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Abstract - This paper presents techniques of parameter estimation in heteroskedastic
mixed models having i) heterogeneous log residual variances which are described by a
linear model of explanatory covariates and ii) log residual and log u-components linearly
related. This makes the intraclass correlation a monotonic function of the residual
variance. Cases of a homogeneous variance ratio and of a homogeneous u-component of
variance are also included in this parameterization. Estimation and testing procedures
of the corresponding dispersion parameters are based on restricted maximum likelihood
procedures. Estimating equations are derived using the standard and gradient EM. The
analysis of a small example is outlined to illustrate the theory. &copy; Inra/Elsevier, Paris

heteroskedasticity / mixed model / maximum likelihood / EM algorithm

Résumé - Une approche des composantes de variance hétérogènes par les fonctions
de lien. Cet article présente des techniques d’estimation des paramètres intervenant dans
des modèles mixtes caractérisés i) par des logvariances résiduelles décrites par un modèle
linéaire de covariables explicatives et ii) par des composantes u et e liées par une fonction
affine. Cela conduit à un coefficient de corrélation intraclasse qui varie comme une fonction
monotone de la variance résiduelle. Le cas d’une corrélation constante et celui d’une

composante u constante sont également inclus dans cette paramétrisation. L’estimation et
les tests relatifs aux paramètres de dispersion correspondants sont basés sur les méthodes
du maximum de vraisemblance restreint (REML). Les équations à résoudre pour obtenir
ces estimations sont établies à partir de l’algorithme EM standard et gradient. La théorie
est illustrée par l’analyse numérique d’un petit exemple. &copy; Inra/Elsevier, Paris
hétéroscédasticité / modèle mixte / maximum de vraisemblance / algorithme EM
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1. INTRODUCTION

A previous paper of this series [4], presented an EM-REML (or ML) approach
to estimating dispersion parameters for heteroskedastic mixed models. We assumed
i) a linear model on log residual (or e) variances, and/or ii) constant u to e variance
ratios.

There are different ways to relax this last assumption. The first one is to proceed
as with residual variances, i.e. hypothesize that the variation in log u-components
or of the u to e-ratio depends on explanatory covariates observed in the experiment,
e.g. region, herd, parity, management conditions, etc. This is the so-called structural
approach described by San Cristobal et al. [23], and applied by Weigel et al. [28]
and De Stefano [2] to milk traits of dairy cattle.

Another procedure consists in assuming that the residual and u-components are
directly linked via a relationship which is less restrictive than a constant ratio. A
basic motivation for this is that the assumption of homogeneous variance ratios or
intra class correlations (e.g. heritability for animal breeders) might be unrealistic
[19] although very convenient to set up for theoretical and computational reasons
(see the procedure by Meuwissen et al. [16]). As a matter of fact, the power of
statistical tests for detecting such heterogeneous heritabilities is expected to be low
[25] which may also explain why homogeneity is preferred. The purpose of this
second paper is an attempt to describe a procedure of this type which we will call
a link function approach referring to its close connection with the parameterization
used in GLM theory [3, 14].

The paper will be organized along similar lines as the previous paper [4] including
i) an initial section on theory, with a brief summary of the models and a presentation
of the estimating equations and testing procedures, and ii) a numerical application
based on a small data set with the same structure as the one used in the previous
paper [4].

2. THEORY

2.1. Statistical model

It is assumed that the data set can be stratified into several strata indexed by
(i = 1, 2, ... , I) representing a potential source of heteroskedasticity. For the sake
of simplicity, we will consider a standardized one-way random (e.g. sire) model as
in Foulley [4] and Foulley and Quaas [5].

where yi is the (ni x 1) data vector for stratum i; j3 is a (p x 1) vector of unknown
fixed effects with incidence matrix Xi, and ei is the (n2 x 1) vector of residuals.
The contribution of the systematic random part is represented by O&dquo;uiZiU* where
u* is a (q x 1) vector of standardized deviations, Zi is the corresponding incidence
matrix and <7u, is the square root of the u-component of variance, the value of which
depends on stratum i. Classical assumptions are made for the distributions of u*
and ei, i.e. u* N N(0, A), ei N N(O, or2 1,,,), and E(u*eD = 0.



The influence of factors causing the heteroskedasticity of residual variances is
modelled along the lines presented in Leonard [13] and Foulley et al. [6, 7] via a
linear regression on log-variances:

where 5 is an unknown (r x 1) real-valued vector of parameters and p’ is the

corresponding (1 x r) row incidence vector of qualitative or continuous covariates.
Residual and u-component parameters are linked via a functional relationship

or equivalently

where the constant T equals exp(a).
The differential equation pertaining to [3ab], i.e. (dC7ujC7uJ - b(dC7ejC7eJ = 0 is

a scale-free relationship which shows clearly that the parameter of interest in this
model is b. Notice the close connection between the parameterization in equations
[2] and [3ab] with that used in the approach of the ’composite link function’
proposed by Thompson and Baker [24] whose steps can be summarized as follows:
i) (C7ui,C7eJ’ = f(a,b,C7eJ; ii) C7ei = exp(?7i), and qi = (112)p’6. As compared to
Thompson and Barker, the only difference is that the function f in i) is not linear
and involves extra parameters, i.e. a and b.

The intraclass correlation (proportional to heritability for animal breeders)

is an increasing function of the variance ratio pi = oui /!e.. In turn pi increases or

decreases with u,2 depending on b > 1 or b < 1, respectively, or remains constant
(b = 1) since dpi/pi = 2(b - l)do’e!/o’e!. Consequently the intraclass correlation
increases or decreases with the residual variance or remains constant (b = 1). For
b = 0, the u-component is homogeneous figure 1.



2.2. EM-REML estimation

The basic EM-REML procedure [1, 18] proposed by Foulley and Quaas (1995)
for heterogeneous variances is applied here.

Letting / ’ ’ y’ )’ e=(e’ e’ e’ .. e’ )’ and ’y = (6’, T, b)’,g i 1 1 2 i 1 > 
1 

> > >

the EM algorithm is based on a complete data set defined by x = (p , u* , e’)’ and
its loglikelihood L(y; x). The iterative process takes place as in the following.

The E-step is defined as usual, i.e. at iteration [t], calculate the conditional
expectation of L(y; x) given the data y and y = y’l

as shown in Foulley and Quaas [5], reduces to

where E1t] (.) is a condensed notation for a conditional expectation taken with

respect to the distribution of x in Q given the data vector y and y = 1’[t].
Given the current estimate 1’[t] of y, the M-step consists in calculating the next

value 1’[tH] by maximizing Q(1’I1’[t]) in equation (4) with respect to the elements
of the vector y of unknowns. This can be accomplished efficiently via the Newton-
Raphson algorithm. The system of equations to solve iteratively can be written in
matrix form as:

where P(rxl) _ (P1!P2,...,Pi,...,P1)i Vó[Ix1] = f a!la!n!e!J! vT - fi9QIa-rl,
vb = {8Q/ab!; Wap = åQ/åaå/3’, for a and j3 being components of y = (5’, T, bl’.

Note that for this algorithm to be a true EM, one would have to iterate the
NR algorithm in equation (5) within an inner cycle (index £) until convergence to
the conditional maximizer y[t+1] _ yl’,’] at each M step. In practice it may be

advantageous to reduce the number of inner iterations, even up to only one. This is
an application of the so called ’gradient EM’ algorithm the convergence properties
of which are almost identical to standard EM [12].

The algebra for the first and second derivatives is given in the Appendix. These
derivatives are functions of the current estimates of the parameters y = ’Yl’l, and
of the components of E!t](eiei) defined at the E-step.

Let those components be written under a condensed form as:



with a cap for their conditional expectations, e.g.

These last quantities are just functions of the sums X’yi, Z’yi, the sums of
squares y§yi within strata, and the GLS-BLUP solutions of the Henderson mixed
model equations and of their accuracy [11], i.e.

where ’ 1

Thus, deleting [t] for the sake of simplicity, one has:

r <&dquo;* f i
where j3 and u* are solutions of the mixed model equations, and C _ [ CO,3 CO. Ju 1CUO Cuu
is the partitioned inverse of the coefficient matrix in equation (7). For grouped data
(ni observations in subclass i with the same incidence matrices Xi = lnix’ and
Zi = 1,,iz’), formulae (8) reduce to:

where

2.3. Hypothesis testing

Tests of hypotheses about dispersion parameters y = (Õ’, 7, b)’ can be carried
out via the likelihood ratio statistic (LRS) as proposed by Foulley et al. [6, 7].

Let Ho: y E .f2o be the null hypothesis, and H1: y E ,f2 - ,f2o its alternative where

,f2o and Q refer to the restricted and unrestricted parameter spaces, respectively,
such that no c Q. The LRS is defined as:



where y and y are the REML estimators of y under the restricted (Ho) and
unrestricted (Ho U H1) models. Under standard conditions for Ho (excluding
hypotheses allowing the true parameter to be on the boundary of the parameter
space as addressed by Robert et al. [22], A has an asymptotic chi-square distribution
with r = dim ,f2 - dim S-20 degrees of freedom.

Under model (1), an expression of -2L(y; y) is:

The theoretical and practical aspects of the hypotheses to be tested about the
structural component 5 have been already discussed by Foulley et al. [6, 7], San
Cristobal et al. [23] and Foulley [4].

As far as the functional relationship between the residual and u-components is
concerned, interest focuses primarily on the hypotheses i) a constant variance ratio
(b = 1), and ii) a constant u-component of variance (b = 0) [2, 16, 22, 28].

Note that the structural functional model can be tested against the double struc-
tural model: fn o, ei 2 = pi be, and fn o, u 2i = p§ 5u with the same covariates. The reason
for that is as follows. Let P = [11P’], 5e = [rye, 6*] and &eth;u = (r!!, 6*] pertaining to
a traditional parameterization involving intercepts qe and ?7u for describing the
residual and u-components of variance, respectively, of a reference population. The
structural functional model reduces to the null hypothesis 6* = 2bbe, thus result-
ing in an asymptotic chi-square distribution of the LRS contrasting the two models
with Rank(P)-2 degrees of freedom.

2.4. Numerical example

For readers interested in a test example, a numerical illustration is presented
based on a small data set obtained by simulation. For pedagogical reasons, this
example has the same structure as that presented in Foulley [4], i.e. it includes two
crossclassified fixed factors (A and B) and one random factor (sire).

The model used to generate records is:

where a is a general mean, ai, 13j are the fixed effects of factors A(i = 1, 2) and
B(j = 1,2,3), sk the standardized contribution of male k as a sire and 1/2se ) that
of male as a maternal grand sire.

Except for T = 0.001016 and b = 1.75, the values chosen for the parameters are
the same as in Foulley [4]. The data set is listed in table I. The issue of model choice
for location and log-residual parameters will not discussed again; they are kept the
same, i.e. additive as in the previous analysis.



Table II presents -2L values, LR statistics and P-values contrasting the following
different models:

1) additive for both log Qe and log or2;
2) additive for log u2 and log as = a + b log a,;
3) constant variance ratio (b = 1);
4) constant sire variance (b = 0).
In this example, models (3) and (4) were rejected as expected whatever the

alternatives, i.e. models (1) or (2). Model (2) was acceptable when compared to (1)
thus illustrating that there is room between the complete structural approach and
the constant variance ratio model.

The corresponding estimates of parameters are shown in table IIL Estimates
of the functional relationship are T = 0.001143 and b = 3.0121, this last value
being higher than the true one, but - not surprisingly in this small sample - not
significantly different (A = 1.5364 and P-value = 0.215).

3. DISCUSSION AND CONCLUSION

This paper is a further step in the study of heterogeneous variances in mixed
models. It provides a technical framework to investigate how the u-component of
variance and the intra-class correlation varies with the residual variance.





This has been an issue for many years in the animal breeding community. For
instance for milk yield, the assumption of a constant heritability across levels of
environmental factors (e.g. countries, regions, herds, years, management conditions)
has generated considerable controversy: see Garrick and Van Vleck [8], Wiggans
and VanRaden [29]; Visscher and Hill [26], Weigel et al. [28] and DeStefano [2].
Maximum likelihood computations are based, here, on the EM algorithm and
different simplified versions of it (gradient EM, ECM). This is a powerful tool
for addressing problems of variance component estimation, in particular those
of heterogeneous variances [4, 5, 7, 20, 21]. It is not only an easy procedure to
implement but also a flexible one. For instance, ML rather than REML estimators
can be obtained after a slight modification of the E-step resulting for grouped
data in

where Muu is the u x u block of the coefficient matrix of the Henderson mixed
model equations.

Posterior mode estimators can also be derived using EM [5, 9, 27].



Moreover the procedure can be extended to models with several(k = 1, 2, ... , K)
uncorrelated u random factors, e.g.

Such an extension will be easy to make via the ECM (expectation conditional
maximization) algorithm [15] in its standard or gradient version along the same
lines as those described in Foulley [4]. However caution should be exercised in
applying the gradient ECM, for this algorithm no longer guarantees convergence in
likelihood values. Other alternatives might be considered as well such as the average
information-REML procedure [10, 17].

In conclusion, the likelihood framework provides a powerful tool both for
estimation and hypothesis testing of different competing models regarding those
problems. However, additional research work is still needed to study some properties
of these procedures especially from a practical point of view, for example the power
of testing such assumptions as b = 1.
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Al. APPENDIX: Derivatives for the EM algorithm

The Q function to be maximized is (in condensed notation)

with

and,

Al.l. Derivative with respect to 5 (log residual parameters)

According to the chain rule, one has

Now

That is

and

Thus,



I

Letting v5 = 8Q /8£n ufl so that !! = L v5 ipi = P’V,5, then! °! 
i=1 

Let us define

and, the same symbols with a hat for their conditional expectations, i.e.

an alternative expression for computing (A4) is

already reported by Foulley et al. [6] and Foulley [4] for models with a homogeneous
u-component of variance, and a constant u to e variance ratio, respectively.

Al.2. Derivative with respect to T

with

and

so that



or, more explicitly

Al.3. Derivative with respect to b

Similarly

with

so that

or alternatively,

Al.4. 5 - 5 derivatives

Let us define

where

Now



and

After developing and rearranging, one obtains

Letting b = 0 and b = 1 in (All) leads to

and

Again these are the same expressions as those given by Foulley et al. [6] and
Foulley [4] for a constant u-component of variance and a constant variance ratio,
respectively.

Al.5. b - T derivatives

where

Now

Finally



Al.6. 5 - b derivatives

where

Now

and

so that

A1.7. T - T derivatives

Differentiating (A7) once again with respect to T leads to

Al.8. T - b derivatives

From (A7), one has

Al.9. b - b derivatives

From (A9), one gets



Finally, the Newton-Raphson algorithm to implement for the M-step of the EM
algorithm can be written in condensed form as:

where at iteration [n], A6[n] = b!’!! - ¿;[n-1], and !T!!! = T[n] - T[n-1] and
Abl&dquo;I = b[n] - b[n-1].
A gradient EM version would be to solve:
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