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Abstract - The conservation of genetic variability is recognized as a necessary objective for
the optimization of selection schemes, particularly when populations are small. Numerous
models, differing by the genetic model they rely on, are available to better understand
and predict the evolution of genetic variance in a small population undergoing selection.
This paper compares three genetic models, treated either analytically or with Monte-Carlo
simulations, first in order to validate the predictions provided by a ’full-finite model’ for
well-known phenomena (e.g. the effect of population management on genetic variability),
and second, to evaluate when and how the assumptions made in the two analytical
models induce the departure from the third model. The FFM is shown, first, to be in
close agreement with the Gaussian theory when used with a large number of loci, the
stochastic approach making it much more flexible than the two algebraic models. In the
second part of the study, the infinitesimal model appears to be more robust than the semi-
infinitesimal one. Major sources of discrepancy between the deterministic models and the
FFM are identified, notably the hypothesis of independence between loci, and then the
infinite number of loci or alleles per locus. &copy; Inra/Elsevier, Paris
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Résumé - De l’intérêt de trois modèles génétiques pour la description de la variance
génétique dans les petites populations sélectionnées. La conservation de la variabilité

génétique est reconnue comme un objectif nécessaire pour l’optimisation des schémas de
sélection, notamment pour les petites populations. De nombreux modèles, différant par
les hypothèses de déterminisme génétique sur lesquels ils reposent, sont disponibles pour
une meilleure compréhension et une meilleure prédiction de l’évolution de la variabilité
génétique dans une petite population soumise à sélection. Cet article compare trois modèles
génétiques différents, traités soit par la voie analytique soit par des simulations Monte-
Carlo, d’une part pour valider les prédictions fournies par un « modèle fini complet »
pour des phénomènes connus (comme l’influence de la gestion de la population sur la
variabilité génétique), d’autre part pour évaluer quand et comment les hypothèses faites



dans les deux modèles analytiques induisent un écart avec le dernier modèle. Le modèle
fini complet apparaît, dans un premier temps, en bon accord avec la théorie gaussienne
quand il est utilisé avec un grand nombre de locus, l’approche stochastique le rendant de
plus beaucoup plus souple que les deux modèles algébriques. Dans la seconde partie de
l’étude, le modèle infinitésimal apparaît plus robuste que le modèle semi-infinitésimal. Des
sources majeures d’écart entre les modèles déterministes et le modèle fini complet sont
identifiées, notamment l’hypothèse de l’indépendance entre les locus, puis le nombre infini
de locus et d’allèles par locus. &copy; Inra/Elsevier, Paris
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1. INTRODUCTION

Genetic variability is necessary to provide genetic progress through selection and
the conservation of genetic variability is of increasing concern in the optimization
of selection schemes, particularly when selected populations are small. Numerous
experiments [1, 6] have shown a decrease in genetic variability over time, due to
genetic drift and selection, until the exhaustion of variance in many cases. Therefore,
thorough knowledge of the evolution of genetic variance in relation to these two
phenomena is important when constructing optimal selection schemes.

Several kinds of models are available to describe the evolution of genetic
variability, depending on the hypotheses used concerning genetic determinism.
Analytical models, whose properties often rely on the hypothesis of normality,
provide a quite simple formalization of the phenomena acting on genetic variance.
Monte-Carlo simulations allow a more detailed and complex description of polygenic
inheritance.

This paper aims to compare the predictions of genetic variability in a small
population undergoing long-term selection provided by three different genetic
models, two of them treated analytically and the last with Monte-Carlo simulations.
This comparison concerns essentially their sensitivity to the characteristics of the
genome. The genetic models underlying the Monte-Carlo simulations and the two
analytical models are presented first. The predictions provided by the three models
will then be compared first to validate the genetic model used in the MC simulation
when it approaches the infinitesimal hypothesis, and secondly to determine when
the analytical models depart from the ’full-finite model’, used here as reference.

2. DESCRIPTION OF THE MODELS

Three genetic models are presented, two of them being treated analytically and
the last with Monte-Carlo simulations. The Monte-Carlo model will be developed
first as the most complete situation, where the effects of genetic drift and selection
are not algebraically formalized but implicitly accounted for in the simulation. The
analytical models of Verrier et al. [14] and Chevalet [3] will then be described, each
corresponding to a different choice of hypotheses for the algebraic formalization of
the phenomena acting on variance.



2.1. The ’full-finite model’ (or FFM)

The genetic model underlying the simulation is based on the assumption that
a selected trait is controlled by a finite number of linked genes individually
identified, located on chromosomes, with a finite number of alleles per locus.
This model is then called the ’full-finite model’ or FFM. Individual genotypes are
generated according to the number of loci, alleles per locus, loci per chromosome,
recombination rates and relative effects of the loci on the selected trait. For a given
individual, an environmental value (assumed to be normally distributed) is added
to its generated genotype, giving its phenotypic value. A within-generation mass
selection is based on these phenotypes. Selected breeding individuals are randomly
mated and produce a new generation. This is performed through the simulation of
meiosis and pairing of gametes. Generations are assumed to be discrete.

The simulation algorithm, initiated by Hospital [8] and developed by Fournet
et al. [7], uses the Monte-Carlo principle and provides the mean values and standard
deviations for genetic mean and variance over time.

2.2. Analytical models

The first model presented, established by Verrier et al. [14], relies on the
hypothesis that the selected trait is controlled by an infinite number of independent
loci, with identical and small effects. It will then be called in the following
’infinitesimal model’ or IM. The computation of the inbreeding coefficient in this
model accounts for the effect of selection on family structure (for more details, see
[14]).
The second model, developed by Chevalet [3] for a monoecious population

of N individuals, assumes a finite number of unlinked loci L with an infinite
number of alleles per locus, and will be called the ’semi-finite’ model or SFM. The
joint distribution of the gene effects is then assumed to be multivariate normal.
Derivations of the variances of gene effects and covariances between gene effects
under selection lead to the prediction of the joint evolutions of genetic and genic
variances by two recurrence equations. The number N of individuals has been
replaced here by the effective size of population Ne, derived from the Latter-
Hill equation [11], with a Poisson distribution of the number of offspring for each
genealogical path, accounting for genetic drift.

3. CASES STUDIED

A polygenic-like situation with an infinite number of alleles per locus was first
simulated in the FFM, to check if the evolution of genetic variance given by the three
models was similar. This basic system was defined as a population of size N (with as
many males as females), evaluated on their own performances for each generation,
with, respectively, 25 and 50 % males and females retained. The heritability of the
selected trait was assumed to be 0.3. A thousand independent loci with 500 alleles
per locus were simulated in the Monte-Carlo model. The sensitivity of the models
to deviations from the basic situation was then evaluated. The comparison criterion
was the ratio between genetic variances at generation t and generation 0 (RVI’l).



3.1. Population size

Different sizes of candidate population N (total sizes of 96, 192 and 480, with as
many males as females for each size) were tested.

3.2. Parameters of genetic determinism

In this study 1 000, 100, 10 and 2 independent loci were assumed in the FFM
and the SFM. This comparison of sensitivity to the number of loci was performed
assuming that all loci were located on one chromosome in the FFM.

Here 100, 10 and 2 alleles per locus, in the case of 100 or 10 loci, were simulated
in the FFM in order to show the deviation of the SFM from the FFM when this

parameter decreases.
The recombination rate r was assumed to be 0.5, 0.1, 0.01 and 0.001, in the case

of 1000, 100 and 10 multiallelic loci controlling the selected trait, in order to check
the effect of linkage on the prediction of genetic variance over time in the FFM. The
effect of linkage was not studied in the model of Chevalet, as assuming ri! ! 0.5 for
any pair of loci (i,j) would produce as many equations as different pairs of loci.

In the ’full finite’ model, the relative contributions of the loci to the genetic
variance of the selected trait were assumed to be identical in the preceding
comparisons. To test the robustness of the results with respect to this assumption,
and following Lande and Thompson (1990), variances were assumed to follow a
geometric series, with the lth locus contributing V7l(l &mdash;a)a!B where the constant
a determines the relative magnitude of the contributions of each locus. This constant
is related to the effective number of loci as: Le = (1 + a)/(1 - a). Simulations were
performed with 1 000 biallelic loci, with effects following a geometric series where
the parameter a was given values corresponding to 2, 5, 10, 50 and 100 effective loci.
The resulting evolutions of genetic variability were compared to the corresponding
curves of loci with identical contributions.

Thirty generations of selection were simulated. A hundred simulations were
performed for each combination of factors. With as many simulations, a difference
just higher than 5 % between the predictions of the different models would be
significant (at the 5 % level). A 10 % difference was then considered as significantly
larger.

4. RESULTS

The predictions provided by the three models for the joint effects of population
size and selection intensity on the evolution of genetic variance were compared.
Figure 1 illustrates the case of intermediate value of selection intensity (i.e. 25 %
of males selected), as the trend was the same for the other two tested values (50 %
and 6.25 % of males selected).

It can be pointed out that the three models provided almost the same evolution of
genetic variance, whatever the population size and selection intensity. As expected
[4], the higher the selection intensity, the greater the influence of the population
size, and the higher the decrease in genetic variance. This comparison of the



predictions given by analytical and stochastic models for well-known phenomena
allowed validation of the genetic model used for the MC simulations.

4.1. Effect of number of loci

Table I presents the values of RV[30] provided by the three models when
decreasing the number of loci L (with multiallelic loci in the FFM). RV[30] in
the IM departed by more than 10 % from the FFM prediction for studied values
of L lower than 250, while the predictions of SFM and FFM were in quite good
agreement for more than 50 loci. Although the semi-infinitesimal model accounts for
a finite number of loci, its sensitivity to this parameter is quite weak: the difference
between IM and SFM exceeds 10 % only when the number of loci considered in the
SFM is lower than 10. This behaviour must be related to the hypothesis of infinite
number of alleles per locus. Results of FFM presented later, where the effect of
the number of loci decreases when increasing the number of alleles per locus, are
consistent with this observation. Figure 2 illustrates the evolution of RV’I over

time for 1 000, 100, 10 or 2 loci. For 100 loci, IM and SFM depart from FFM only
after 20 generations, while for 10 loci, they both depart from FFM as early as
generation 7 and with 2 loci, IM and SFM depart from FFM after generations 3
and 6, respectively. The additive genetic variance in FFM decreased dramatically
with a very small number of loci (10 and 2). This result was of course expected and
it illustrates the strong influence of the infinitesimal hypothesis on the predictions.



However, the infinitesimal model remains quite robust so long as the number of loci
assumed is not too small.

4.2. Effect of the number of alleles per locus

Figure 3a, b indicates a loss of genetic variance in the FFM, when the num-
ber A of alleles decreased, higher when the number of loci was smaller: the ge-
netic variance decreased for fewer than 10 alleles per locus for L = 100 and





since 100 alleles per locus for L = 10. A combination of the two variables indicating
the amount of available variability influenced the behaviour of the genetic variance
over time, more than did each variable alone: at a given generation, 1000 biallelic
loci and 100 loci with 50 alleles per locus provided the same RV’I (results not
shown).

4.3. Effect of linkage between loci

The decrease in genetic variance when increasing the linkage between loci was
higher when the number of loci was lower. For 1000 multiallelic loci, only very
strong linkage (r = 0.001) gave a significant decrease in the predicted RV[30] in the
FFM (38 % lower than for r = 0.5). For 100 (figure 4) or 10 multiallelic loci, no
difference was observed between the absence of linkage and a recombination rate
of 0.1, but below r = 0.01, stronger linkage led to a higher decrease in genetic
variance in the early generations and a lower asymptotic plateau in the latter ones.
In fact, a large number of linked loci behave as a small number of independent
loci. To a certain extent, the genome size seemed the main factor acting on genetic
variance, in agreement with Robertson [12] who showed that the limit in genetic
response for a given recombination rate was directly linked to the chromosome
length. Nevertheless, the comparison remained limited as Robertson inferred a
general description of the selection process in finite populations only for a large
number of loci.



4.4. Effect of inequality between loci effects

Predictions of the genetic variance for 1 000 biallelic loci whose effects followed
a geometric series, with varying parameter a giving a number Le of effective loci,
and predictions for L = Le loci with identical effects are compared in figure 5. It
can be seen that the predictions for L = x loci of identical effects and for 1 000
loci of differential effects giving Le = x effective loci were very close, whatever the
value of x. This showed that even 1000 loci could not be considered an infinitesimal

genome, if the hypothesis of differential effects of the loci (a few loci with relatively
large effects and many others with small effects) is true [10].

5. DISCUSSION AND CONCLUSION

The first part aimed to investigate the validity of the genetic model underlying
the MC simulations, when compared to analytical models corresponding to different
hypotheses on the genetic determinism. The first result to be pointed out was that
the three models, when a large number of loci were assumed for the ’semi-finite’ and
’the full-finite’ models, were in close agreement, whatever the population size and
selection intensity assumed. Moreover, the computation of the effective population
size for the monoecious model of Chevalet seemed to be quite valid as it provided
the same prediction as the dioecious models. This part verified that under the
hypothesis of a very large number of independent identical loci, the oligogenic model
and the Gaussian theory agree closely. These first results validate the use of the
’full-finite’ model in infinitesimal conditions, as its predictions seem reliable and
the stochastic approach makes it much more flexible than the other two models.



Furthermore, the stochastic approach intrinsically takes account of the reduction
in selection intensity as compared with the theory, of the relationships between
mates and inbreeding induced in the offspring and of the changing variance of
gene effects due to genetic drift and faster or slower fixation of alleles. The need
of unknown parameters to introduce in the model does not prevent its use, as the
other two models also make assumptions on the unknown parameters they use. And
the increasing knowledge on QTLs implied in the genetic determinism of selected
traits will provide elements for such a modelling.

In the second part, the hypothesis of an infinite number of loci controlling the
selected trait was shown to be very important: similar prediction of RVI’L with
infinitesimal and ’full-finite’ models was obtained only when simulating more than
500 loci in the FFM. Under this value, the departure of the Verrier et al. [14]
model from the FFM was substantial. One can wonder if such a large number
of loci (500 or 1000) controlling one trait is realistic? Tanksley [13] suggests
that the number of QTL implicated in various traits for a large set of animal or
vegetable species should vary between 1 and 18. But famous selection experiments
on maize [5] expressed genetic progress over 76 generations, suggesting that genetic
variability is infinite according to the infinitesimal theory. In animal breeding also,
selection experiments have been based on this theory for a long time and no
evidence of important discrepancy between results and theory has been found.
This contradiction strengthens the value of estimating the effective number of QTL
controlling a trait. It also points out the lack of complexity in the FFM hypotheses:
adding interactions between genes or mutations, or locating the genes on several
chromosomes, might be more realistic and informative. Indeed, recent studies [2, 9]
investigated the contribution of mutations as a source of new genetic variance in
mice. But, in our study, since the other two models did not account for interactions
or for new genetic variance arising from mutation, this hypothesis was excluded in
this version of FFM.

The second hypothesis of an infinite number of alleles per locus may explain
the discrepancy observed between the ’semi-finite’ and the ’full-finite’ models for
various numbers of loci. The total amount of available genetic variability, i.e. the
combination between the numbers of loci and alleles per locus, is not taken into
account in the same way in the two models. Is an infinite number of alleles per
locus more realistic than an infinite number of loci? Mutations might lead to a
huge number of very close allelic forms, whose effects are normally distributed;
on the contrary, the large potential variability is reduced because some of the
mutational allelic forms are not functional, and different alleles give exactly the
same phenotype. In the end, a discrete distribution of allelic effects is possible.
In this case, the prediction provided by the ’semi-finite’ model holds true only in
the short term, with a very slow decrease in variance after the first generations of
selection, whereas the ’full-finite’ model shows a clear tendency to a rapid fixation
of available alleles.

The effect of linkage was also studied by Hospital [8]. Two phases can be observed
in our results when the linkage is strong: a first phase with a rapid decrease
in genetic variability and a second phase of slow decrease reaching a plateau.
Hospital [8] explained this phenomenon by a weak rearrangement of gametes by
recombination. Selection first sorts the most favourable combinations in the initial



genetic pool, with a rapid reduction in genetic variability, and produces hitch-hiking
phenomena: unfavourable genes are selected jointly with favourables ones and are
poorly eliminated because of the low recombination rate in the second phase. When
linkage is less intense, the gametes are reorganized by recombination over a longer
period and the decrease in genetic variance is more regular. This part of the study
demonstrates a major source of possible discrepancy from reality when using the
two analytical models: as they both consider independent loci, they are likely to
overestimate the remaining genetic variance over time. It may then be underlined
that the ability to consider a possible linkage between loci confers a greater concern
to the genetic model in the FFM, as linkage is known to exist between loci and is
notably an essential principle for QTL detection. Finally, the identical effects of the
loci appeared to be a strong hypothesis. Indeed, following Lande and Thompson
[10], the distribution of gene effects according to a geometric series pointed out that
the number of effective loci was of greater concern than the real number of loci.
This point is also of great concern in this study. Indeed, results of molecular genetics
indicate, for most of the quantitative traits under study, the influence of a mixed
heredity, i.e. a small number of genes with large effects and a large number of genes
with small effects. But this kind of genome structure is not easy to integrate in
analytical models. The approach developed by Chevalet [3] accounts for differential
distribution of gene effects, by joining genes with variable contributions to the
genetic variance of the trait into several independent clusters of genes with equal
contributions. Moreover, within one given group of genes in this model, the loci may
be closely linked. The main disadvantage of this approach is the overestimation of
genetic variance after the first generation, probably due to the departure of the gene
effects from Gaussian distribution. By accounting for a finite number of loci and a
finite number of alleles per locus, the ’full-finite’ genetic model developed in this
paper, with a stochastic approach, seems to be an easy and quite consistent way
for studying the behaviour of genetic mean and variance in a situation of mixed
heredity.
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