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Summary - A residual maximum likelihood method is presented for estimation of the
positions and variance contributions of two linked QTLs. The method also provides tests
for zero versus one QTL linked to a group of markers and for one versus two (aTLs linked.
A deterministic, derivative-free algorithm is employed. The variance-covariance matrix
of the allelic effects at each QTL and its inverse is computed conditional on incomplete
information from multiple linked markers. Covariances between effects at different (aTLs
and between CaTLs and polygenic effects are assumed to be zero. A simulation study
was performed to investigate parameter estimation and likelihood ratio tests. The design
was a granddaughter design with 2 000 sons, 20 sires of sons and nine ancestors of sires.
Data were simulated under a normal-effects and a biallelic model for variation at each

QTL. Genotypes at five or nine equally spaced markers were generated for all sons and
their ancestors. Two linked (aTLs accounted jointly for 50 or 25% of the additive genetic
variance, and distance between QTLs varied from 20 to 40 cM. Power of detecting a
second QTL exceeded 0.5 all the time for the 50% QTLs and when the distance was (at
least 30 cM for the 25% QTLs. An intersection-union test is preferred over a likelihood
ratio test, which was found to be rather conservative. Parameters were estimated quite
accurately except for a slight overestimation of the distance between two close QTLs.
quantitative trait loci / multipoint mapping / residual maximum likelihood / outcross
population

Résumé - Détection de gènes liés à effets quantitatifs (QTL) grâce au maximum
de vraisemblance résiduelle. On présente une méthode de maximum de vraisemblance
résiduelle pour estimer les positions et les contributions à la variabilité génétique de deux
QTLs liés. La méthode fournit également des tests de l’existence d’un seul QTL lié à
un groupe de marqueurs (par rapport à zéro) ou de deux QTLs (par rapport à un seul).
Un algorithme déterministe sans calcul de dérivées est utilisé. La matrice de variance-
covariance des effets alléliques à chaque QTL et son inverse est calculée conditionnellement
à l’information incomplète sur les marqueurs multiples liés. Les covariances entre les

effets aux différents QTLs et entre les effets aux QTLs et les effets polygéniques sont
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supposées nulles. Une étude de simulation a été effectuée pour analyser les paramètres
estimés et les tests de rapports de vraisemblance. Le schéma expérimental a été un schéma
« petites-filles » avec 2 000 fils, 20 pères des fils et 9 ancêtres de ces pères. Des données
ont été simulées avec un modèle de variation au QTL de type Gaussien ou biallélique.
Les génotypes pour cinq ou neuf marqueurs également espacés ont été générés pour tous
les ,fils et leurs anchêtres. Deux QTLs liés expliquaient conjointement 50 % ou 25 % de la
variance génétique additive et la distance entre les QTLs variait de 20 CM à 40 CM. La
puissance de détection d’un second QTL a dépassé 0,5, dans tous les cas pour la situation
50 %, et quand la distance entre QTLs était supérieure ou égale à 30 CM pour la situation
25 %. Le test d’un QTL par rapport à deux QTLs correspond à la réunion de deux tests.
On l’a trouvé plutôt conservatif. Les paramètres ont été estimés avec une grande précision
excepté la distance entre deux QTLs proches qui a été légèrement surestimée.
locus de caractère quantitatif / cartographie multipoint / maximum de vraisemblance
résiduelle / population consanguine

INTRODUCTION

A variety of methods for the statistical mapping of quantitative trait loci (QTL)
exist. While some methods analyze squared phenotypic differences of relative pairs
(eg, Haseman and Elston, 1972; Gotz and Ollivier, 1994), most methods analyze
the individual phenotypes of pedigree members. Main methods applied to livestock
populations are maximum likelihood (ML) (eg, Weller, 1986; Lander and Botstein,
1989; Knott and Haley, 1992), least-squares (LS) as an approximation to ML (eg,
Weller et al, 1990; Haley et al, 1994; Zeng, 1994), and a combination of ML
and LS referred to as composite interval mapping (Zeng, 1994) or multiple QTL
mapping (Jansen, 1993). These methods were developed mainly for line crossing
and, hence, cannot fully account for the more complex data structures of outcross
populations, such as data on several families with relationships across families,
incomplete marker information, unknown number of QTL alleles in the population
and varying amounts of data on different (aTLs or in different families.

Recently, Thaller and Hoeschele (1996a, b) and Uimari et al (1996) implemented
a Bayesian method for QTL mapping using single markers or all markers on a

chromosome, respectively, via Markov chain Monte Carlo algorithms, and applied
the analyses to simulated granddaughter designs identical to those in the present
study. Hoeschele et al (1997) showed that the Bayesian analysis can accommodate
either a biallelic or a normal-effects QTL model. While the Bayesian analysis was
able to account for pedigree relationships both at the QTL and for the polygenic
component, and gave good parameter estimates, it was very demanding in terms
of computing time, in particular when fitting two (aTLs (Uimari and Hoeschele,
1997).

Therefore, Grignola et al (1996a) developed a residual maximum likelihood
method, using a deterministic, derivative-free algorithm, to map a single QTL.
Hoeschele et al (1997) showed that this method can be considered as an approxi-
mation to the Bayesian analysis fitting a normal-effects QTL model. In the normal-
effects QTL model postulated by the REML analysis, the vector of QTL allelic
effects is random with a prior normal distribution. The REML analysis builds on
earlier work by Fernando and Grossman (1989), Cantet and Smith (1991) and God-
dard (1992) on best linear unbiased prediction of QTL allelic effects by extending



it to the estimation of QTL, polygenic, and residual variance components and of
QTL location, using incomplete information from multiple linked markers.
Xu and Atchley (1995) performed interval mapping using maximum likelihood

based on a mixed model with random QTL effects, but these authors fitted additive
genotypic effects rather than allelic effects at the QTL, with variance-covariance
matrix proportional to a matrix of proportions of alleles identical-by-descent, and
assumed that this matrix was known. Their analysis was applied to unrelated full-
sib pairs. In order to account for several QTLs on the same chromosome, Xu and
Atchley (1995) used the idea behind composite interval mapping and fitted variances
at the two markers flanking the marker bracket for a QTL. This approach, however,
is not appropriate for multi-generational pedigrees, as effects associated with marker
alleles erode across generations owing to recombination. It is also problematic for
outbred populations, where incomplete marker information causes the flanking and
next-to-flanking markers to differ among families.

In this paper, we extend the REML method of Grignola et al (1996a) to the
fitting of multiple linked QTLs. While the extension is general for any number of
linked QTLs, we apply the method to simulated granddaughter designs by fitting
either one or two QTLs.

METHODOLOGY

Mixed linear model

The model is identical to that of Grignola et al (1996a), except that it includes
effects at several (t) QTLs, and it can be written as:

where y is a vector of phenotypes, X is a design-covariate matrix, j3 is a vector of
fixed effects, Z is an incidence matrix relating records to individuals, u is a vector
of residual additive (polygenic) effects, T is an incidence matrix relating individuals
to alleles, vi is a vector of QTL allelic effects at QTL i, e is a vector of residuals,
A is the additive genetic relationship matrix, c7’ is the polygenic variance, Q,0,2 V(i)
is the variance-covariance matrix of the allelic effects at QTL i conditional on
marker information, Qv!2! is the allelic variance at QTL i (or half of the additive
variance at QTL i), R is a known diagonal matrix, and Qe is residual variance. Each
matrix Qi depends on one unknown parameter, the map position of QTL i (di).
Parameters related to the marker map (marker positions and allele frequencies)
are assumed to be known. The model is parameterized in terms of the unknown
parameter’s heritability (h2 = 0&dquo;!/0&dquo;2), with aj_ being phenotypic and U2 additive

genetic variance, fraction of the additive genetic variance explained by the allelic



effects at QTL i (v? = o,’ v(i) /’a 2; i = l, ... , t), the residual variance 0,2, e and QTL
map locations dl, ... , di, ... , dt.
A model equivalent to the animal model in [1] is (Grignola et al, 1996a):

where W has at most two non-zero elements equal to 0.5 in each row in columns
pertaining to the known parents of an individual, Fi is a matrix with up to four
non-zero elements per row pertaining to the QTL effects of an individual’s parents
(Wang et al, 1995; Grignola et al, 1996a), Ap and Qp(j) are sub-matrices of A
and Q, respectively, pertaining to all animals that are parents, and m and ei
are Mendelian sampling terms for polygenic and QTL effects, respectively, with
covariance matrices as specified in equation !2!. While Var(m) is diagonal, Var(ei)
can have some off-diagonal elements in inbred populations (Hoeschele, 1993; Wang
et al, 1995).

Note that models [1] and [2] are conditional on a set of QTL map positions
(and on marker positions which are assumed to be known). Dependent on the
map positions are the matrices Qi in model [1] and the matrices Fi and Qp(j) in
model !2!.

Note furthermore that models [1] and [2] assume zero covariances between effects
at different QTLs, and between polygenic and QTL effects. However, selection tends
to introduce negative covariances between (aTLs (Bulmer, 1985).
A reduced animal model (RAM) can be obtained from model [2] by combining

m, the ei (i = 1, ... , t) and e into the residual. Mixed model equations (MME)
can be formed directly for the RAM, or by setting up the MME for model [2] and
absorbing the equations in m and the ei (i = 1,..., t). The resulting MMEs for the
RAM and for t = 2 (aTLs are:



with the A matrices defined in equation !2!. Matrix D, which results from successive
absorption of the Mendelian sampling terms for the polygenic component and the
QTLs, can be shown to be always diagonal and very simple to compute, even when
several (aTLs (t > 2) are fitted. Let 6v!i!!! represent the Mendelian sampling term
pertaining to v effect k (k = 1, 2) of individual j at QTL i, and 6,,(j) the Mendelian
sampling term for the polygenic effect of j. Then, the element of D pertaining to
individual j (djj) is computed as follows:

where rjj is the jth diagonal element of R-1.

REML analysis

The REML analysis was performed using interval mapping and a derivative-free
algorithm to maximize the likelihood for any given set of QTL positions, as

described by Grignola et al (1996a) for a single QTL model. The log residual
likelihood for the animal model was obtained by adding correction terms to the
residual likelihood formed directly from the RAM MME (Grignola et al, 1996a).
The RAM residual likelihood is:

where N is the number of phenotypic observations, NF the number of estimable
fixed effects (rank of X), NRRA,yI the number of random genetic effects of the
parents ((1 + 2t) times the number of parents), CRAM is the coefficient matrix in
the left-hand-side of [3], P = V-’ - V-1X(X’V-1X)-1X’V-1, V = Var(Y)/(7!,
and GRA,!,I is a block-diagonal with blocks Ap(7! and Qp(i)(7!(i) for i = 1, ... , t (see
also Meyer, 1989).



The RAM residual likelihood is modified to obtain the residual likelihood for the
animal model as follows (Grignola et al 1996a):

where A is the block-diagonal with blocks Au and !v(i) (i = 1, ... , t) from !2!, Czz
is the part of the MME for model [2] pertaining to m and ei (i = 1, ... , t), and NR
is total number of random genetic effects !(1 !- 2t) times the number of animals] in
the animal model.

The analysis is conducted in the form of interval mapping as in Grignola et al
(1996a), except that now a t-dimensional search on a grid of combinations of
positions of the t CaTLs must be performed. More precisely, we performed cyclic
maximization by optimizing the position of the first QTL while holding the position
of the second QTL constant and subsequently fixing the position of the first
QTL while optimizing the position of the second QTL, etc. A minimum distance
was allowed between the QTLs, which was determined such that the (aTLs were
always separated by two markers. Whittaker et al (1996) showed that for regression
analysis and F2 or backcross designs, the two locations and effects of two (aTLs
in adjacent marker intervals are not jointly estimable. With other methods and
designs, locations and variances of two (aTLs in adjacent intervals should be either
not estimable or poorly estimated. At each combination of d1 and d2 values, the
residual likelihood is maximized with respect to the parameters hz, v2 (i = 1,..., t)
and er!.

Matrices Qp(j), Fi and Ov!2! were calculated for each QTL as described in
Grignola et al (1996a).

Hypothesis testing

The presence of at least one QTL on the chromosome harboring the marker linkage
group can be tested by maximizing the likelihood under the one-QTL model
and under a polygenic model with no QTL fitted (Grignola et al, 1996a). The
distribution of the likelihood ratio statistic for these two models can be obtained
via simulation or data permutation (Churchill and Doerge, 1994; Grignola et al,
1996a, b; Uimari et al, 1996). Here, we consider testing the one-QTL model against
the two-QTL model. This test is performed by comparing the maximized residual
likelihood under the two-QTL model with (i) the maximized residual likelihood
under the one-QTL model, (ii) the residual likelihood maximized under the one-
QTL model with QTL position fixed at the REML estimate of d1 obtained under
the two-QTL model, and (iii) the residual likelihood maximized under the one-QTL
model with QTL position fixed at the REML estimate of d2 obtained under the
two-QTL model. The distribution of these likelihood ratio statistics is not known,
and obtaining it via data permutation would be difficult computationally, as many
permutations would need to be analyzed, and as the two-dimensional search took
1-2 h of run-time for the design described below. The likelihood ratios corresponding
to (i) (LRd), (ii) (LRdl), and (iii) (LRd2) should have an asymptotic chi-square
distribution within 1 and 3 degrees of freedom. When using LRdl and LRdz, both
ratios have to be significant in order to reject the null hypothesis of one QTL. This
test is an intersection-union test (Casella and Berger, 1990; Berger, 1996), where



for the first likelihood ratio the hypotheses are: Ho: &OElig;!(l) -I- 0 and &OElig;!(2) = 0 versus
H1: &OElig;!(l) -I- 0 and &OElig;!(2) -I- 0, and for the second likelihood ratio the hypotheses are:
Ho: &OElig;!(1) = 0 and &OElig;!(2) -I- 0 versus H1: &OElig;!(1) -I- 0 and &OElig;!(2) -I- 0. The intersection-
union test constructed in this way can be quite conservative, as its size may be
much less than its specified value ce. For genome-wide testing, the significance level
should also be adjusted for the number of independent tests performed (the number
of chromosomes analyzed times the number of independent traits).

SIMULATION

Design

The design simulated was a granddaughter design (GDD) as in the single QTL
study of Grignola et al (1996b), where marker genotypes are available on sons and
phenotypes on daughters of the sons. The structure resembled the real GDD of
the US public gene mapping project for dairy cattle based on the dairy bull DNA
repository (Da et al, 1994). The simulated GDD consisted of 2 000 sons, 20 sires,
and nine ancestors of the sires (fig 1)..

The phenotype simulated was daughter yield deviation (DYD) of sons (Van-
Raden and Wiggans, 1991). DYD is an average of the phenotypes of the daughters
adjusted for systematic environmental effects and genetic values of the daughters’
dams. For details about the analysis of DYDs, see Grignola et al (1996b).

Marker and QTL genotypes were simulated according to Hardy-Weinberg fre-
quencies and the map positions of all loci. All loci were in the same linkage group.
Each marker locus had five alleles at equal frequencies. Several designs were con-
sidered which differed in the map positions of the two QTLs, in the number of
markers, and in the proportion of the additive genetic variance explained by the
two QTLs. These designs are defined in table II. Also simulated was a single QTL
at 45 cM to test the two-QTL analysis with data generated under the single QTL
model.

Polygenic and QTL effects were simulated according to the pedigree in figure 1.
Data were analyzed by using the pedigree information on the sires. Note that
in the simulation, no linkage disequilibrium (across families) was generated, ie,
covariances between pairs of effects at different (aTLs or between QTL and



polygenic effects were zero. Therefore, an additional design was simulated where
linkage disequilibrium was generated by simulating DYDs also for sires, creating
a larger number of sires and culling those sires with DYD lower than the 90th
percentile of the DYD distribution. QTL positions for this design were 30 cM
(interval 2) and 70 cM (interval 3) with five markers, and the QTL model was
the normal-effects model (see below). Estimates of the simulated correlations (SE
in parentheses), across 30 replicates, were -0.20 (0.05), -0.33 (0.04), and -0.32
(0.04), between pairs of v effects at QTL 1 and QTL 2, between pairs of v effects
at QTL 1 and polygenic effects, and between pairs of v effects at QTL 2 and
polygenic effects, respectively. The effects of one or several generations of phenotypic
truncation selection on additive genetic variance in a finite locus model has been
studied analytically by Hospital and Chevalet (1996).



QTL models

Two different QTL models were used to simulate data. Under both models,
phenotypes were simulated as

where nj was the number of daughters of son j, gi!k was the sum of the v effects
in daughter k of son j at QTL i, uj was a normally distributed polygenic effect,
ej was a normally distributed residual, polygenic variance (0&dquo;) was equal to the
difference between additive genetic variance (afl ) and the variance explained by the
QTLs, and afl was environmental variance. Number of daughters per son was set to
50, corresponding to a reliability (Van Raden and Wiggans, 1991) near 0.8. Narrow
sense heritability of individual phenotypes was h2 = 0.3, and phenotypic SD was
QP = 100.

Note that the QTL contribution to the DYDs of sons was generated by sampling
individual QTL allelic effects of daughters under each of the two genetic models
described below. This sampling of QTL effects ensures that DYD of a heterozygous
son, or of a son with substantial difference in the additive effects of the alleles at
a QTL, has larger variance among daughters due to the QTL than a homozygous
son or a son with similar QTL allelic effects.
Two different models were used to describe variation at the QTL, which are

identical to two of the models considered by Grignola et al (1996b).

Normal-effects model

For each individual with both or one parent(s) unknown, both or one effect(s) at
QTL k(k = 1, 2) were drawn from N(O, a v 2(k)). For the pedigree in figure 1, there
were 32 base alleles, and each QTL was treated as a locus with 32 distinct alleles
in passing on alleles to descendants. The parameter a v 2(k) was set to 0.125or or
0.625(J&dquo;!, ie, QTL k accounted for 25% (2V2 = 0.25) or 12.5% (2v! = 0.125) of the
total additive genetic variance, respectively. 

k k

Consequently, the two (aTLs accounted jointly for between 25 and 50% of the
additive genetic variance.

Biallelic model

Each QTL was biallelic with allele frequency pi = p2 = P = 0.5. The variance at

QTL k was

where for p = 0.5 and 2v! = 0.25 or 2v! = 0.125, half the homozygote difference at
QTL k, ak, and allelic variance af!!! were determined.



RESULTS

The designs studied are described in table II and differ in the QTL positions,
in the number of markers, and in the proportion of the additive genetic variance
explained jointly by two linked QTLs. Overall, the QTL parameters were estimated
quite accurately as in the single-CaTL analysis of Grignola et al (1996b), except
that there was a tendency to overestimate the distance between the CaTLs with
decreasing true distance.

Parameter estimates for all designs in table II and for the normal-effects QTL
model used in the data simulations are presented in table III. There appeared to
be a slight tendency to overestimate the QTL variance contributions (v2), but, in
most cases not significantly. The QTL map positions and the distance between
the QTLs were estimated accurately when the true map distance between the
(aTLs was 30 or 40 cM. When the true map distance was only 20 cM, there was a
tendency to overestimate the QTL distance. This overestimation was significantly
more pronounced when the number of markers was reduced from nine (every 10 cM,
designs IIIA, B) to five (every 20 cM, designs IVA, B). To investigate whether the
overestimation of the QTL distance was related to the search strategy requiring
a minimum distance between the QTLs such that these were always separated
by two markers (with the exception of designs IVA, B), the minimum distance
was reduced to 10 and 2 cM. However, parameter estimates and likelihood ratios
remained unchanged.
When the (aTLs accounted jointly for only 25% of the additive genetic variance

as compared to 50%, there was little change in the precision of the estimates of the
QTL variance contributions. Standard errors of the QTL positions were higher, and
overestimation of the distance between (aTLs only 20 cM apart was slightly more
pronounced.

Parameter estimates for designs simulated under the biallelic QTL model are
shown in table V. Except for the QTL model, these designs are identical to

designs IA, B and IIIA, B in table II. Parameters were estimated with an accuracy
not noticeably lower than for the normal-effects QTL model, an observation in
agreement with the single-(aTL study of Grignola et al (1996b).
When analyzing the designs in table II with the single-(aTL model, the most

likely QTL position (d in tables III and V) was always somewhere in between the
QTL positions estimated under the two-QTL model. Averaged across replicates,



the estimated QTL position was very near the mean of the true positions. This
result was expected, as both (aTLs had equal variance contributions and on average
equally informative flanking markers.

Likelihood ratio statistics for all designs in table II and for the normal-effects
QTL model are presented in table IV. The average values of the likelihood ratio
statistics for testing between the single- and two-QTL models declined as expected
with decreasing distance between the two QTLs (designs IIA, B versus designs IIIA,
B), with decreasing number of markers (designs IA, B versus IIA, B, and designs
IIIA, B versus designs IVA, B), and with decreasing joint variance contribution of
the QTLs (A versus B). The average value of the likelihood ratio statistic LRd was

always considerably lower than those of LRdl and LRd2.
The power figures in table IV were calculated assuming that LRdl, LRd2 and

LRd follow either a chi-square distribution with 1 df or 3 df and using an cx value
of 0.05/29 = 0.0017. To allow for any interpretation of these power figures, we
estimated the type-I error by simulating data with a single QTL explaining either
25, 12.5 or 6.25% of the additive genetic variance. For the type-I error estimation,
a was set to 0.05, and the number of replicates was 200. Estimates of type-I errors
are in table VI, for the two tests (LRd and LRd, and LRd2) and for thresholds from
chi-square distributions with 1, 2 and 3 df. Type-I errors tended to increase slightly
with size of the QTL variance, and were consistently lower for the test using LRd.
Based on these results, the empirical type-I error was close to the pre-specified
value of 0.05 for the LRdl and LRd2 tests when using the xi-threshold, while it was
consistently too low for the LRd test.



With this background, the power of rejecting the single-(aTL model based on
requiring both LRdl and LRd2 to exceed the significance threshold was as expected
always higher than or equal to the power of the LRd statistic. For the test based on

LRdI and LRd2, power declined as expected with decreasing distance between QTLs
and with decreasing true QTL variance contribution. For the joint QTL variance
contribution of 50% and the test based on LRd, and LRd2, power was equal to or
higher than 0.5 always for the xi threshold and always except for design IVA for
the X2 threshold. For the joint QTL variance contribution of 25%, a power of at
least 0.5 was achieved only for the 30 cM distance between QTLs and the X2 and

X3 thresholds. This finding must be interpreted by keeping in mind the choice of
a = 0.0017 and the fact that the test, as contructed here, is rather conservative.

For the data simulated with a single QTL explaining either 25 or 12.5% of the
additive genetic variance, the map positions estimated under the two-QTL model
were near the true position and a ghost position to either side of the true position
in most replicates. This behavior of the REML analysis seems to support the use
of LRdl and LRd2 instead of LRd.

Likelihood ratio statistics for the biallelic QTL model and some of the designs in
table II are presented in table V. Overall, likelihood ratios and power figures were
similar to those for the normal-effects QTL model, with somewhat lower power for
design IA but slightly higher power for other designs. These differences are most
likely due to the limited number of replications (30).

The cyclic maximization strategy for the two-QTL model took about 20 min
of serial wall-clock time on a 21-processor IBM SP2 system for a chromosome of
80 cM length, compared with 1.5 h for a two-dimensional search. Run-time for the
single-QTL analysis was at most 8 min.

For the designs in table II, the two QTLs had equal variance contributions.
Therefore, additional designs with QTL positions of 30 and 70 cM (five markers)



and 25 and 45 cM (nine markers), respectively, were simulated using the normal-
effect QTL model, with QTL 1 explaining 25% and QTL 2 12.5% of the additive
genetic variance. The average estimates (with SE in parentheses) of QTL position
from the single QTL analysis were 0.396 M (0.023) and 0.298 M (0.010) for the
30 and 70 cM and 25 and 45 cM designs, respectively, being closer to the first locus
with the larger variance contribution. Estimated QTL positions from the two-QTL
analysis were 0.285 M (0.008) and 0.720 M (0.010) for the 30 and 70 cM design,
and 0.242 M (0.020) and 0.440 M (0.019) for the 25 and 45 cM design. Average v2 2

estimates were 0.143 (0.013) and 0.072 (0.010) for the first design, and 0.126 (0.019)



and 0.077 (0.012) for the second design, respectively. For the 30 and 70 cM design,
power was 0.47 (0.40) for the Xi 2 (X’) threshold and the test based on LRdl and

LRd2. For the 25 and 45 cM design, power was only 0.33 (0.10) for the same tests.
When linkage disequilibrium was generated by phenotypic truncation selection

of sires for the design with QTL positions of 30 and 70 cM and joint QTL genetic
variance contribution of 50%, QTL parameters and their estimates were clearly
affected. Heritability was estimated low (0.213 ! 0.020), and the vfl (k = 1, 2) were
estimated high (0.184 ±0.014, 0.211 ±0.014), but QTL positions were estimated
accurately (0.292 t 0.010, 0.716 ± 0.007). Power appeared to be somewhat reduced
compared to the same design without selection, and was estimated at 0.86 and 0.73
for the Xi 1 and X thresholds, respectively. Reduction in power was probably due to
the high estimate of error variance (1737.9 t 55.3).

CONCLUSIONS

The REML analysis of Grignola et al (1996a, b), based on a mixed linear model with
random and normally distributed QTL allelic effects and conditional on incomplete
information from multiple linked markers, has been extended here to fit multiple
linked QTLs. This extension is necessary to eliminate biases in the estimates of
the QTL parameters position and variance, which occur when fitting a single QTL
and other linked QTLs are present. For the present study, the analysis had been
implemented for two QTLs on the same chromosome using a two-dimensional
search. When fitting more than two linked QTLs or additional unlinked QTLs,
a more efficient search strategy may be required, or alternative algorithms (eg,
Meyer and Smith, 1996). In the meantime, a cyclic optimization approach was
implemented, with one QTL position held constant while optimizing the other,
and vice versa, which reduced the number of likelihood evaluations and hence CPU
time considerably relative to a two-dimensional search. As likelihood maximizations
at different position combinations are independent of each other, use of multiple
processors, if available, would reduce run-times substantially.

For the one-QTL model, relationships between the REML analysis, the equiv-
alent method of Xu and Atchley (1995), the method of Schork (1993), and the
Bayesian analysis of Uimari et al (1996) were discussed in Grignola et al (1996a).
The method of Xu and Atchley (1995) fitting variances associated with the next-
to-flanking markers to account for additional linked QTLs would not have worked
well for the designs studied here. A first reason is the inclusion of ancestors of the
sires in the analysis, as their method fits random effects associated with the marker
alleles in founders which erode across generations due to recombination. Another
reason is the small number of families differing in the flanking and next-to-flanking
markers, resulting in too little information for estimation of variances associated
with the next-to-flanking markers in the method of Xu and Atchley (1995). For
similar reasons, composite interval mapping (Zeng, 1994) and multiple QTL map-
ping (Jansen, 1993), which are based on the inclusion of markers as cofactors, are
not suitable for the analysis of multi-generational pedigrees.
REML analysis under the two-QTL model yielded fairly accurate parameter

estimates. Map distance between the QTLs was overestimated, with decreasing
distance between the two QTLs and wider spacing of markers. As in the single QTL



study, the REML analysis was robust to the number of alleles at the QTLs, as there
was relatively little difference in parameter estimates and likelihood ratio statistics
between designs generated with the normal-effects and biallelic QTL models, given
the number of replicates performed. Previous linkage analyses (eg, Knott and Haley,
1992; Haley et al, 1994) lead to the conclusion that a minimum distance of 20 cM
was required between linked QTLs for their separate detection. This result was
confirmed in the present study. However, discrimination among different numbers
of QTL (eg, one versus two) requires additional research, including an investigation
of alternative approaches such as an adaptation of composite interval mapping to
pedigree analysis. Gains in power from fitting additional unlinked QTL and selection
of QTL to be included in the analysis are related topics warranting further research.

If there is linkage disequilibirum due to selection, QTL positions will still
be estimated accurately, while variance estimates and power may be affected.
Accounting for disequilibrium in the analysis should be investigated.
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