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Abstract - Incomplete marker data prevent application of marker-assisted breeding
value estimation using animal model BLUP. We describe a Gibbs sampling approach
for Bayesian estimation of breeding values, allowing incomplete information on a single
marker that is linked to a quantitative trait locus. Derivation of sampling densities for
marker genotypes is emphasized, because reconsideration of the gametic relationship
matrix structure for a marked quantitative trait locus leads to simple conditional densities.
A small numerical example is used to validate estimates obtained from Gibbs sampling.
Extension and application of the presented approach in livestock populations is discussed.
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Résumé - Estimation des valeurs génétiques avec information incomplète sur les
marqueurs. Un typage incomplet pour les marqueurs empêche l’estimation des valeurs
génétiques de type BLUP utilisant l’information sur les marqueurs. On décrit une

procédure d’échantillonnage de Gibbs pour l’estimation bayésienne des valeurs génétiques
permettant une information incomplète pour un marqueur unique lié à un locus quantitatif.
On développe le calcul des densités de probabilités des génotypes au marqueur parce
que la reconsidération de la structure de la matrice des corrélations gamétiques pour
un locus quantitatif marqué conduit à des densités conditionnelles simples. Un petit
exemple numérique est donné pour valider les estimées obtenues par échantillonnage de
Gibbs. L’application de l’approche aux populations d’animaux domestiques est discutée.
&copy; Inra/Elsevier, Paris
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1. INTRODUCTION

Identification of a genetic marker closely linked to a gene (or a cluster of genes)
affecting a quantitative trait, allows more accurate selection for that trait [5].
The possible advantages of marker-assisted genetic evaluation have been described
extensively (e.g. [13, 16, 17]).

Fernando and Grossman [1] demonstrated how best linear unbiased prediction
(BLUP) can be performed when data are available on a single marker linked to
quantitative trait locus ((aTL). The method of Fernando and Grossman has been
modified for including multiple unlinked marked QTL [23], a different method of
assigning QTL effects within animals [26]; and marker brackets [5]. These methods
are efficient when marker data are complete. However, in practice, incompleteness
of marker data is very likely because it is expensive and often impossible (when
no DNA is available) to obtain marker genotypes for all animals in a pedigree.
For every unmarked animal, several marker genotypes can be fitted, each resulting
in a different marker genotype configuration. When the proportion or number of
unmarked animals increases, identification of each possible marker genotype con-
figuration becomes tedious and analytical computation of likelihood of occurrence
of these configurations becomes impossible.

Gibbs sampling [3] is a numerical integration method which provides opportuni-
ties to solve analytically intractable problems. Applications of this technique have
recently been published in statistics (e.g. [2, 3]) as well as animal breeding (e.g. [18,
25]). Janss et al. [10] successfully applied Gibbs sampling to sample genotypes for a
bi-allelic major gene, in the absence of markers. Sampling genotypes for multiallelic
loci, e.g. genetic markers, may lead to reducible Gibbs chains [15, 20]. Thompson
[21] summarizes approaches to resolve this potential reducibility and concludes that
a sampler can be constructed that efficiently samples multiallelic genotypes on a
large pedigree.

The objective of this paper is to describe the Gibbs sampler for marker-assisted
breeding value estimation for situations where genotypes for a single marker locus
are unknown for some individuals in the pedigree. Derivation of the conditional,
discrete, sampling distributions for genotypes at the marker is emphasized. A small
numerical example is used to compare estimates from Gibbs sampling to true
posterior mean estimates. Extension and application of our method are discussed.

2. METHODOLOGY

2.1. Model and priors

We consider inferences about model parameters for a mixed inheritance model
of the form

where y and e are n-vectors representing observations and residual errors, (3 is a
p-vector of ’fixed effects’, u and v are q and 2q-vectors of random polygenic and
QTL effects, respectively, X is a known n x p matrix of full column rank, and Z
and W are known n x q and n x 2q matrices, respectively. For each individual we



consider three random genetic effects, i.e. two additive effects at a marked QTL
(v! and v2, see figure 1) and a residual polygenic effect (u;). Here e is assumed to
have the distribution Nn(O, 10&dquo;;), independently of (3, u and v. Also u is taken to
be Nq(0, AO,2), where A is the well-known numerator relationship matrix.

Finally, v is taken to be N2q(OGQ!), where G is the gametic relationship matrix
(2q x 2q) computed from pedigrees, a full set of marker genotypes and the known
map distance between marker and QTL [26]. In case of incomplete marker data,
we augment genotypes for ungenotyped individuals. We then denote ffi(k) and
G(k) as the marker genotype configuration k and as the corresponding gametic
relationship matrix. Further, /3, u, v, and missing marker genotypes are assumed
to be independent, a priori. We assume complete knowledge on variance components
and map distance between marker and QTL.

2.2. Joint posterior density and full conditional distributions for location
parameters

The conditional density of y given /3, u, and v for the model given in equation
(1) is proportional to exp{ -1/2a;2(y - X,3 - Zu - Wv)’(y - X/3 - Zu - Wv},
so the joint posterior density is given by



The joint posterior density includes a summation (nc) over all consistent marker
genotype configurations (M(k))- In the derivation of the sampling densities for
marked QTL effects, however, one particular marker genotype configuration, m(k),
is fixed. The summation needs to be considered only when the sampling of marker
genotypes is concerned.

To implement the Gibbs sampling algorithm, we require the conditional posterior
distributions of each of (3, u, and v given the remaining parameters, the so-called
full conditional distributions, which are as follows

and gametic covariances in the pedigree, respectively. Note that the means of the
distributions (3), (4) and (5) correspond to the updates obtained when mixed model
equations are solved by Gauss-Seidel iteration. Methods for sampling from these
distributions are well known (e.g. [24, 25]).

2.3. Sampling densities for marker genotypes

Suppose m is the current vector of marker genotypes, some observed and some
of which were augmented (e.g. sampled by the Gibbs sampler). Let m-i denote
the complete set except for the ith (ungenotyped) individual, and let gm denote



a particular genotype for the marker locus. Then the posterior distribution of
genotype gm is the product of two factors

with,

where G-1 corresponds to marker genotype set IM-i, Mi = gm). Thus, equation
(7) shows that phenotypic information needed for sampling new genotypes for the
marker is present in the vector of QTL effects (v).

Now, it suffices to compute equation (6) for all possible values of gm, and then
randomly select one from that multinomial distribution [20]. In practice consid-
ering only those gm that are consistent with m-i and Mendelian inheritance can
minimize the, computations. Furthermore, computations can be simplified because
&dquo;transmission of genes from parents to offspring are conditionally independent given
the genotypes of the parents&dquo; [15]. Adapting notation from Sheehan and Thomas
[15], let Sj denote the set of mates (spouses) of individual i and 0;,! be the set of
offspring of the pair i and j. Furthermore, the parents of individual i are denoted

by s (sire) and d (dam). Then, equation (6) can be more specifically written as

p(mi = gm, m-i IV, oV 2 ,Mobs, r)

When parents of individual i are not known, then the first two terms on the
right-hand side of equation (8) are replaced by x(m;), which represents frequen-
cies of marker genotypes in a population. The probability p(m; = 9. 1 M., Md). cor-
responds to Mendelian inheritance rules for obtaining marker genotype gi given
parental genotypes ms and md, similar for p(m1Im¡ = gm, m!). The computation of
p{vilvd,m¡,ms,md,r} (and p{v1Iv¡, Vj,mi,mj,m1,r}) can efficiently be performed
by utilizing special characteristics of the matrix G-1.

Let Qi denote a gametic contribution matrix relating the QTL effects of
individual i to the QTL effects of its parents. The matrix Qi is 2(i &mdash; 1) x 2. For
founder animals, matrix Qi is simply zero. The recursive algorithm to compute G-1
of Wang et al. (1995, equation [18] ) can be rewritten as

where D¡1 = (C; - Q;G¡-1Q¡)-1 (which reduces to D¡1 = (Ci - QfGi-,Qi)-’
with no inbreeding), Oi is a 2(q&mdash;i) x 2 null matrix. The off-diagonals in C; equal the
inbreeding coefficient at the marked QTL [26]. Equation (8) shows the similarity to



Henderson’s rules for A-1 [6]. The nonzero elements of G-1 pertaining to an animal
arise from its own contribution plus those of its offspring. So, when sampling the
ith animal’s marker genotype, only those contribution matrices need be considered
that contain elements pertaining to animal i. These are the individual’s own
contributions and those of its progeny when i appears as a parent.

where Vk is the vector of animal k’s two marked QTL effects, and Qp denotes the
rows of Qk pertaining to P, one of k’s parents. Again, we recognize each term in
the sum is the kernel of a (bivariate) normal which is pfvi Ivs, vd, m¡, ms, md, r} or
p{v1Iv¡, Vj, m¡, mj,m1, r}.

2.4. Running the Gibbs sampling

The Gibbs sampler is used to obtain a sample of a parameter from the posterior
distribution and can be seen as a chained data augmentation algorithm [19]. So,
one augments data (y and mobs) with parameters (0) to obtain, for example,
p(e1Ie2, ... , Od, y). For the purpose of breeding value estimation, Gibbs sampling
works as follows:

1) set arbitrary initial values for 9!°!, we use zeros for fixed and genetic effects
and for each unmarked animal, we augment a genotype that is consistent with

pedigree, Mendelian inheritance, and observed marker data;
2) sample 01’+ll from

[3], i = 1, 2, .., p; for fixed effects,

[4], i = p + 1, p + 2, .., p + q; for polygenic effects,
[5], i = p + q + 1, p + q + 2, .., p + q + 2q; for marked QTL effects, or

[6], i = p + 3q + 1, p + 3q + 2,.., p + 3q + t; for marker genotypes,
and replace 6!T! with eiT+1]; 

.

3) repeat 2) N (length of chain) times.
For any individual parameter, the collection of n values can be viewed as a

simulated sample from the appropriate marginal distribution. This sample can be
used to calculate a marginal posterior mean or to estimate the marginal posterior
distribution. For small pedigrees with only a few animals missing observed marker
genotypes, posterior means can be evaluated directly using



where B* is a fixed, polygenic or marked QTL effect. This provides a criterion to
compare the estimates obtained from Gibbs sampling.

3. NUMERICAL EXAMPLE

A small numerical example is used to verify the use of the Gibbs sampler to
obtain posterior mean estimates and illustrate the effect of the data on the estimates
obtained from two different estimators, i.e. a posterior mean and the well-known
BLUP estimator (by solving the MME given in the Appendix). Pedigree and
data of the example are in figure 2. Both sire (01) and dam (02) have observed
marker genotypes, AB and CD, respectively, but do not have phenotypes observed.
Three full sibs have a marker genotype BC and a phenotype +20 (denoted FS 03,
04, 05); three other full sibs have a marker genotype AD and a phenotype -20
(denoted FS 06, 07, 08). Both animals 09 and 10 have no marker genotypes but
have a phenotype +20 and -20, respectively. Complete knowledge was assumed on
variance components and recombination rate between marker and MQTL (table I).
The thinning factor in Gibbs sampling chain was 50 cycles and the burn in period
was twice the thinning factor, and 20 000 thinned samples were used for analysis.

3.1. Estimates for genetic effects

The posterior estimates obtained from Gibbs sampling were similar to the TRUE
posterior estimates, as shown in table 11. The posterior estimates of MQTL effects of
animals 09 and 10 (f0.70) were much less divergent than those of their full sibs that
had their marker genotypes observed (f2.48). These less divergent values reflect
the uncertainty on marker genotypes of animals 09 and 10. The TRUE and GIBBS
posterior densities for an MQTL effect of animal 09 were also very similar (figure 3).
The posterior variance was 52.3, which was larger than the prior variance (ufl = 50)
and reveals that the data are not decreasing the prior uncertainty on MQTL effects
for animals 09 and 10 in this situation. For the other full sibs, the posterior variance
was 47.02, which was lower than the prior variance because segregation of MQTL
effects was known with higher certainty, i.e. marker genotypes were known. The
BLUP estimates for MQTL effects of animal 09 and 10 were equal to 1/6 of the
polygenic effects of these animals, which equaled the variance ratio of the MQTL
and the polygenes.







3.2. Marker genotype probabilities

In the following marker genotype AB represents both AB and BA. In the latter
case, alleles for both marker and MQTL are reordered, maintaining linkage between
marker and MQTL alleles within an animal. So, four marker genotypes were possible
for animals 09 and 10 (table III). Based on pedigree and marker data solely, each of
these four genotypes was equally likely (prior probability = 0.25). After including
phenotypic data, (posterior) probabilities changed: marker genotype BC and AD
for animal 09 became more and less probable, respectively. The reverse holds for
animal 10. The estimates from the Gibbs sampler were again very similar to the
TRUE posterior probabilities. Complete phenotypic and marker information on six
full sibs gave the MQTL effects linked to marker alleles B and C positive values and
marker alleles A and D negative values. Note that probabilities (TRUE) for marker
genotypes AC and BD also (slightly) changed after considering the phenotypic data.

4. DISCUSSION

Marker-assisted breeding value estimation in livestock has been hampered by
incomplete marker data. Previously described methods [1, 23, 26] can accommodate
ungenotyped individuals which do not have offspring themselves as was shown
by Hoeschele [7]. However, they do not provide the flexibility to incorporate
parents with unknown genotypes which results in the loss of information for

estimating marker linked effects. The described Gibbs sampling algorithm now
provides this required flexibility. The innovative step in our approach is the sampling
of genotypes for a marker locus that is closely linked to QTL with normally
distributed allelic effects. Normality of QTL effects is a robust assumption to allow
segregation of many alleles throughout a population and allow changes in allelic
effects over generations, e.g. due to mutations and interactions with environments
[8]. In sampling missing genotypes information from marker genotypes as well as



phenotypes of animals in the pedigree are used. Jansen et al. [9] indicate that, as
a result of the use of phenotypic information, unbiased estimates of effects at the
QTL can be obtained in situations where animals have been selectively genotyped.

In this paper we have concentrated on the use of information from a single
marker locus. Using information from multiple linked markers can increase accuracy
of predicting genetic effects at the QTL. The principles applied here have been
extended to situations where genotypes for all the linked markers are known for all
individuals [5, 22]. In order to incorporate individuals with unknown genotypes, the
method presented in this paper needs to be extended to a multiple marker situation.
In extending the method to multiple markers, the problem of reducibility deserves
special attention.

Reducibility of Gibbs chains can arise when sampling genotypes for a polymor-
phic locus with more than two alleles [20]. The reducibility problems will become
more severe when sampling genotypes for multiple linked markers. Thompson [21]
suggested several, workable, approaches to guarantee irreducibility of the Gibbs
chain. These approaches make use of Metropolis-coupled samplers [11], importance
sampling, with 0/1 weights [15], and ’heating’ in the Metropolis-Hastings steps [12].
Alternatively, Jansen et al. [9] sampled IBD values for all marker loci indicating
parental origin of alleles instead of actual alleles to avoid the reducibility problem.
In extending the method to multiple linked markers, attention also needs to be paid
to an efficient scheme for haplotypes or genotypes at the linked loci. Updating of
genotypes at closely linked loci will be more efficient when genotypes at the linked
loci are updated together (’in blocks’) in order to reduce auto-correlation in the
Gibbs sampler [10].

For posterior inferences on the breeding value of an animal a minimum of
100 effective samples is needed. In the numerical example this minimum would
correspond to a chain of 5 000 cycles which required 8 s of CPU at a HP9000
K260 server. It has been found that computing requirements increase more or
less linearly with the number of animals [10]. The presented method can be
applied to data originating from nucleus herds which comprise the relatively small
number of genetically superior animals from the population. In a marker-assisted
selection scheme marker genotypes will be collected largely on these animals, with
sufficient animals having marker genotypes observed to improve selection of superior
individuals.

Straightforward application in large commercial populations with thousands
of marker genotypes missing, is not a valid option because of computational
requirements of Markov chain Monte Carlo (MCMC) algorithms such as Gibbs
sampling. Hybrid schemes will need to be developed to incorporate information
from the commercial population into the marker-assisted prediction of breeding
values of nucleus animals. Similar schemes have been implemented to incorporate
foreign information into national evaluations in dairy cattle.

Our Bayesian approach can also be considered as a first step towards a MCMC
algorithm, not necessarily Gibbs sampling, that can also estimate hyper parame-
ters, which were held constant in this study. The next step, therefore, comprises
estimation of variance components, both marked QTL and polygenic, given a fixed
map position of the QTL. And, eventually, one could estimate the most likely po-
sition of the QTL within a linkage map containing multiple markers. The complete



MCMC algorithm can then be used for the analysis in QTL mapping experiments
with complex pedigree structures, such as (grand-) daughter designs, in outbred
populations.
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Al. APPENDIX

A1.1. Computation of average G with incomplete marker data

Wang et al. [26] suggested computing an average G, here denoted G, as

where G(k) is the gametic relationship matrix given a particular marker genotype
configuration m(k); and p(M(k)lMob,) is the probability of m(k) given mobs. This
equation is not conditioned on phenotypic information.

Al.2. Marker-assisted best linear unbiased prediction of breeding values

Mixed model equations (MME) to obtain BLUE for fixed effects and BLUP for
random effects are



where a&dquo; = Qe !Qu, a&dquo; = Qe !Q! and G are all known. Solutions can be obtained by
iteration on the data [14]. These equations can be used in three situations. First, G
is unique (complete marker data). Second, with missing markers, a linear estimator
is obtained by taking G = G. Third, with G = G!!!, they are used to compute
E!BIG(k), !u! !!, ae ! Y)!
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