous random variable with a density function f (x). The truncation point
for a particular family with mean value x on a standardized scale is expressed
as y = (xT - z) law. Let F denote the unit distribution function. In the jth
family with xj = x, the probability that the performance of an individual exceeds
XT is [1 - F(y)]/P1, and the probability that the performance is less than xT is

!F(y) + P1 -1)]/ Pl. We can reasonably assume that 1- F(y) = 0 and F(y) = 1 for
the m - mr rejected families. Then the probability that in the jth family, U! (= u)
individuals have a value greater than xT and sr - u have a value less than xT,
Pu = pr(Uj = u) is given by integrating over the distribution of x (Burrows, 1984)
in the form

where the integral part is the expectation with respect to the family mean x. Thus,
the moment-generating function for U! is

The expectations of U! and U§ are given by the values of the first and second

derivatives of M(8) at B = 0:

and

Similarly we can obtain the probability generating function for Uj:

The expectation of Uj (Uj - 1) is given by the value of the second derivatives of
P(B) at B = 1:
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