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Summary - A quasi-Newton restricted maximum likelihood algorithm that approximates
the Hessian matrix with the average of observed and expected information is described for
the estimation of covariance components or covariance functions under a linear mixed
model. The computing strategy outlined relies on sparse matrix tools and automatic
differentiation of a matrix, and does not require inversion of large, sparse matrices. For the
special case of a model with only one random factor and equal design matrices for all traits,
calculations to evaluate the likelihood, first and ’average’ second derivatives can be carried
out trait by trait, collapsing computational requirements of a multivariate analysis to those
of a series of univariate analyses. This is facilitated by a canonical decomposition of the
covariance matrices and corresponding transformation of the data to new, uncorrelated
traits. The rank of the estimated genetic covariance is determined by the number of non-
zero eigenvalues of the canonical decomposition, and thus can be reduced by fixing a
number of eigenvalues at zero. This limits the number of univariate analyses needed to
the required rank. It is particularly useful for the estimation of covariance function when
a potentially large number of highly correlated traits can be described by a low order
polynomial.
REML / average information / covariance components / reduced rank / covariance
function / equal design matrices

Résumé - Algorithme de maximum de vraisemblance restreint, basé sur l’« informa-
tion moyenne », pour estimer les matrices de covariance génétique ou les fonctions
de covariance de rang partiel, dans les modèles animaux avec matrices d’incidence
identiques. On décrit un algorithme de maximum de vraisemblance restreint de type quasi-
Newton, qui approche la matrice Hessienne par la moyenne de l’information observée
et attendue, dans le but d’estimer les composantes de covariance ou les fonctions de
covariance dans un modèle linéaire mixte. La stratégie de calcul envisagée repose sur



les outils de traitement des matrices creuses et sur la différentiation automatique d’une
matrice, sans nécessiter d’inversions de grandes matrices creuses. Dans le cas particulier
d’un modèle avec un seul facteur aléatoire et une matrice d’incidence identique pour
tous les caractères, les calculs de la vraisemblance, de ses dérivées premières et secondes
« moyennes» peuvent être effectués caractère par caractère, ce qui ramène les besoins de
calcul liés à une analyse multivariate au niveau de ceux d’une série d’analyses univariates.
Ceci est rendu possible par la décomposition canonique des matrices de covariance à partir
de la transformation des données en caractères nouveaux, non corrélés entre eux. Le rang
de la matrice de covariance génétique estimée est déterminé par le nombre de valeurs

propres non nulles de la décomposition canonique, et donc peut être réduit quand on fixe
à zéro certaines valeurs propres. Le nombre d’analyses univariates est ainsi égal au rang.
Ceci est particulièrement utile pour l’estimation de la fonction de covariance, qui décrit
les covariances entre un très grand nombre de caractères très corrélés par l’intermédiaire
d’un polynôme d’ordre inférieur.
REML / information moyenne / composantes de covariance / fonction de covariance /
rang partiel

INTRODUCTION

Estimation of (co)variance components by restricted maximum likelihood (REML)
fitting an animal model to date is mainly carried out using a derivative-free (DF)
algorithm as initially proposed by Graser et al (1987). While this has been found
to be slow to converge, especially for multi-trait and multi-parameter analyses, it

does not require the inverse of a large matrix and can be implemented efficiently
using sparse matrix storage and factorisation techniques, making it computationally
feasible for models involving tens of thousands of animals.

Recently there has been renewed interest in algorithms utilising derivatives of
the likelihood function to locate its maximum. This has been furthered by technical
advances, making computations faster and allowing larger and larger matrices to
be stored. Moreover, the rediscovery of Takahashi et al’s (1973) algorithm to invert
large sparse matrices has removed most of the constraints on algorithms imposed
previously by the need to invert large matrices.

In particular, ’average information’ (AI) REML, a quasi-Newton algorithm,
which requires first derivatives of the likelihood but replaces second derivatives
with the average of the observed and expected information, described by Johnson
and Thompson (1995) has been found to be computationally highly advantageous
over DF procedures.

It is well recognised that for several correlated traits, most information available
is contained in a subset of the traits or linear combinations thereof. This subset
is the smaller the higher the correlations between traits. More technically, several
eigenvalues of the corresponding covariance matrix between traits are very small
or zero. If a modified covariance matrix were obtained by setting all small eigen-
values to zero and backtransforming to the original scale (using the eigenvectors
corresponding to non-zero eigenvalues), it would have reduced rank.

There has been interest in reduced rank covariance matrices in several areas.

Wiggans et al (1995; unpublished) collapsed the multivariate genetic evaluation for
30 traits (ten test day records each for milk, fat and protein yield in dairy cows)
to the equivalent of five univariate analyses by reducing the rank of the genetic



covariance matrix and exploiting a transformation to canonical scale. Kirkpatrick
and Heckman (1989) introduced the concept of ’covariance functions’, expressing
the covariance between traits as a higher order polynomial function. Polynomials
can be fitted to full or reduced order. In the latter case, the resulting covariance
matrix has reduced rank, ie, a number of zero eigenvalues (Kirkpatrick et al, 1990).

The covariance function (CF) model was developed with the analysis of ’traits’
with potentially infinitely many repeated, or almost repeated records in mind,
where the phenotype or genotype of individuals is described by a function rather
than a finite number of measurements (Kirkpatrick and Heckman, 1989). A typical
example is the growth curve of an animal. Hence, in essence, CFs are the infinite-
dimensional equivalent of covariance matrices. Analysis under a CF model implies
that coefficients of the CF are estimated rather than individual covariances as under
the usual multivariate, ’finite’ linear model; see Kirkpatrick et al (1990) for further
details.

While it is possible to modify an estimated covariance matrix to reduce its
rank (as done by Kirkpatrick et al, 1990, 1994), it would be preferable to impose
restrictions on the rank of covariance matrices ’directly’ during (REML) estimation.
Ideally, this could be achieved by increasing the order of fit (ie, rank allowed)
sequentially until an additional non-zero eigenvalue does not significantly increase
the likelihood.

Conceptually, this could be implemented simply by reparameterising, to the
eigenvalues and corresponding eigenvectors of a covariance matrix, and fixing the
required number of eigenvalues at zero. Practical applications of such reparameter-
isations, however, have been restricted to simple animal models with equal design
matrices for all traits; see Jensen and Mao (1988) for a review. For these, a canon-
ical decomposition of the genetic and residual covariance matrix together yields a
transformation to uncorrelated variables with unit residual variance, leaving the
number of parameters to be estimated unchanged (for full rank).

Meyer and Hill (1997) described how REML estimates of CFs or, more precisely,
their coefficients could be obtained using a DF algorithm through a simple repa-
rameterisation of the variance component model. However, they found it slow to
converge for orders of fit greater than three or four. Moreover, for simulated data
sets the DF algorithm failed to locate the maximum of the likelihood accurately in
several instances, especially if CFs were fitted to a higher order than simulated.

This paper reviews an AI-REML algorithm for the general, multivariate case,
presenting a computing strategy that does not require sparse matrix inversion. Sub-
sequently, simplifications for the special case of a simple animal model with equal
design matrices for all traits are considered. Additional reductions in computational
requirements are shown for the estimation of reduced rank genetic covariance ma-
trices or reduced order CFs.

THE GENERAL CASE

Model of analysis

Consider the multivariate linear mixed model for t traits



with y, 13, u and e denoting the vector of observations, fixed effects, random
effects and residual errors, respectively, and X and Z are the incidence matrices
pertaining to (3 and u. Let V(u) = G, V(e) = R and Cov(u,e’) = 0, so that
V(y) = V = ZGZ’ + R.

For an animal model, u always includes the vector of animals’ additive genetic
effects (a). In addition, it may contain other random effects, such as animals’
maternal genetic effects, permanent environmental effects due to the animal or
its dam, or common environmental effects such as litter effects.

Let EA = {a Aij}’ denote the t x t matrix of additive genetic covariances. For
u = a this gives G = EA &reg; A where A is the numerator relationship matrix and 0
denotes the direct matrix product. If other random effects are fitted, G is expanded
correspondingly; see Meyer (1991) for a more detailed description. Assuming y is
ordered according to traits within animals

where N is the number of animals that have records, and 2::+ denotes the direct
matrix sum (Searle, 1982). Let EE = {!E!! be the matrix of residual covariances
between traits. For t traits, there are a total of W = 2t - 1 possible combinations of
traits recorded (assuming single records per trait), eg, W = 3 for t = 2. For animal
i with combination of traits w, Ri is equal to !Ew’ the submatrix of EE obtained

by deleting rows and columns pertaining to missing records.

Average information REML

Assuming a multivariate normal distribution, ie, y N N(Xb, V), the log of the
REML likelihood (G) is (eg, Harville, 1977)

where X* denotes a full-rank submatrix of X, and

Let e denote the vector of parameters to be estimated with elements Oi for
i = 1, ... , p. Derivatives of log G are then (Harville, 1977)



The latter is commonly called the observed information. It has expectation

For V linear in 9, a2V/8Bi8B! = 0, and the average of observed [5] and expected
[6] information is (Johnson and Thompson, 1995)

The right hand side of [7] is (except for a scale factor) equal to the second derivative
of y’Py with respect to Bi and 0j , ie, the average information is equal to the data
part of the observed information.
REML estimates of e can then be obtained by substituting the average infor-

mation matrix for the Hessian matrix in a suitable optimisation scheme which uses
information from second derivatives of the function to be maximised; see Meyer
and Smith (1996) for a detailed discussion of Newton-Raphson-type algorithms in
this context.

Calculation of the log likelihood

Calculation of log G pertaining to [1] has been described in detail by Meyer (1991).
It relies on rewriting [3] as (Graser et al, 1987; Meyer, 1989)

where C is the coefficient matrix in the mixed model equations (MME) for [1] (or
a full rank submatrix thereof).

The first two components of log L can usually be evaluated indirectly, requiring
only the log determinants of matrices of size equal to the maximum number of
records or effects fitted per animal. For u = a

where NA denotes the number of animals in the analysis (including parents without
records). log IAI is a constant and can be omitted for the purpose of maximising
log ,C. Similarly, with Nw denoting the number of animals having records for
combination of traits w

The other two terms in [8], log ICI and y’Py, can be determined in a general
way for all models of form !1!. Let M (of size M x M) denote the mixed model
matrix (MMM), ie, the coefficient matrix in the MME augmented by the vector of



right hand sides (r) and a quadratic in the data vector

A Cholesky decomposition of M gives M = LL’, with L a lower triangular
matrix with elements lij (lij = 0 for j > i), and

Factorisation of M for large scale animal model analyses is computationally
feasible through the use of sparse matrix techniques; see, for instance, George and
Liu (1981).

Calculation of first derivatives

Differentiating [8] gives partial first derivatives

Analogously to the calculation of log £ the first two terms in [14] can usually
be determined indirectly while the other two terms can be evaluated extending the
Cholesky factorisation of the MMM (Meyer and Smith, 1996).

Let D! = å’5:.A/å()i be a matrix whose elements are 1 if Bi is equal to the klth
element of EA and zero otherwise. Further, let 6ki denote Kronecker’s Delta, ie,
6kl = 1 for k = and zero otherwise, and QAl denotes the klth element of EA1. For
oj = a Akl

Similarly, with D! = BEEw/8Bi and a’lL the klth element of Y.l¿

while all other first derivatives of log !G! and log !R! are zero.
Smith (1995) describes a procedure for automatic differentiation of the Cholesky

decomposition. In essence, it is an extension of the Cholesky factorisation which
gives not only the Cholesky factor of a matrix but also its derivatives, provided
the corresponding derivatives of the original matrix can be specified. In particular,
Smith (1995) outlines a ’backwards differentiation’ scheme that is applicable when
we want to evaluate a scalar function of L, f (L).



It involves computation of a lower triangular matrix F. This is initialised to
10f(L)Ialijl. On completion of the backwards differentiation, F contains the
derivatives of f(L) with respect to the elements of M. Smith (1995) states that
the calculation of F (not including the work needed to compute L) requires about
twice as much work as one likelihood evaluation. Once F has been determined first
derivatives of f (L) can be obtained one at a time as tr(F<9M/<9!t), ie, only one
matrix F is required.

Meyer and Smith (1996) describe a REML algorithm utilising this technique to
determine first and (observed) second derivatives of log G for the case considered
here. For f (L) = log I C + y’Py, the scalar is a function of the diagonal elements
of L (see [12] and [13]). Hence, {8f(L)/8lij} is a diagonal matrix with elements
n¡¡1 for i = 1, ... , M - 1 and 21,!,1,! in row M.

The non-zero derivatives of M have the same structure as the corresponding part
(data versus pedigree) part of M

As outlined above, R is blockdiagonal for animals. Hence, matrices aR -1/ alJ Ekl
have submatrices -E-’Do!E-1 ie, derivatives of M with respect to residual

(co)variances can be set up in the same way as the ’data part’ of M.
The strategy outlined for the calculation of first derivatives of log L does

not require the inverse of the coefficient matrix C. In contrast, Johnson and
Thompson (1994, 1995) and Gilmour et al (1995) for the univariate case, and
Madsen et al (1994) and Jensen et al (1995) for the multivariate case derive

expressions for 8logG/aBi based on [4], which require selected elements of C-1.
Their scheme is computationally feasible owing to the sparse matrix inversion
method of Takahashi et al (1973). Misztal (1994) claimed that each sparse matrix
inversion took about two to three times as long as one likelihood evaluation, ie,
computational requirements for both alternatives to calculate first derivatives of
log C appear comparable.

Calculation of the average information

Define

For Bi = (JAw 8V/8()i = Z(D! Q9 A)Z’. This gives



where In is an identity matrix of size n, Z.,,, the submatrix of Z and am the subvector
of a for trait m, ie, bi is simply a weighted sum of solutions for animals in the data.
For Oi = (J&dquo;Ek¡ and 6 = y - Xb - Zu the vector of residuals for [1] with subvectors
8m for m = 1,..., t

Extension to models fitting additional random effects such as litter effects or
maternal genetic effects is straightforward; see, for instance, Jensen et al (1995) for
corresponding expressions.

Using !19!, [6] can be rewritten as

Johnson and Thompson (1995) calculated vectors Pbj as the residuals from

repeatedly solving the mixed model equations pertaining to [1] with y replaced
by bj for j = 1, ... , !. On completion, [22] could be evaluated as simple vector
products. Alternatively, define a matrix B = [bi I b2 I ... bp!. Then consider the
mixed model matrix with y replaced by B, ie, with the last row and column (for
right hand sides) expanded to p rows and columns

Factoring MB or, equivalently, ’absorbing’ C into the last p rows and columns of
MB then overwrites B’R-1B with B’PB which has elements {b’ iPbj} (Smith,
1994 pers comm). With the Cholesky factorisation of C already determined (to
calculate log G), this is computationally undemanding.

EQUAL DESIGN MATRICES

For a simple animal model with all traits recorded at the same or corresponding
times, design matrices are equal, ie, [1] can be rewritten as

Meyer (1985) described a method of scoring algorithm for this case, exploiting a
canonical transformation to reduce a t-variate analysis to t corresponding univariate
analyses.

For EE positive definite and EA positive semi-definite, there exists a matrix Q
such that A is a diagonal matrix with elements Àii ! 0 which are the eigenvalues
of !E/!A, and S2 = It (eg, Graybill, 1969)



Transforming the data to

then yields t new, ’canonical’ traits which are uncorrelated and have unit residual
variance. This makes the corresponding coefficient matrix in the MME blockdiag-
onal for traits, ie,

Meyer (1991) described how the log likelihood (on the original scale) in this case
can be computed trait by trait as the sum of univariate likelihoods on the canonical
scale plus an adjustment for the transformation (last term in !29!)

with y* the subvector of y* for trait i and P* the ith diagonal block of the projection
matrix on the canonical scale P* which, like C*, is blockdiagonal for traits.

Terms required in [29] can be calculated by setting up and factoring, as described
above, univariate MMM (on the canonical scale), Mi , of size Mo = (M - 1)/t + 1
each

Moreover, all first derivatives of log G as well the average information matrix,
both on the canonical scale, can be determined trait by trait.

First derivatives on the canonical scale

Consider the parameterisation of Meyer (1985) where 0*, the vector of parameters
on the canonical scale, has elements Ag and wi! for i < j = 1, ... , t, ie, parameters
are the (co)variances on the canonical scale.

The log likelihood on the canonical scale can be accumulated trait by trait,
because Cholesky decompositions of individual MMM, M!, yield the submatrices
and subvectors for trait i which are obtained when decomposing M* = L*L*’, ie,



On the original scale, L and F have the same sparsity structure (Smith, 1995).
However, while Ay = Wij = 0 for given EA and EE, the corresponding derivatives
and estimates are not, unless the maximum of the likelihood has been attained.
Hence, while the off-diagonal blocks of LC are zero, the corresponding blocks of
F* = 8f (L*)/c7M* are not.

It can be shown that both the diagonal blocks of F* corresponding to L* F*
and the row vectors corresponding to 1*’, fi are identical to those obtained by
backwards differentiation of L!. In other words, first derivatives with respect to the
variance components on the canonical scale (!ii and Wii) can be obtained trait by
trait from univariate analyses. Calculation of derivatives with respect to !2! and
Wij, however, requires the off-diagonal blocks of F* corresponding to traits i and
j, FC_! . Fortunately, as outlined in the APPendix, matrices FC.! can be determined
indirectly from terms arising using the Cholesky decomposition and backwards
differentiation for individual traits on the canonical scale.

From [17] and !18!, first derivatives of f (L*) = log I C* + y*’P*y* are then

with FMM the Mth diagonal element of F*. For f (L*) = 10g1C*1 + y*’P*y*,
FM M = 1.

Other terms required to determine the first derivatives on the canonical scale are

where G* and R* are the canonical scale equivalents to G and R, respectively.

Average information on the canonical scale

For G* = A &reg; A, R* = ItN, and thus V* = Var(y*) blockdiagonal for traits, [20]
and [21] simplify to



ie, vectors bi are zero except for subvectors for traits k and l, bik = si and bil = sk ,

with Sj standing in turn for A!Zoa! and 8) .
With P* blockdiagonal for traits, 0g = ).,kl or uki (k x l) and 0) = Amn or umn

(m < n), this gives

Hence, calculation of the average information on the canonical scale requires all
terms s’P*sj for i ! j = 1,..., 2t and k = 1, t. These can be obtained trait by
trait, analogously to the procedure described above for the general case. After the
Cholesky factorisation of Mk has been carried out, solution a* for animals’ additive
genetic effects and residuals ek for trait k are obtained, storing the Cholesky factor
L*. Define a matrix S of size N x 2t with columns equal to vectors si. S is the
canonical scale equivalent to B above. Once all columns of S have been evaluated,
set up a matrix

- vi 1 -

for each trait. This is the MMM for trait k on the canonical scale with yk
replaced by S. The matrix S’S has elements s’sj which are the sum of squares
and crossproducts of the vectors of (weighted) solutions and residuals. Absorbing
Ck into S’S (using the stored matrix L*) then overwrites this matrix with S’PkS
which has elements S!PkSj’ After all t traits have been processed bi!P*b!, (twice)
the average information, can be ’assembled’ according to !38!.

Derivatives on the original scale

Let H*, with elements 2 bi ! P* b! , and g*, with elements 810g £* /80g, denote
the average information matrix and vector of gradients on the canonical scale,
respectively. Corresponding terms on the original scale are then

where J with elements <9!/c)! is the Jacobian matrix of e with respect to e*.
From [25] and [26], J has non-zero elements

A numerical example illustrating calculations is given in the Appendix.



Alternative parameterisation

The above parameterisation requires switching between the original and canonical
scale (or accumulating the transformations). Alternatively, as performed by Meyer
(1991) for a derivative-free algorithm, 0* can be defined to have t elements A!
(i = 1, ... , t) and t2 elements q2! (i, j = 1, ... , t), ie, the ’genetic’ variances on
the canonical scale and the elements of the transformation matrix Q. This allows
estimation to be carried out on the canonical scale. Moreover, as outlined by Meyer
(1991) for a derivative-free algorithm, evaluation of log G for given Aii requires
scalar calculations involving the elements of Q only, ie, maximising the conditional
log,C (for given Àii) with respect to qij is computationally inexpensive. This allowed
the maximum of log G to be located in a two-step procedure with computational
requirements equivalent to those of a t parameter (rather than t(t + 1) ) analysis.

While derivatives with respect to q2! (not shown) require the off-diagonal blocks
of F, derivatives with respect to A, do not (see !32!). Hence a nested maximisation,
using an average information step to estimate parameters Azz and a derivative-free
procedure to maximize G with respect to q2! for given Azz appears computationally
advantageous in this case.

REDUCED RANK COVARIANCE MATRICES

Forcing the estimate of the genetic covariance matrix EA to have reduced rank

(kA < t), results in a number of zero eigenvalues on the canonical scale. In this
case, several terms contributing to log G or its derivatives are constant or depend
on the canonical transformation (Q) only. Thus they need to be evaluated only
once per analysis, effectively reducing the computational requirements per round
of iteration to those for univariate analyses for the kA non-zero eigenvalues.
Likelihood: for Aii ! 0, contributions to log G [29] become

While the former is a constant, determined by the data structure only, the
latter depends on the canonical transformation. However, as [45] shows, it can
be calculated for any Q from the corresponding residual sums of squares (SS) and
crossproducts (CP) on the original scale. Let Y denote a matrix of size N x t
with columns equal to vectors of observations y2. Both log IX’XO and quadratics
ym (I - Xo(XoXo)-Xo) yn can then be determined by factoring the matrix

First derivatives: to estimate genetic and residual covariance components, only the
derivatives on the canonical scale (with respect to Aij or wi! ) are required for which



the eigenvalues for both canonical traits (Aii and Ajj) are non-zero. This reduces the
number of Cholesky decompositions (of matrices MZ ) and corresponding backwards
differentiations (to obtain matrices F* and vectors f2 ) to be carried out to the
number of non-zero eigenvalues, kA. Moreover, only kA(kA-1)/2 instead of t(t-1)/2
off-diagonal blocks Fc*.. ’J need to be evaluated. This can reduce computational
requirements per round of iteration dramatically.
Average information: as shown above, the average information matrix can be
constructed from residual SS and CP in the vectors of random effects solutions
and residuals. For Akk = 0, ak = 0. Residuals on the canonical scale are then
a linear combination of residuals on the original scale, ek = !m-1 qkm8m with
8m = y&dquo;, -Xo(3&dquo;!. Again the latter need to be evaluated only once. Terms required
for the AI can then be obtained as before, replacing Msk in [39] with

if Akk = 0. For multiple eigenvalues equal to zero, [47] only needs to be evaluated
once (per iterate).

COVARIANCE FUNCTIONS

The ’infinitely-dimensional’ model

Consider ’repeated’ measurements taken at a number of ages (or equivalent), with
potentially infinitely many records. The covariance between records taken at ages
l and m can be expressed as

where 7 is the covariance function and K with elements Kij is the pertaining matrix
of coefficients, and a&dquo;, is the mth age, standardised to the interval for which the

polynomials are defined. 4! is a matrix of orthogonal polynomial functions evaluated
at the given ages with elements !2! _ <!(0t), the jth polynomial evaluated for age
i, and k denotes the order of polynomial fit. Conceptually k = oo, but in practice
k < t for observations at t ages. Kirkpatrick et al (1990, 1994) suggested the use of
the so-called Legendre polynomials (see Abramowitz and Stegun, 1965) which span
the interval from -1 to 1.

Note that polynomials include a scalar term, ie, for t records a full order fit
involves terms to the power 0, ... , t - 1. From [48], a covariance matrix can be
rewritten as

For a reduced order fit, k < t, 4) is rectangular with k columns and only k(k + 1)/2
coefficients K2! need to be estimated.



Let EA = 4lAKA4l Q for an order of fit kA, and KA the matrix of coefficients
for the corresponding covariance function A. Further, partition the error covariance
matrix into components owing to permanent and temporary environmental effects,
EE = ER + E,. Under the ’finite model’, these usually cannot be disentangled
unless there are repeated records for the same age. Assume the latter represent
independent ’measurement errors’, ie, E, = Diag {&OElig;;i}’ and that the former can be
described by a CF, R, ie, ER = 4lRKR4l£ with order of fit kR. Fitting measurement
errors separately together with R to the order t - 1 yields an equivalent model to
a full order fit for EE. Hence the maximum for kR is t - 1 rather than t.

General case

Estimates of the elements of the coefficient matrices of the covariance functions

(and the measurement errors) can be estimated by REML using algorithms for
the multivariate estimation of covariance components together with a simple
reparameterisation.

Likelihood: as outlined by Meyer and Hill (1997), log L [9] can be rewritten as

Under the CF model, the vector of parameters to be estimated is rl with elements

KA,, for i # j = 1, ... kA, KR!! for i ! j = 1, ... kR and &OElig;;i for i = 1,..., t. For r
CFs to be estimated, it has minimum length r + t (fitting all CFs to order 1 and
assuming all &OElig;;i to be distinct) and maximum length rt(t+1)/2 (fitting all CFs to
full order). 

&dquo;

Derivatives: note that the elements of matrices 1) only depend on the ages at
which records were taken and the polynomial function chosen. For any vector
tl a corresponding vector of covariance components (8) can be calculated using
[49]. First and ’average’ second derivatives of log ,C can thus be determined with
respect to the elements of 8 as described above (section on estimation of covariance
components in the general cases) and then be transformed to the ’covariance
function scale’, using

where J with elements OOi/077j is the Jacobian matrix of 0 with respect to 71. From
!48!, non-zero elements of J are



for 77i = <7! and 0j = aEmm’
Note that a reduced order fit for ,A (kA < t) implies a genetic covariance matrix
EA of reduced rank. This may lead to computational problems when applying
’standard’ methodology to factor the MMM (such as the Cholesky decomposition
and its automatic differentiation) as described above. For practical applications,
this can be overcome by setting the t - kA zero eigenvalues to an operational zero,
ie, a small non-zero value such as 10-5 or 10-6.

As for the estimation of covariance components, extensions to other models
including additional random effects are straightforward.

Equal design matrices

Assuming measurement errors are greater than zero, EE = ER + EE is positive
definite, regardless of the order of fit for R. Hence, the transformation to canonical
scale exists and the log likelihood can be determined as for the ’finite model’,
summing terms from univariate analyses on the canonical scale as described above.

For the estimation of covariance components, the canonical transformation
doubled as a tool to reduce computational requirements (allowing calculations to
be carried out for one trait at a time) and as a reparameterisation, ie, the likelihood
was maximised with respect to the eigenvalues and elements of eigenvectors
of the canonical decomposition of EA and EE. For the CF model there are

three matrices to be considered, KA and KR, or EA and ER derived from

them, and EE. Decompositions diagonalising several matrices exist. Lin and Smith
(1990), for instance, used the common principal components algorithm of Flury
and Constantine (1985) as an equivalent to the canonical decomposition for a
multivariate mixed model with several random effects. However, this required the
matrices to be transformed to be positive definite, and is thus not suitable for this
application.

Hence only the first parameterisation described above, namely 0* having ele-
ments Aij and Wij for i < j = 1, ... , t is suitable for the estimation of CFs. First
derivatives and average information on the canonical scale can then be determined
and transformed back to the original scale as described above. The Jacobian J in
this case has non-zero elements

where 7/Jmn are the elements of O = Q8.



DISCUSSION

A strategy has been outlined for computing the log likelihood in a multivariate
mixed model, together with its first and ’average’ second derivatives with respect
to covariance components or the coefficients of covariance functions. These can be
used in a (modified) Newton-type estimation procedure

(Marquardt, 1963), together with an additional transformation to ensure estimates
to be within the parameter space; see Meyer and Smith (1996) for details.

For a model with only one random factor and equal design matrices for all traits,
calculations can be carried out trait by trait, reducing computational requirements
to those of a series of univariate analyses. This is feasible through a canonical
decomposition of the genetic and residual covariance matrices and a corresponding,
linear transformation of the data to new, uncorrelated variables.

In that case, fitting a covariance function to less than full order or forcing es-
timated genetic covariance matrices to be of reduced rank is equivalent to fixing
eigenvalues on the canonical scale at zero. Most terms pertaining to zero eigen-
values then only need to be calculated once per analysis, resulting in considerable
reductions of computational requirements. In essence, it reduces work required in
each round of an iterative solution scheme to that equivalent to kA univariate

analyses. This is particularly useful for a comparatively large number of highly cor-
related measurements where a covariance function of low order suffices to describe
the data adequately. In contrast, for analyses where a transformation to canonical
scale is not feasible, the complete t-variate MMM needs to be set up, factored and
differentiated in each round of iteration, even if CFs are only fitted to order kA.

Making computational demands proportional to the order of fit for the genetic
CF (or matrix) encourages an ’upwards’ strategy: increasing the order of fit one by
one allows a likelihood ratio test to be performed at each step. The minimum
number of parameters describing the data is found when the likelihood ceases
to increase significantly when the order of fit is increased. It is envisioned that
estimation of reduced order covariance matrices or functions will become the
standard procedure for high-dimensional multivariate analyses.
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APPENDIX

Calculation of off diagonal blocks of F

Smith (1995) gives pseudo-code for backwards differentiation of the Cholesky factor
of a symmetric matrix. This can be adapted to calculating a selected submatrix only
for the case where the corresponding part of the Cholesky factor has zero elements.

Calculating the off-diagonal block of F* for traits i and j, Fci, indirectly,
requires components from univariate analyses on the canonical scale, namely LC.
with elements Lkl and 1* with elements l!, the parts of the Cholesky factor of M*
corresponding to the coefficient matrix and vector of right hand sides, respectively,
and f! with elements /!, the ’F matrix’ analogue to the vector of right hand sides
for trait j. F*e.. ’1 with elements F!! can then be calculated as follows:
(1) initialise Fèij to fl1:’, ie, for k, l = 1,..., Mo - 1, F!l := fkl;&dquo;;
(2) calculate columns of F!,2! one at a time, starting with the last column, ie, for

k = Mo - 1, ... , I 

(a) adjust for columns already evaluated, ie, for m = Mo - 1, ... , k + 1 and

(b) divide by the pivot, ie, for l = 1,..., Mo - 1, Flk := -Flk/ L%k
where ‘:_’ indicates that the left hand side of the equation is overwritten with the
quantity on the right.

As noted by Smith (1995), only selected elements of F (in the general case) need
to be evaluated, adjustments only occurring for non-zero elements of the Cholesky
factor. Hence F has the same sparsity structure as L. Similar considerations
hold in this case, reducing computational requirements in practical applications
substantially. For instance, columns of F*c.. ’J are not required for adjustments
to other columns if the corresponding row of L* has no non-zero off-diagonal
elements. Hence in these columns only elements corresponding to potentially non-
zero elements in the derivatives of M* need to be evaluated. Other redundancies
could be perceived. For a particular analysis it might be worth carrying out a
symbolic factorisation of the MMM for all traits on the original scale to determine
the sparsity structure of the ’full L’ and thus the minimum number of elements of
Fc.. which need to be evaluated. This would have to be carried out only once per
analyses prior to the iterative estimation scheme.



Numerical example

Consider the example given by Meyer (1991), consisting of two traits measured
on 284 mice. Table I summarises starting values, intermediate results for the first
iterate and estimates over rounds of iterations. Convergence is reached rapidly even
though starting values for covariances were far from the eventual estimates, the AI
algorithm performing similar to an algorithm using observed or expected second
derivatives of log G (see Meyer and Smith, 1996).



with eigenvalues All = 1.96406 and A22 = 0.50389. Quadratics on the canonical
scale (y2 !Pi Yi ) are 314.77078 and 375.36955 for the two traits and the correspond-
ing log ICil are 241.85744 and 554.08056, respectively. With 329 animals in the
analysis and r(Xo) = 2, this gives log G omitting the term tlog IAI, of -1172.3761
(cf [29]).

First derivatives of log IG*I and log ]R* calculated according to [34] and [35]
are given in table I. Terms y!’yt 2 ( i ! j = 1, 2) and f2 !r! ( i, j = 1, 2) are

42285.252, 50449.049 and 64091.809, and -83940.962, -101237.320, -101089.518
and -127432.879, respectively. Application of [32] and [33] then gives the first
derivatives (canonical scale) of f (L* ), with corresponding derivatives &eth;log£/8()i =
- 1/2 (8 log IG*I/8()i + 8 log IR*I/8()i + af (L*)/8Bi ) as shown in table I. From [42]
and (43], the Jacobian is

and [41] yields derivatives on the original scale as shown (table I). The average
information on the canonical scale (upper triangle in table I) is calculated according
to [35]-[38] and [40] gives the corresponding values on the original scale.
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